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Abstract

Background: The annotation of surface exposed bacterial membrane proteins is an important step in interpretation
and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving
experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or
constitute vaccine targets in pathogenic bacteria.

Results: Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in
sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and
developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular
localization and membrane protein topology. Through the use of a modern scripting language, inmembrane
provides an accessible code-base and extensible architecture that is amenable to modification for related sequence
annotation tasks.

Conclusions: Inmembrane easily integrates predictions from both local binaries and web-based queries to help
gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github
repository http://github.com/boscoh/inmembrane.
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Background
A common task in bioinformatics is to integrate the re-
sults of protein prediction programs to deduce complex
properties of proteins. In studies of membrane proteomes,
quick annotation of an experimentally detected set of
the proteins can help highlight sequences of unexpected
localization, and can alert researchers to possible contam-
ination from other subcellular fractions. Ultimately, a con-
cise summary of the properties of the detected membrane
proteins in a particular proteomic dataset allows meaning-
ful comparisons between different bacterial strains, spe-
cies, and their responses in membrane remodeling to host
and environmental challenges (Figure 1).
A number of published software packages exist for

global prediction of subcellular localization of bacterial
proteins. Most notable is PSORTb v3.0 [1] which pre-
dicts general subcellular localization for Gram-positive,
Gram-negative and Archaeal protein sequences. CELLO
[2] is a web accessible Support Vector Machine-based
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reproduction in any medium, provided the or
classifier that predicts localization of Gram-positive,
Gram-negative and eukaryotic proteins. Some predictors
and databases have been developed with a focus solely
on Gram-positive surface proteins. Both Augur [3] and
LocateP [4] are pipelines wrapping existing speci-
fic localization predictors, and provide web accessible
databases of pre-calculated subcellular localization for
Gram-positive proteomes. While the source code for
PSORTb 3.0 is available under an open source license,
the code for the other annotation pipelines discussed is
not generally available for download.
An extension to general membrane localization predic-

tion is the analysis of membrane protein topology to
identify prominent surface exposed loops. These poten-
tially surface exposed (PSE) proteins are of particular
interest since they constitute attractive vaccine candi-
dates. One existing workflow for annotation of PSE pro-
teins is the program SurfG+ [5], which focuses on
Gram-positive bacterial proteomes. SurfG+ is a Java pro-
gram that carries out batch processing of several stand-
ard bioinformatic tools to specifically predict proteins
that protrude out of the peptidoglycan layer of the
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Topologies represented in Gram-negative bacterial inner membrane include (left to right) polytopic transmembrane proteins,
monotopic transmembrane proteins and lipoproteins on the periplasmic side of the membrane which are anchored via a lipid moeity
covalently attached to the N-terminal cysteine ("CD", where "D" denotes an Asp outer membrane avoidance signal at position 2
(Masuda et al. 2002)). The outer membrane also contains lipoproteins, usually on the inner leaflet exposed to the periplasm, however unlike the
inner membrane the outer membrane contains ß-barrel membrane proteins ("beta"), some with large extracellular domains exposed on the
surface. Akin to the Gram-negative inner membrane, the Gram-positive inner membrane contains mono and polytopic transmembrane proteins
and lipoproteins. Gram-positive bacteria also display surface proteins associated covalently or non-covalently with the cell wall peptidoglycan
layer via a number of "surface motifs", such as the LPxTG, LysM. Some proteins are also secreted into the extracellular milieu. A subset of
Gram-positive bacteria (the Acinetobacterace) have also been shown to contain ß-barrel membrane proteins in their plasma membrane.
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bacterium. These predictions are intended to identify a
set of proteins that would be accessible in cell-surface
protease shaving experiments. SurfG+ itself does not
carry out any computationally intensive analysis, but
rather leverages the results of a transmembrane helix
predictor (TMMOD) [6], a secretion signal predictor
(SignalP) [7], a lipoprotein signal predictior (LipoP) [8]
and a sequence alignment for protein profiles (HMMER)
(http://hmmer.org).
Nevertheless, SurfG+ suffers several problems that

plague much bioinformatic software. Despite being
published in 2009, the URL mentioned in the original
reference no longer exists. We were able to find a
source-code repository (https://mulcyber.toulouse.inra.
fr/projects/surfgplus) but we were not able to get the
program to work, due in part to dependencies that are
not longer generally available for download.
Since the core algorithm in SurfG+ is relatively straight-

forward, we decided to replicate and expand upon the
functionality of SurfG+ by writing inmembrane in a mod-
ern scripting language. This lead to considerable simplifi-
cation and clarification of the code base. Compared with

http://hmmer.org/
https://mulcyber.toulouse.inra.fr/projects/surfgplus
https://mulcyber.toulouse.inra.fr/projects/surfgplus
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the SurfG+, which is has 5,731 lines of source code
(SLOC) (SVN revision 48, SLOCCount v2.26) primarily in
Java, inmembrane, without dependencies, is around ~2400
SLOC of Python code and includes additional functional-
ity not offered by SurfG+. The smaller code base is sub-
stantially easier to reuse and repurpose for other users.
Here, we discuss the issues involved in writing robust and
accessible bioinformatic source code.

Methods and implementation
inmembrane is primarily designed to be run locally via the
command line. The input is a set of sequences in FASTA
format, the output is plain text (Figure 2), including a
summary table as well as an output file in comma-
separated-value (CSV) format suitable for import into
spreadsheet software or scripted text processing.
A set of unit tests, executable via the commandline

option “inmembrane_scan --test” enables users and de-
velopers to quickly verify if their inmembrane installa-
tion, with dependencies, is functioning as expected.

Gram-positive protocol
The inmembrane Gram-positive surface protocol lever-
ages a number of existing single localization predictors,
including transmembrane topology prediction, to deduce
the likely subcellular localization and expected surface
exposure of each protein in a given proteome. Each se-
quence is annotated by every predictor, and these anno-
tations are used by the business logic of inmembrane to
classify proteins as potentially surface exposed ("PSE"),
"Secreted", or the non-exposed classes "Cytoplasmic" and
"Membrane".
Annotations applied are as follows. HMMER 3.0 [9]

searches using hidden Markov models (HMM) derived
from Pfam and Superfam are used to detect known Gram-
positive surface sequence motifs. These include LPxTG
[10] [PF00746 and the HMM used by SurfG+ [5], GW
repeat domains [11] [Superfam models 0040855, 0040856,
0040857], peptidoglycan (PG) binding domain (Type 1)
[12] [PF01471, PF08823, PF09374]], Choline binding re-
peats [13], [PF01473] LysM domain [14] PF01476, Cell-
wall binding domain (Type 2) [15], [PF04122], S-layer
homology domain [16] [PF04122] motifs and the
Figure 2 An example of inmembrane output using the gram_pos pro
NLPC_P60 cell wall associated domain [17] [PF00877].
PFAM HMMs are from most recent version of at the time
of writing, release 26.0.
Lipoprotein signals are detected using LipoP [8], and

signal sequences are detected using SignalP [7], includ-
ing detection of signal peptidase cleavage sites.
The presence and topology of transmembrane seg-

ments in helical membrane proteins is predicted using
TMHMM v2.0 [18] and/or MEMSAT3 [19]. Since
MEMSAT3 executes a PSI-BLAST search to gather
homologous sequences, it is considerably slower than
TMHMM, and as such, is turned off by default.
Inmembrane collates the results of each analysis, and

using the predicted topology of the intergral membrane
proteins detected, predicts potentially surface-exposed
loops following the algorithm used by SurfG+ (Figure 3).
By default, external terminal regions longer than 50 resi-
dues and external loops longer than 100 residues are
considered to be potentially surface exposed. These
values were previously experimentally derived based on
membrane shaving experiments with S. pyrogenes and
may need modification to suit other species with differ-
ent cell wall thickness [5].

Tests with Gram-positive bacteria
The field of bioinformatics changes quickly, and in the
few years since the release of SurfG+, some of its de-
pendencies are no longer readily available. For instance
TMMOD is no longer released as a binary and SignalP
has progressed to Version 4.0. As a result we could not
use the same version of the binaries used in SurfG+.
Nevertheless, inmembrane produces comparable results
to SurfG+ for the 5 bacterial genomes originally tested
(Table 1). This can also be compared to PSORTb 3.0
classification for the same organisms (Table 2).

Gram-negative protocol
In addition to the Gram-positive surface protocol, we
have also implemented a protocol for summarizing sub-
cellular localization and topology predictions for Gram-
negative bacterial proteomes. Gram-negative bacteria
have both a cytoplasmic (inner) membrane, a periplas-
mic space, a peptidoglycan layer and an outer membrane
tocol.



Figure 3 Main logic classifying subcellular localization and potential surface exposure for Gram-positive protein sequences, expressed
in Python code. This algorithm was adapted from SurfG+. The function has_surface_exposed_loop evaluates whether the extracellular loops are
sufficiently long to be exposed out of the peptidoglycan layer. The rule adapted from SurfG+is a minimum length of 50 amino acids for terminal
loops, and 100 amino acids for internal loops.
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decorated in lipopolysaccharide (Figure 1). Membrane
proteins integral to the inner membrane contain hydro-
phobic helical transmembrane segments, analogous to
the Gram-positive cytoplasmic membrane, while the
proteins embedded in the outer membrane form ß-
barrels composed of amphipathic ß-strands. Lipopro-
teins in Gram-negative bacteria can be associated with
the inner or the outer membrane.
Potential signal sequences of the general (Sec) secretory

pathway are predicted using SignalP. Twin-Arginine
translocase (Tat) signals are predicted using TatFind [20]
and a profile HMM built from the Prosite [21] Tat se-
quence set (PS51318). Transmembrane helices and top-
ologies of inner membrane proteins are predicted using
TMHMM and optionally with MEMSAT3. As with the
Gram-positive protocol, lipoproteins were predicted using
LipoP, however the Gram-negative protocol additionally
detects the “Asp+2” inner-membrane retention signal [22]
Table 1 Comparison of inmembrane Gram-positive protocol r

S. pyogenes L. acidophilus

Accession EMBL:AE004092 EMBL:CP000033

Program S i S i

CYTOPLASM(non-PSE) 1243 1234 1290 1280

MEMBRANE(non-PSE) 236 238 315 329

PSE(total) 140 172 169 189

SECRETED 78 52 88 64

Total 1697 1696 1862 1862

Columns labelled 'S' are SurfG+ results and 'i' are inmembrane results. Some inmem
PSE(total) = PSE-Membrane + PSE-Cellwall + PSE-Lipoprotein).
to differentiate between lipoproteins transported to the
outer membrane (LIPOPROTEIN(OM)) and those re-
tained on the periplasmic side of the inner membrane
(LIPOPROTEIN(IM)).
The topology of integral inner membrane proteins is

analysed using the same ‘potentially surface exposed’ loops
algorithm as the Gram-positive protocol, however in this
case sequences are classified as 'IM', 'IM(cyto)', 'IM(peri)'
and 'IM(cyto+peri)' to indicate proteins with long cyto-
plasmic and/or periplasmic loops or domains. Experimen-
tally, large periplasmic domains may be accessible to
protease shaving when the outer membrane has been
disrupted, such as in spheroplasts generated using outer
membrane permeabilization agents. Unlike the Gram-
positive plasma membrane, the Gram-negative inner
membrane is not decorated with LPS and as such periplas-
mic loops and domains of intergral membrane proteins
are expected to be more easily accessed by protease once
esults with SurfG+

L. johnsonii L. gasseri L. bulgaricus

EMBL:AE017198 EMBL:CP000413 EMBL:CR954253

S i S i S i

1248 1234 1262 1240 1132 1119

357 355 298 302 244 261

176 203 157 188 116 137

40 29 38 25 70 45

1821 1821 1755 1755 1562 1562

brane subclasses have been combined to directly compare with SurfG+ (i.e.



Table 2 PSORTb 3.0 classifications for Gram-positive genomes

S. pyogenes L. acidophilus L. johnsonii L. gasseri L. bulgaricus

Accession EMBL:AE004092 EMBL:CP000033 EMBL:AE017198 EMBL:CP000413 EMBL:CR954253

Cellwall 24 46 26 27 19

Cytoplasmic 884 855 826 804 743

Cytopl. Membrane 432 519 548 489 440

Extracellular 28 32 16 13 15

Unknown 323 402 394 419 307

Unknown/multiple 5 8 11 3 5

Total 1696 1862 1821 1755 1529

PSORTb 3.0 analysis of the genomes in Table 1 analysis, derived from PSORTdb. Direct comparison of classifications is difficult since PSORTb, SurfG+ and
inmembrane each annotate with different classes (for instance, the basic PSORTb classification does not differentiate between lipoproteins and cytoplasmic
membrane proteins, and SurfG+ and inmembrane do not include an “Unknown”, but instead classify sequences without any detected features as cytoplasmic
by default).
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the outer membrane is permeabilized. We have chosen a
length of 30 residues as a conservative threshold (the
'internal_exposed_loop_min' setting) for annotating cyto-
plasmic ('+cyto') and periplasmic ('+peri') loops or do-
mains. This should be modified as required to suit the
purpose of the user.
Outer membrane ß-barrel proteins are predicted using

the BOMP [23], TMB-HUNT [24] and TMBETADISC-
RBF [25] web services. By default, high scoring se-
quences that are more likely to be true-positives are
annotated as 'OM(barrel)' and are not strictly required
to have a predicted signal sequence (BOMP score >= 3
and TMBHUNT probability >= 0.95). Lower scoring se-
quences (1 < BOMP score >= 2 and 0.5 < TMBHUNT
probability >= 0.94, and all TMBETADISC-RBF positive
predictions) must contain a predicted signal sequence to
be annotated as an outer membrane barrel. We have
also implemented an interface to TMBETA-NET [26]
which can be used to annotate the predicted number
(and location) of membrane spanning strands for outer
membrane ß-barrels, however this method is disabled by
default since it is prone to false positives for multi-
domain proteins where both a membrane ß-barrel and
an additional soluble domain are present [27].
Proteins containing a predicted N-terminal Sec

or Tat signal sequence without internal transmem-
brane segments or a ß-barrel classification are annota-
ted as 'PERIPLASMIC/SECRETED'. If no membrane
localization or signal sequence is detected, the protein
is annotated at 'CYTOPLASMIC'. Currently, the
protocol does not explicitly detect localization for
some secrected proteins without a signal sequence,
such as those that contain Type 3 secretion signals or
flagellar and pilus components.

Future protocols
inmembrane is designed such that new workflows for an-
notation of membrane proteomes can be added easily.
Wrappers for programs that annotate a sequence with a
particular feature can be added to inmembrane/plugins/
following the example of existing plugins. The inmem-
brane/plugin/signalp4.py and inmembrane/plugin/lipop1.
py plugins provide good templates for adoption and modi-
fication. In the simplest case, this means that if a superior
method for signal peptide, transmembrane segment or
lipoprotein prediction is developed, or an existing method
becomes unavailable, it will be straightforward to write a
new plugin wrapping it for inclusion in the protocol. New
protocols can be added to the inmembrane/protocols dir-
ectory, and selected for execution by changing protocol
parameter in the inmembrane.config file. Currently, we
have implemented two protocols, gram_pos, for prediction
of PSE proteins in Gram-positive bacteria, and gram_
neg, for general annotation of Gram-positive subcellular
localization.

Discussion
Software distribution and long term availability
The problem of long term of durability of computational
biology software is a significant issue for both download-
able packages and hosted web services [28].
Perhaps the single most important step in improving

the quality and long term availability of code is to dis-
tribute it on a publicly available open-source repository.
We believe that the use of a dedicated repository pro-
vides many advantages over the typical strategy of
hosting software on an academic server. For inmem-
brane, we chose to host the source code on Github,
which provides excellent code-browsing facility, code
history, download links, and robust well-defined URL
links. Github provides excellent usage statistics to meas-
ure the impact of the software, which obviates the need
for the dreaded login and registration pages. Import-
antly, storing the software in a well-supported repository
with a clear business model means the source code is
likely to remain accessible in the long term, something
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that historically many academic labs have shown they
cannot provide (Veretnik et al., 2008). If you were to
come across an abandoned project on Github, it would
be trivial to 'fork' the project, producing your own dupli-
cated copy of the code which can be changed and im-
proved. To this end, we have applied a liberal BSD
license to inmembrane to enable the widest possible
reuse.
While we have taken strategies to ensure inmembrane

itself is likely to remain available in the long term, we
cannot control the availability of many of it's down-
stream dependencies, which are either web services or
binaries which cannot be freely redistributed. A key de-
sign decision in inmembrane is the use of loosely-
coupled plugins for each external program or web
service. This allows developers to easily ‘route around
the damage’ if a particular web service or piece of soft-
ware becomes unavailable by replacing one sequence
analysis package with an alternative that gives similar (if
not identical) annotations. In the long term, we hope
that any proprietary components can be replaced with
more durable open source dependencies as they may be-
come available.

Program setup and workflow
The heart of inmembrane is simple: it takes FASTA se-
quences, sequentially provides them as input to a num-
ber of external sequence analysis programs, processes
their output and provides the combined annotations as
plain text output. The bulk of the computation applied
by inmembrane itself lies in the parsing of the text out-
put of the external programs and the post-processing
business logic.
As inmembrane integrates the output of a large num-

ber of external dependencies, there are many potential
points of failure. As such, inmembrane saves all inter-
mediate output into a results folder, and a comprehen-
sive set of unit tests is provided to help diagnose issues
with dependencies. If the user requires all local external
binaries, then inmembrane is restricted to a Linux plat-
form. However, if web-based modules are selected, then
the only external local dependency is HMMER, which
allows inmembrane to run on any Unix-like system.
It is not uncommon for scientific software packages to

disperse configuration information throughout the
header regions of multiple scripts and/or shell environ-
ment variables, and users are asked to search through
the program and modify the source code. While con-
venient for the original programmer, this can be frustrat-
ing and confusing even for expert users. A far better
model is to isolate the configuration concerns to one
clear place with sensible defaults. Following this model,
inmembrane reads configuration information from an
explicit configuration file inmembrane.config, where a
default version is auto-generated if it is not initially
found.
Since the configuration file for inmembrane is itself a

Python dictionary, expert users can write a short Python
script that incorporates a specific configuration diction-
ary and execute inmembrane directly. This provides a
convenient record of each individual analysis, as well as
a file that can be executed through a file-manager by
double-clicking (an example is provided in the script
inmembrane_example.py).

Scripting languages
The virtues of Python as a language for solving problems
in life science research have been previously recognized
[29]. One potential downside of Python is it's slower exe-
cution speed for computationally intensive tasks when
compared with compiled languages, or just-in-time com-
piled languages such as Java. Since inmembrane delegates
most of the computationally intensive tasks to external
programs, the wrapping, text parsing and analysis code in
Python does not become a bottleneck in the overall pro-
cessing speed.
Programs written in Java almost always follow an object-

oriented programming (OOP) approach. Although OOP
provides advantages when architecting large enterprise
systems, it's overuse for small projects can be a disadvan-
tage. In the recommended Enterprise Java style of pro-
gramming used in SurfG+, objects are created through
several layers of abstract classes where each field in an ob-
ject needs to be explicitly specified. To change a field in a
data structure, there are at least 6 places in 3 different files
where the code that needs to be changed, which severely
restricts the ease of modification for those unfamiliar with
the code base. Whilst this level of hierarchy is useful in
programs that have highly interdependent data-structures,
this is not the case here and adds otherwise unneeded
levels of complexity.
Using a modern scripting language such as Python re-

sults in cleaner code, where the advantages arise mostly
from the use of standard dynamic language features,
which otherwise would require the creation of complex
object hierarchies in Java. Another advantage is portabil-
ity, where the Python source code itself is directly exe-
cutable. This allows a faster development cycle when
modifying the source code compared with the edit-
compile-run cycle required for compiled languages.

Simple data structures facilitate simple text parsing
In inmembrane, the standard Python dictionary is used
to provide a flexible way to represent data and allow ex-
tremely simple parsing code to be written. The Python
‘dictionary’, which is conceptually similar to a ‘hash table’
or ‘hash map’ in other languages, consists of a set of
key-value pairs, where keys and values can be any type
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of data structure - strings, integers, floats, or even other
dictionaries.
The core data structure used by inmembrane is a flat

Python dictionary called proteins, indexed by sequence
identifiers. Let’s say our FASTA file contains the
Streptococcus pyogenes C5a peptidase sequence with
the ID 'C5AP_STRPY'. The properties of C5AP_STRPY
would then be found in proteins['C5AP_STRPY'], which
is itself a dictionary. proteins['C5AP_STRPY'] con-
tains any arbitrary number of different properties, also
accessed as key-value pairs. For instance, the sequence
length of the 'C5AP_STRPY' sequence would be stored
in proteins['C5AP_STRPY']['sequence_length']. This da-
ta structure can capture the results of most basic se-
quence analyses, where new properties are added to
proteins on the fly. The use of a dynamic flat dictionary
avoids much of the boilerplate code involved with an
OOP style programming.
If we use a dictionary to represent our data structure,

then the main work in inmembrane of running other
programs and processing their text output can be encap-
sulated into a simple function. For example with SignalP,
we define a function signalp.annotate(params, protein)
which takes the main protein data structure as input.
The function runs the external SignalP binary, and then
parses the text output. Text processing is very easy to
write in Python and the extracting the minimum infor-
mation required by our protocol from SignalP output
can be achieved with around 15 lines of code (Figure 4).
As signalp.annotate cycles through the text output of

SignalP, for each protein, if a secretion signal is found,
a new property is added: proteins['C5AP_STRPY']
['is_signalp'] = True. We can thus abstract the main
Figure 4 Example of parsing code in the signalp4 plugin. The entire fu
inmembrane module with utility functions.
program loop as running a series of functions of the
generic form program.annotate(params, protein). This
simple plugin API allows inmembrane to be extended
with new analysis modules that annotate the proteins
dictionary.
Inmembrane avoids hard coding references to external

data files where appropriate. For example, for HMMER
peptide motif matching, instead of hard-coding the se-
quence profiles to search (as in SurfG+), inmembrane
dynamically searches the directory defined in the proto-
col (e.g. protocols/gram_pos_profiles) for sequence pro-
files, which are used for HMMER analysis. New profiles
can be processed by simply dropping them into this
directory.

Interfacing with web services
The simple plugin framework used by inmembrane can
be used to interface with remote web services as well as
locally installed software. Many useful bioinformatics se-
quence analysis tools are provided with an HTML form
based front end designed for web browsers, but with no
official machine readable web API, and no downloadable
standalone version of the software. While researchers
may neglect to provide these interfaces for a multitude
of reasons, for end-users the lack of a standalone version
or a web API makes automated use for large scale ana-
lyses, such as that carried out by inmembrane, somewhat
awkward and inconvenient. Several of the published
tools for the detection of outer membrane ß-barrel pro-
teins we wished to use as part of the inmembrane
'gram_neg' protocol only provide a browser based inter-
face, and some only allow submission of a single protein
sequence at one time. To solve this problem we chose to
nction responsible for processing SignalP output. helpers is an
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implement automated queries to these web interfaces
using the twill library [30], with subsequent parsing of
any HTML output using the BeautifulSoup library [31].
When writing a wrapper for a new service, commands

to interface with a web form can be easily tested directly
on the Python command-line, or by using twill itself in
interactive mode (Figure 5). This allows for quick proto-
typing of new web scrapers, prior to implementation as
an inmembrane plugin.
In it's simplest form, a web service API is essentially

an agreement between a service provider and their end-
users on a machine readable, predictable and stable
interface. Since 'screen scraping' as a method of inter-
facing with a sequence analysis tool does not use a well
Figure 5 An example of interfacing with the BOMP ß-barrel outer me
twill on the Python interactive commandline. twill essentially behaves l
Python interactive command line, while other lines are output from twill (1
(2) We navigate to the BOMP website, which silently downloads the HTML
field names and input types. (4) We then use the formfile function to assoc
equivalent to clicking the SUBMIT button defined in the form. After a short
on this page using (6) showlinks(), and assign them to a variable (links, a Py
assign the HTML text of this page to a variable (out) (8) for downstream pa
easily expanded into an inmembrane plugin to programmically interface w
defined API with an implicit guarantee of stability, it can
be prone to breakage when the format of the job sub-
mission or results page is changed even slightly. While
we believe that the approach taken by twill and the ro-
bust parsing provided by BeautifulSoup will prevent
many upstream changes breaking these wrappers, inevit-
ably breakage will occur. In this case, the simplicity and
ease of modifiability of the code base becomes a key fea-
ture that allows expert users to fix plugins if and when it
is required.
The use of web services constitutes a usability trade-

off against the use of local external binaries. Using web
services significantly simplifies the installation procedure
for users of inmembrane, however correct operation
mbrane protein predictor (Berven et al., 2004) web site using
ike a headless web-browser. Lines with >>> denote inputs to the
) First the appropriate commands from the twill library are imported.
page and (3) show a summary of the forms on that page, including
iate a local file with the queryfile FILE input field. Calling submit() (5) is
delay, an intermediate page is returned, and we can list the hyperlinks
thon list). We can then navigate to the appropriate result page (7) and
rsing using BeautifulSoup. This type of interactive exploration can be
ith the web service.
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requires that the Internet is readily available, that the
service provider has ensured good up-time, and that the
web-service protocol will not be silently changed or dep-
recated. Some services also impose daily usage limits
that may prevent very large scale analysis. While many
popular services are maintained centrally by large orga-
nizations to ensure their stability, smaller services are
often maintained by a single graduate student, placing
significant risk on their long term availability. In contrast
to the convenience of web services, installing local binar-
ies can be time consuming. Each external binary has to
be installed and tested, often requiring reasonable apti-
tude with the Unix command line. Additionally, binaries
may not be cross-platform: for instance, the full set of
external binaries required by inmembrane is only avail-
able for Linux. Nevertheless, the advantage of locally in-
stalling dependencies is that once installed, the user can
be confident in the future operation of inmembrane.

Conclusions
inmembrane provides a clean bioinformatic pipeline to
analyze proteomes for membrane proteins that contain
exposed regions outside of the membrane. Testing has
shown that the results derived from the inmembrane
Gram-positive protocol are comparable to previously
published analysis. The inmembrane software has been
written in a style of programming intended to enhance
readability and extensibility of the code, and we sincerely
hope that inmembrane will be modified and improved
by other researchers. We welcome other researchers to
join us on Github. modified and improved by other re-
searchers. We welcome other researchers to join us on
Github.

Availability and requirements
Project name: inmembrane
Project home page: http://boscoh.github.com/inmembrane
Operating systems: Linux
Programming language: Python
Other requirements: HMMER, SignalP, LipoP, TMHMM
or MEMSAT3. An Internet connection is required for web
services such as BOMP, TMB-HUNT and TMBETADISC-
RBF.
Licence: BSD Licence (2-clause)
Any restrictions to use by non-academics: Use of

inmembrane itself is unrestricted, however many of the
dependencies require special licensing for non-academic
use.
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