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Abstract

biological data.

Classification, Missing values

Background: Non-negative matrix factorization (NMF) has been introduced as an important method for mining
biological data. Though there currently exists packages implemented in R and other programming languages, they
either provide only a few optimization algorithms or focus on a specific application field. There does not exist a
complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on

Results: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques
and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches
implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample
classification, missing values imputation, data visualization, and statistical comparison.

Conclusions: A series of analysis such as molecular pattern discovery, biological process identification, dimension
reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.
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Background

Non-negative matrix factorization (NMF) is a matrix
decomposition approach which decomposes a non-
negative matrix into two low-rank non-negative matrices
[1]. It has been successfully applied in the mining of
biological data.

For example, Ref. [2,3] used NMF as a clustering method
in order to discover the metagenes (i.e., groups of similarly
behaving genes) and interesting molecular patterns. Ref.
[4] applied non-smooth NMF (NS-NMF) for the biclus-
tering of gene expression data. Least-squares NMF (LS-
NMF) was proposed to take into account the uncertainty
of the information present in gene expression data [5]. Ref.
[6] proposed kernel NMF for reducing dimensions of gene
expression data.

Many authors indeed provide their respective NMF
implementations along with their publications so that the
interested community can use them to perform the same
data mining tasks respectively discussed in those publi-
cations. However, there exists at least three issues that
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prevent NMF methods from being used by the much
larger community of researchers and practitioners in the
data mining, biological, health, medical, and bioinformat-
ics areas. First, these NMF softwares are implemented
in diverse programming languages, such as R, MATLAB,
C++, and Java, and usually only one optimization algo-
rithm is provided in their implementations. It is inconve-
nient for many researchers who want to choose a suitable
NMF method or mining task for their data, among the
many different implementations, which are realized in
different languages with different mining tasks, control
parameters, or criteria. Second, some papers only pro-
vide NMF optimization algorithms at a basic level rather
than a data mining implementation at a higher level. For
instance, it becomes hard for a biologist to fully investigate
and understand his/her data when performing cluster-
ing or bi-clustering of his data and then visualize the
results; because it should not be necessary for him/her
to implement these three data mining methods based on
a basic NMF. Third, the existing NMF implementations
are application-specific, and thus, there exists no system-
atic NMF package for performing data mining tasks on
biological data.
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There currently exists NMF toolboxes (which we dis-
cuss in this paragraph), however, none of them addresses
the above three issues altogether.

NMFLAB [7] is MATLAB toolbox for signal and image
processing which provides a user-friendly interface to
load and process input data, and then save the results.
It includes a variety of optimization algorithms such
as multiplicative rules, exponentiated gradient, projected
gradient, conjugate gradient, and quasi-Newton meth-
ods. It also provides methods for visualizing the data
signals and their components, but does not provide any
data mining functionality. Other NMF approaches such as
semi-NMF and kernel NMF are not implemented within
this package.

NMF:DTU Toolbox [8] is a MATLAB toolbox with no
data mining functionalities. It includes only five NMF
optimization algorithms, such as multiplicative rules,
projected gradient, probabilistic NMF, alternating least
squares, and alternating least squares with optimal brain
surgery (OBS) method.

NMEFN: Non-negative Matrix Factorization [9] is an R
package similar to NMF:DTU but with few more algo-
rithms.

NMF: Algorithms and framework for Nonnegative
Matrix Factorization [10] is another R package which
implements several algorithms and allows parallel compu-
tations but no data mining functionalities.

Text to Matrix Generator (TMG) is a MATLAB toolbox
for text mining only.

Ref. [11] provides a NMF plug-in for BRB-ArrayTools.
This plug-in only implements the standard NMF and
semi-NMF and for clustering gene expression profiles
only.

Coordinated Gene Activity in Pattern Sets (CoGAPS)
[12] is a new package implemented in C++ with R
interface. In this package, the Bayesian decomposition
(BD) algorithm is implemented and used in place of
the NMF method for factorizing a matrix. Statisti-
cal methods are also provided for the inference of
biological processes. CoGAPS can give more precise
results than NMF methods [13]. However, CoGAPS
uses a Markov chain Monte Carlo (MCMC) scheme
for estimating the BD model parameters, which is
slower than the NMFs optimization algorithms imple-
mented with the block-coordinate gradient descent
scheme.

In order to address the lack of data mining functionali-
ties and generality of current NMF toolboxes, we propose
a general NMF toolbox in MATLAB which is imple-
mented in two levels. The basic level is composed of
the different variants of NMF, and the top level consists
of the diverse data mining methods for biological data.
The contributions of our toolbox are enumerated in the
following:
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1. The NMF algorithms are relatively complete and
implemented in MATLAB. Since it is impossible and
unnecessary to implement all NMF algorithms, we
focus only on well-known NMF representatives. This
repository of NMFs allows users to select the most
suitable one in specific scenarios.

2. Our NMF toolbox includes many functionalities for
mining biological data, such as clustering,
bi-clustering, feature extraction, feature selection,
and classification.

3. The toolbox also provides additional functions for
biological data visualization, such as heat-maps and
other visualization tools. They are pretty helpful for
interpreting some results. Statistical methods are also
included for comparing the performances of multiple
methods.

The rest of this paper is organized as below. The imple-
mentations of the basis level are first discussed in the next
section. After that, examples of implemented data min-
ing tasks at a high level are described. Finally, we conclude
this paper and give possible avenues for future research
directions.

Implementation

As mentioned above, this toolbox is implemented at
two levels. The fundamental level is composed of sev-
eral NMF variants and the advanced level includes many
data mining approaches based on the fundamental level.
The critical issues in implementing these NMF variants
are addressed in this section. Table 1 summarizes all
the NMF algorithms implemented in our toolbox. Users
(researchers, students, and practitioners) should use the
command help nmfrule, for example, in the com-
mand line, for help on how to select a given funtion and
set its parameters.

Standard-NMF

The standard-NMF decomposes a non-negative matrix
X e R™ " into two non-negative factors A € R”*K and
Y € RK*" (where k < min{m, n}), that is

X, =AY, +E (1)

where, E is the error (or residual) and M, indicates
the matrix M is non-negative. Its optimization in the
Euclidean space is formulated as

1
min = ||X — AY |2, subject to ,A, Y > 0. (2)
AY 2

Statistically speaking, this formulation is obtained from
the log-likelihood function under the assumption of a
Gaussian error. If multivariate data points are arranged
in the columns of X, then A is called the basis matrix
and Y is called the coefficient matrix; each column of
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Table 1 Algorithms of NMF variants
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Function Description

nmfrule The standard NMF optimized by gradient-descent-based multiplicative rules.
nmfnnls The standard NMF optimized by NNLS active-set algorithm.

seminmfrule Semi-NMF optimized by multiplicative rules.

seminmfnnls Semi-NMF optimized by NNLS.

sparsenmfnnls
sparsenmfNNQP
sparseseminmfnnls
kernelnmfdecom
kernelseminmfrule
kernelseminmfnnls
kernelsparseseminmfnnls
kernelSparseNMFNNQP
convexnmfrule
kernelconvexnmf
orthnmfrule

wnmfrule
sparsenmf2rule
sparsenmf2nngp

vsmf

nmf

computeKernelMatrix

Sparse-NMF optimized by NNLS.

Sparse-NMF optimized by NNQP.

Sparse semi-NMF optimized by NNLS.

Kernel NMF through decomposing the kernel matrix of input data.
Kernel semi-NMF optimized by multiplicative rule.

Kernel semi-NMF optimized by NNLS.

Kernel sparse semi-NMF optimized by NNLS.

Kernel sparse semi-NMF optimized by NNQP.

Convex-NMF optimized by multiplicative rules.

Kernel convex-NMF optimized by multiplicative rules.

Orth-NMF optimized by multiplicative rules.

Weighted-NMF optimized by multiplicative rules.

Sparse-NMF on both factors optimized by multiplicative rules.
Sparse-NMF on both factors optimized by NNQP.

Versatile sparse matrix factorization optimized by NNQP and /; QP.
The omnibus of the above algorithms.

Compute the kernel matrix k(A,B) given a kernel function.

A is thus a basis vector. The interpretation is that each
data point is a (sparse) non-negative linear combination
of the basis vectors. It is well-known that the optimization
objective is a non-convex optimization problem, and thus,
block-coordinate descent is the main prescribed optimiza-
tion technique for such problem. Multiplicative update
rules were introduced in [14] for solving Equation (2).
Though simple to implement, this algorithm is not guar-
anteed to converge to a stationary point [15]. Essentially
the optimizations above, with respect to A and Y, are non-
negative least squares (NNLS). Therefore we implemented
the alternating NNLS algorithm proposed in [15]. It can be
proven that this algorithm converges to a stationary point.
In our toolbox, functions nmfrule and nmfnnls are the
implementations of the two algorithms above.

Semi-NMF

The standard NMF only works for non-negative data,
which limits its applications. Ref. [16] extended it to semi-
NMF which removes the non-negative constraints on the
data X and basis matrix A. It can be expressed in the
following equation:

1
min ~ | X — AY |2, subject to Y > 0. (3)
AY 2

Semi-NMF can be applied to the matrix of mixed
signs, therefore it expands NMF to many fields. How-
ever, the gradient-descent-based update rule proposed
in [16] is slow to converge (implemented in function
seminmfrule in our toolbox). Keeping Y fixed, updat-
ing A is a least squares problem which has an analytical
solution

A=xYTyhH ! =xvy’, (4)

where YT = YT(YYT)~1 is Moore-Penrose pseudoin-
verse. Updating Y while fixing A is a NNLS problem
essentially as above. Therefore we implemented the fast
NNLS based algorithm to optimize semi-NMF in function
seminmfnnls.

Sparse-NMF

The standard NMF and semi-NMF have the issues of
scale-variance and non-unique solutions, which imply
that the non-negativity constrained on the least squares is
insufficient in some cases. Sparsity is a popular regulariza-
tion principle in statistical modeling [17], and has already
been used in order to reduce the non-uniqueness of solu-
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tions and also and enhance interpretability of the NMF
results. The sparse-NMF proposed in [3] is expressed in
the following equation

1 n -
in—|X - AY[F+ IAIF+ 5> lyli G
%?f' h+2HHF+2hﬂxm (5)

subjectto A,Y > 0,

where, y; is the i-th column of Y. From the Bayesian
perspective, this formulation is obtained from the log-
posterior probability under the assumptions of Gaussian
error, Gaussian-distributed basis vectors, and Laplace-
distributed coefficient vectors. Keeping one matrix fixed
and updating the other matrix can be formulated as a
NNLS problem. In order to improve the interpretabil-
ity of the basis vectors and speed up the algorithm, we
implemented the following model instead:

1 R
min= |IX — AY [t + Z;nym (6)

=
subjectto A,Y > 0,
laill3 =1, i=1,-,k

We optimize this using three alternating steps in each
iteration. First, we optimize the following task:

1 RS
min [IX — AY[g + 2 3 Iyilh @)

i=1
subjectto Y > 0.

then, A is updated as follows:
1
in=|| X — AY|? 8
minz l e (8)
subjectto A > 0.

and then, the columns of A are normalized to have unit /»
norm. The first and second steps can be solved using non-
negative quadratic programming (NNQP), whose general
formulation is

n
. 1
min E 1 iziTHzi +glzito )
=

subject to Z > 0,

where, z; is the i-th column of the variable matrix Z. It is
easy to prove that NNLS is a special case of NNQP. For
example, Equation (7) can be rewritten as

n
. 1 T 4T T.\T T
m)}nilziyi (A Ay + (=A%) y; + x; %
=
(10)
subjectto ¥ > 0.

The implementations of the method in [3] and our
method are given in functions sparsenmfnnls and
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sparseNMFNNQP, respectively. We also implemented the
sparse semi-NMF in functionl sparseseminmfnnls.

Versatile sparse matrix factorization

When the training data X is of mixed signs, the basis
matrix A is not necessarily constrained to be non-
negative; this depends on the application or the inten-
tions of the users. However, without non-negativity, A
is not sparse any more. In order to obtain sparse basis
matrix A for some analysis, we may use /;-norm on A to
induce sparsity. The drawback of /;-norm is that corre-
lated variables may not be simultaneously non-zero in the
l1-induced sparse result. This is because /;-norm is able
to produce sparse but non-smooth results. It is known
that /;-norm is able to obtain smooth but non-sparse
results. When both norms are used together, then corre-
lated variables can be selected or removed simultaneously
[18]. When smoothness is required on Y, we may also
use lp-norm on it in some scenarios. We thus generalize
the aforementioned NMF models into a versatile form as
expressed below

k
. 1 2 a3 2
minf(4,¥) = S|IX — AY |z + le(?nainz

n
A
+anllailh) + ;;nnu% +allyll) (1)
. A>0 ie,ift;=1

subject to o ,
Y>>0 ie,ifthp=1
where, parameters: @1 > 0 controls the sparsity of the
basis vectors; oy > 0 controls the smoothness and the
scale of the basis vectors; A; > 0 controls the sparsity of
the coefficient vectors; Ay > 0 controls the smoothness
of the coefficient vectors; and, parameters ¢; and £, are
boolean variables (0: false, 1: true) which indicate if non-
negativity needs to be enforced on A or Y, respectively.
We can call this model versatile sparse matrix factor-
ization (VSMF). It can be easily seen that the standard
NME, semi-NMEF, and the sparse-NMFs are special cases
of VSME.

We devise the following multiplicative update rules for
the VSMF model in the case of t; = £, = 1 (implemented
in function sparsenmf2rule):

T
A=Ax XY
AYYT+112A+O[1 12
Y Y ATX ’ ( )
= X m/—m——
ATAY 420 Y+20q

where, A * B and % are the element-wise multiplica-
tion and division operators of matrices A and B, respec-
tively. Alternatively, we also devise an active-set algorithm
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for VSMF (implemented in function vsmf). When
ti(ortz) = 1, A (or Y) can be updated by NNQP (this
case is also implemented in sparsenmf2nngp). When
t1(orty) = 0, A (or Y) can be updated using 1; QP.

Kernel-NMF

Two features of a kernel approach are that i) it can rep-
resent complex patterns, and ii) the optimization of the
model is dimension-free. We now show that NMF can also
be kernelized.

The basis matrix is dependent on the dimension of
the data, and it is difficult to represent it in a very high
(even infinite) dimensional space. We notice that in the
NNLS optimization, updating Y in Equation (10) needs
only the inner products ATA, ATX, and XTX. From
Equation (4), we obtain ATA = (Y")TXTXYT, ATX =
(YNHTXTX. Therefore, we can see that only the inner
product XTX is needed in the optimization of NMEF.
Hence, we can obtain the kernel version, kernel-NMF, by
replacing the inner product X'X with a kernel matrix
K(X, X). Interested readers can refer to our recent paper
[6] for further details. Based on the above derivations,
we implemented the kernel semi-NMF using multiplica-
tive update rule (in kernelseminmfrule) and NNLS
(in kernelseminmfnnls). The sparse kernel semi-
NMFs are implemented in functions kernelsparse-
seminmfnnls and kernelSparseNMFNNQP which
are equivalent to each other. The kernel method of decom-
posing a kernel matrix proposed in [19] is implemented in
kernelnmfdecom.

Other variants

Ref. [16] proposed the Convex-NMF, in which the
columns of A are constrained to be the convex combi-
nations of data points in X. It is formulated as X4 =
X+ W,Y, + E, where M4 indicates that matrix M is
of mixed signs. XW = A and each column of W
contains the convex coefficients of all the data points
to get the corresponding column of A. It has been
demonstrated that the columns of A obtained with the
convex-NMF are close to the real centroids of clus-
ters. Convex-NMF can be kernelized as well [16]. We
implemented the convex-NMF and its kernel version
in convexnmfrule and kernelconvexnmf, respec-
tively.

The basis vectors obtained with the above NMFs are
non-orthogonal. Alternatively, orthogonal NMF (ortho-
NMF) imposes the orthogonality constraint in order to
enhance sparsity [20]. Its formulation is

X=ASY+E
subjectto ATA =1,

(13)

Yy =1, A8 Y >0,
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where, the input X is non-negative, S absorbs the mag-
nitude due to the normalization of A and Y. Func-
tion orthnmfrule is its implementation in our tool-
box. Ortho-NMF is very similar with the non-negative
sparse PCA (NSPCA) proposed in [21]. The disjoint
property on ortho-NMF may be too restrictive for
many applications, therefore this property is relaxed in
NSPCA. Ortho-NMF does not guarantee the maximum-
variance property which is also relaxed in NSPCA.
However NSPCA only enforces non-negativity on the
basis vectors, even when the training data have neg-
ative values. We plan to devise a model in which
the disjoint property, the maximum-variance prop-
erty, the non-negativity and sparsity constraints can be
controlled on both basis vectors and coefficient vec-
tors.

There are two efficient ways of applying NMF on
data containing missing values. First, the missing values
can be estimated prior to running NME. Alternatively,
weighted-NMF [22] can be directly applied to decom-
pose the data. Weighted-NMF puts a zero weight on
the missing elements and hence only the non-missing
data contribute to the final result. An expectation-
maximization (EM) based missing value estimation dur-
ing the execution of NMF may not be efficient. The
weighted-NMF is given in our toolbox in function
wnmfrule.

Results and discussion

Based on the various implemented NMFs, a number of
data mining tasks can be performed via our toolbox.
Table 2 lists the data mining functionalities we provide
in this level. These mining tasks are also described along
with appropriate examples.

Clustering and bi-clustering
NMEF has been applied for clustering. Given data X with
multivariate data points in the columns, the idea is that,
after applying NMF on X, a multivariate data point, say
x; is a non-negative linear combination of the columns of
A; that is ; ~ Ay, = yna1 + --- + yak. The largest
coefficient in the i-th column of Y indicates the clus-
ter this data point belongs to. The reason is that if the
data points are mainly composed with the same basis vec-
tors, they should therefore be in the same group. A basis
vector is usually viewed as a cluster centroid or proto-
type. This approach has been used in [2] for clustering
microarray data and in order to discover tumor subtypes.
We implemented function NMFCluster through which
various NMF algorithms can be selected. An example
is provided in exampleCluster file in the folder of
our toolbox.

The task of interpreting both the basis matrix and the
coefficient is equivalent to simultaneously clustering the
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Table 2 NMF-based data mining approaches
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Function Description

NMFCluster Take the coefficient matrix produced by a NMF algorithm, and output the clustering result.
chooseBestk Search the best number of clusters based on dispersion Coefficients.

biCluster The biclustering method using one of the NMF algorithms.

featureExtractionTrain

featureExtractionTest

General interface. Using training data, generate the bases of the NMF feature space.

General interface. Map the test/unknown data into the feature space.

featureFilterNMF

featSel Feature selection methods.

On training data, select features by various NMFs.

nnisClassifier The NNLS classifier.
perform
changeClassLabels01
gridSearchUniverse
classificationTrain
classificationPredict
multiClassifiers

cvExperiment

Evaluate the classifier performance.

Change the class labels to be in {0,1,2,- -+ ,C — 1} for C-class problem.

A framework to do line or grid search.

Train a classifier, many classifiers are included.

Predict the class labels of unknown samples via the model learned by classificationTrain.
Run multiple classifiers on the same training data.

Conduct experiment of k-fold cross-validation on a data set.

significantAcc
learnCurve Fit the learning curve.
FriedmanTest

plotNemenyiTest

Check if the given data size can obtain significant accuracy.

Friedman test with post-hoc Nemenyi test to compare multiple classifiers on multiple data sets.

Plot the CD diagram of Nemenyi test.

NMFHeatMap
NMFBicHeatMap

plotBarError Plot Bars with STD.

Draw and save the heat maps of NMF clustering.

Draw and save the heat maps of NMF biclustering.

writeGenelist

Write the gene list into a .txt file.

normmeanQstd1 Normalization to have mean 0 and STD 1.
sparsity Calculate the sparsity of a matrix.
MAT2DAT

Write a data set from MATLAB into .dat format in order to be readable by other languages.

rows and columns of matrix X. This is bi-clustering and
the interested readers can refer to [23] for an excellent
survey on bi-clustering algorithms and to [4] for a bi-
clustering method based on NMF. We implemented a
bi-clustering approach based on NMF in biCluster
function. The bi-clusters can be visualized via the function
NMFBicHeatMap. We applied NMF to simultaneously
grouping the genes and samples of a leukemia data set
[2] which includes tumor samples of three subtypes. The
goal is to find strongly correlated genes over a subset of
samples. A subset of such genes and a subset of such sam-
ples form a bi-cluster. The heat-map is shown in Figure 1.
Readers can find the script in exampleBiCluster file
of our toolbox.

Basis vector analysis for biological process discovery

We can obtain interesting and detailed interpretations
via an appropriate analysis of the basis vectors. When
applying NMF on a microarray data, the basis vectors

are interpreted as potential biological processes [3,13,24].
In the following, we give one example for finding bio-
logical factors on gene-sample data, and two examples
on time-series data. Please note they only serve as sim-
ple examples. Fine tuning of the parameters of NMF is
necessary for accurate results.

First example

We ran our VSMF on the ALLAML gene-sample data
of [2] with the settings k = 3, o1 = 0.01, @y = 0.01,
AM = 0, Ay = 001,47 = 1, and & = 1. Next, we
obtain 81, 37, and 448 genes for the three factors, respec-
tively. As in [3], we then performed gene set enrichment
analysis (GSEA) by applying Onto-Express [25] on each
of these sets of genes. Part of the result is shown in
Table 3. We can see that the factor-specific genes selected
by NMF correspond to some biological processes signif-
icantly. Please see file exampleBioProcessGS in the
toolbox for details. GSEA can also be done using other
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Figure 1 Heat map of NMF biclustering result. Left: the gene expression data where each column corresponds to a sample. Center: the basis

tools, such as MIPS [26], GOTermFinder [27], and DAVID
[28,29].

Second example

We used NMF to cluster a time-series data of yeast
metabolic cycle in [30]. Figure 2 shows the heat-map of
NMEF clustering, and Figure 3 shows the three basis vec-
tors. We used nmfnnls function to decompose the data
and NMFHeatMap to plot the heat-map. The detailed
script is given in the exampleBioProcessTSYeast
file in the toolbox. We can clearly see that the three peri-
odical biological processes corresponds exactly to the Ox
(oxidative), R/B (reductive, building), and R/C (reductive,
charging) processes discovered in [30].

Third example

We used NMF to factorize a breast cancer time-series
data set, which includes wild type MYCN cell lines and
mutant MYCN cell lines [31]. The purpose of this exam-
ple is to show that NMF is a potential tool to finding
cancer drivers. One basic methodology is in the follow-
ing. First, basis vectors are produced applying NMF on a
time-series data. Then factor-specific genes are identified
by computational or statistical methods. Finally, the reg-
ulators of these factor-specific genes are identified from
any prior biological knowledge. This data set has 8 time
points (0, 2, 4, 8, 12, 24, 36, 48 hr.). The zero time point is
untreated and samples were collected at the subsequent

time points after treatment with 4-hydroxytamoxifen
(4-OHT). In our computational experiment, we use our
VSMF implementation (function vsmf). We set k = 2.
Because this data set has negative values we set £; = 0
and tp = 1. We set «; = 0.01, ap = 0, A1 = 0, and
A2 = 0.01. The basis vectors of both wild-type and
mutant data are compared in Figure 4. From the wild-
type time-series data, we can successfully identify two
patterns. The rising pattern corresponds to the induced
signature and the falling pattern corresponding to the
repressed signature in [31]. It is reported in [31] that the
MYC target genes contributes to both patterns. From
the mutant time-series, we can obtain two flat pro-
cesses, which are reasonable. The source code of this
example can be found in exampleBioProcessMYC.
We also recommend the readers to see the meth-

ods based on matrix decompositions which are
proposed in [13,32] and devised for identifying
signaling pathways.

Basis vector analysis for gene selection

The columns of A for a gene expression data set are
called metasamples in [2]. They can be interpreted as
biological processes, because their values imply the acti-
vation or inhibition of some the genes. Gene selection
aims to find marker genes for disease prediction and
to understand the pathways they contribute to. Rather
than selecting genes on the original data, the novel
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Table 3 Gene set enrichment analysis using Onto-Express for the factor specific genes identified by NMF

Factor 1 Factor 2 Factor 3
biological process p-value biological process p-value biological process p-value
reproduction (5) 0 response to stimulus (15) 0.035 regulation of bio. proc. (226) 0.009
metabolic process (41) 0 biological regulation (14) 0.048 multi-organism proc. (39) 0.005
cellular process (58) 0 biological regulation (237) 0.026
death (5) 0
developmental process (19) 0
regulation of biological process (19) 0

idea is to conduct gene selection on the metasamples.
The reason is that the discovered biological processes
via NMF are biologically meaningful for class discrim-
ination in disease prediction, and the genes expressed
differentially across these processes contribute to bet-
ter classification performance in terms of accuracy. In
Figure 1 for example, three biological processes are
discovered and only the selected genes are shown.
We have implemented the information-entropy-based
gene selection approach proposed in [3] in function
featureFilterNMF. We give an example on how to
call this function in file exampleFeatureSelection.
It has been reported that it can select meaningful genes,
which has been verified with gene ontology analysis. Fea-
ture selection based on supervised NMF will also be
implemented.

Feature extraction

Microarray data and mass spectrometry data have tens
of thousands of features but only tens or hundreds of
samples. This leads to the issues of curse of dimen-
sionality. For example, it is impossible to estimate the
parameters of some statistical models since the number
of their parameters grow exponentially as the dimension
increases. Another issue is that biological data are usually
noisy; which crucially affects the performances of clas-
sifiers applied on the data. In cancer study, a common
hypothesis is that only a few biological factors (such as
the oncogenes) play a crucial role in the development
of a given cancer. When we generate data from control
and sick patients, the high-dimensional data will contain
a large number of irrelevant or redundant information.
Orthogonal factors obtained with principal component

0

Figure 2 Heat map of NMF clustering result on yeast metabolic cycle time-series data. Left: the gene expression data where each column
corresponds to a sample. Center: the basis matrix. Right: the coefficient matrix.
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analysis (PCA) or independent component analysis (ICA)
are not appropriate in most cases. Since NMF generates
non-orthogonal (and non-negative) factors, therefore it is
much reasonable to extract important and interesting fea-
tures from such data using NMF. As mentioned above,
training data X, x,,, with m features and n samples, can be
decomposed into k metasamples A, and Y, that is

X =~ AY,, subjectto A, Y > 0, (14)

where, Y, means that Y is obtained from the training
data. The k columns of A span the k-dimensional fea-
ture space and each column of Yy, is the representation
of the corresponding original training sample in the fea-
ture space. In order to project the p unknown samples
S,nxp into this feature space, we have to solve the following
non-negative least squares problem:

§ A~ AY y, subject to Y > 0, (15)

where, Yk means the Y is obtained from the unknown
samples. After obtaining Y and Y, the learning and
prediction steps can be done quickly in the k-dimensional
feature space instead of the m-dimensional original space.
A classifier can learn over Yy, and then predicts the class

Page 10 of 15

labels of the representations of unknown samples, that is
Y k.

From the aspect of interpretation, the advantage of
NMEF over PCA and ICA is that the metasamples are very
useful in the understanding of the underlying biological
processes, as mentioned above.

We have implemented a pair of functions feature-
ExtractionTrain and featureExtractionTest
including many linear and kernel NMF algorithms. The
basis matrix (or, the inner product of basis matrices in
the kernel case) is learned from the training data via
the function featureExtractionTrain, and the
unknown samples can be projected onto the feature
space via the function featureExtractionTest.
We give examples of how to wuse these func-
tions in files exampleFeatureExtraction and
exampleFeatureExtractionKernel.

Figure 5 shows the classification performance of SVM
without dimension reduction and SVM with dimension
reduction using linear NMF, kernel NMF with radial
basis function (RBF) kernel, and PCA on two data sets,
SRBCT [33] and Breast [34]. Since ICA is computation-
ally costly, we did not include it in the comparisons.

Accuracy
o
\‘
T

0.5

0.4

Breast

1 T T
I NONE
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[ KNMF
0.9/ | I PCA _
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Figure 5 Mean accuracy and standard deviation results of NMF-based feature extraction on SRBCT data.
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The bars represent the averaged 4-fold cross-validation
accuracies using support vector machine (SVM) as clas-
sifier over 20 runs. We can see that NMF is compara-
ble to PCA on SRBCT, and is slightly better than PCA
on Breast data. Also, with only few factors, the perfor-
mance after dimension reduction using NMF is at least
comparable to that without using any dimension reduc-
tion. As future work, supervised NMF will be investi-
gated and implemented in order to extract discriminative
features.

Classification

If we make the assumption that every unknown sam-
ple is a sparse non-negative linear combination of the
training samples, then we can directly derive a classi-
fier from NMF. Indeed, this is a specific case of NMF in
which the training samples are the basis vectors. Since
the optimization process within NMF is a NNLS problem,
we call this classification approach the NNLS classifier
[35]. A NNLS problem is essentially a quadratic program-
ming problem as formulated in Equation (9), therefore,
only inner products are needed for the optimization. We
thus can naturally extend the NNLS classifier to kernel
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version. Two features of this approach are that: i) the spar-
sity regularization help avoid overfitting the model; and
ii) the kernelization allows a dimension-free optimiza-
tion and also linearizes the non-linear complex patterns
within the data. The implementation of the NNLS classi-
fier is in file nnlsClassifier. Our toolbox also pro-
vides many other classification approaches including SVM
classifier. Please see file exampleClassification
for demonstration. In our experiment of 4-fold cross-
validation, accuracies of 0.7865 and 0.7804 are respec-
tively obtained with linear and kernel (RBF) NNLS
classifier on Breast data set. They achieved accura-
cies of 0.9762 and 0.9785, respectively, over SRBCT
data.

Biological data are usually noisy and sometimes contain
missing values. A strength of the NNLS classifier are that
it is robust to noise and to missing values, making NNLS
classifiers quite suitable for classifying biological data [35].

In order to show its robustness to noise, we added
a Gaussian noise of mean 0 and variance from 0 to 4
with increment 0.5 on SRBCT. Figure 6 illustrates the
results of NNLS, SVM, and I-nearest neighbor (1-NN)
classifiers using this noisy data. It can be seen that as

data.

0.9 i
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Figure 6 The mean accuracy results of NNLS classifier for different amount of noise on SRBCT
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the noise increases, NNLS outperforms SVM and 1-NN
significantly.

To deal with the missing value problem, three strategies
are usually used: incomplete sample or feature removal,
missing value imputation (i.e., estimation), and ignoring
missing values. Removal methods may delete important
or useful information for classification and particularly
when there is a large percentage of missing values in the
data. Imputation methods may create false data depend-
ing on the magnitude of the true estimation errors. The
third method ignores using the missing values during clas-
sification. Our approach in dealing with the missing value
problem is also to ignore them. The NNLS optimization
needs only the inner products of pairs of samples. Thus,
when computing the inner product of two samples, say «;
and x;j, we normalize them to have unit />-norm using only
the features present in both samples, and then we take
their inner product. As an example, we randomly removed
between 10% to 70% of data values in STBCT data. Using
such incomplete data, we compared our method with the
zero-imputation method (that is, estimating all missing
values as 0). In Figure 7, we can see that the NNLS clas-
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sifier using our missing value approach outperforms the
zero-imputation method in the case of large missing rate.
Also, the more sophisticated k-nearest neighbor imputa-
tion (KNNimpute) method [36] will fail on data with in
high percentage of missing values.

Statistical comparison

The toolbox provides two methods for statistical compar-
isons and evaluations of different methods. The first is a
two-stage method proposed in [37]. The importance of
this method is that it can estimate the data-size require-
ment for attaining a significant accuracy and extrapolate
the performance based on the current available data.
Generating biological data is usually very expensive and
thus this method can help researchers to evaluate the
necessity of producing more data. At the first stage,
the minimum data size required for obtaining a sig-
nificant accuracy is estimated. This is implemented in
function significantAcc. The second stage is to fit
the learning curve using the error rates of large data
sizes. It is implemented in function learnCurve. In our
experiments, we found that the NNLS classifier usually

0.9
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Figure 7 The mean accuracy results of NNLS classifier for different missing value rates on SRBCT data.
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Figure 8 The fitted learning curves of NNLS and SVM classifiers on SRBCT data.

requires fewer number of samples for obtaining a sig-
nificant accuracy. For example on SRBCT data, NNLS
requires only 4 training samples while SVM needs 19
training samples. The fitted learning curves of NNLS
and SVM classifiers are shown in Figure 8. We pro-
vide an example of how to plot this figure in file
exampleFitLearnCurve.

The second method is the nonparametric Friedman
test coupled with post-hoc Nemenyi test to compare
multiple classifiers over multiple data sets [38]. It is diffi-
cult to draw an overall conclusion if we compare multiple
approaches in a pairwise fashion. Friedman test has been
recommended in [38] because it is simple, safe and robust,
compared with parametric tests. It is implemented in
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Figure 9 Nemenyi test comparing 8 classifiers over 13 high dimensional biological data (¢ = 0.05).
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function FriedmanTest. The result can be presented
graphically using the crucial difference (CD) diagram as
implemented in function plotNemenyiTest. CD is
determined by significant level «.. Figure 9 is an example of
the result of the Nemenyi test for comparing 8 classifiers
over 13 high dimensional biological data sets. This exam-
ple can be found in file exampleFriedmanTest. If the
distance of two methods is greater than the CD then we
conclude that they differ significantly.

Conclusions

In order to address the issues of the existing NMF imple-
mentations, we propose a NMF Toolbox written in MAT-
LAB, which includes a basic NMF optimization level and
an advanced data mining level. It enable users to analyze
biological data via NMF-based data mining approaches,
such as clustering, bi-clustering, feature extraction, fea-
ture selection, and classification .

The following are the future works planned in order to
improve and augment the toolbox. First, we will include
more NMF algorithms such as nsNMF, LS-NMF, and
supervised NMF. Second, we are very interested in imple-
menting and speeding up the Bayesian decomposition
method which is actually a probabilistic NMF intro-
duced independently in the same period as the standard
NME. Third, we will include more statistical comparison
and evaluation methods. Furthermore, we will investi-
gate the performance of NMF for denoising and for data
compression.

Availability and requirements

Project name: The NMF Toolbox in MATLAB

Project home page: https://sites.google.com/site/
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needed
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