
Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6
http://www.scfbm.org/content/7/1/6

SOFTWARE REVIEW Open Access

Bio-samtools: Ruby bindings for SAMtools, a
library for accessing BAM files containing
high-throughput sequence alignments
Ricardo H Ramirez-Gonzalez1, Raoul Bonnal2, Mario Caccamo1 and Daniel MacLean3*

Abstract

Background: The SAMtools utilities comprise a very useful and widely used suite of software for manipulating files
and alignments in the SAM and BAM format, used in a wide range of genetic analyses. The SAMtools utilities are
implemented in C and provide an API for programmatic access, to help make this functionality available to
programmers wishing to develop in the high level Ruby language we have developed bio-samtools, a Ruby binding
to the SAMtools library.

Results: The utility of SAMtools is encapsulated in 3 main classes, Bio::DB::Sam, representing the alignment files and
providing access to the data in them, Bio::DB::Alignment, representing the individual read alignments inside the files
and Bio::DB::Pileup, representing the summarised nucleotides of reads over a single point in the nucleotide sequence
to which the reads are aligned.

Conclusions: Bio-samtools is a flexible and easy to use interface that programmers of many levels of experience can
use to access information in the popular and common SAM/BAM format.

Keywords: Next-generation sequencing, DNA, High, Throughput, Ruby, Bio, SAM, BAM

Background
High-throughput DNA sequencing in the biological sci-
ences has made it possible for researchers to obtain many
millions of sequence reads in single, low-cost experi-
ments. These sequence reads are typically very short
compared to the parent genome (reads will usually be in
the range of 36 - 200 nucleotides long while genomes
are many millions of nucleotides long) and very redun-
dant; many reads may have the same sequence. One
widespread use for these sequences is in detecting small
differences in the genome sequence of the sample donor,
which is achieved by using computational methods to
align each short sequence read against a long, reference
genome sequence then examining the derived alignments
and determining positions at which there are differences.
Many programs have been created for alignment includ-
ing BWA [1], Bowtie [2], SOAP [3], NOVOALIGN [4]

*Correspondence: dan.maclean@tsl.ac.uk
3The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich,
NR4 7UH, UK
Full list of author information is available at the end of the article

and BFAST [5], each implementing different algorithms
optimised to address different issues with the alignment
problem.Most high-throughput alignment programs pro-
duce a standard output file in Sequence Alignment/Map
format (SAM) [6], a tab-delimited text-based format for
describing alignments. The SAMtools utilities comprise a
very useful and widely used suite of software for manipu-
lating files and alignments in the SAM format. The large
SAM files can be converted to the binary equivalent BAM
files a compressed and indexed variant for random access,
which vastly facilitates genetic analyses that rely on high-
throughput alignment. The SAMtools utilities are imple-
mented in C and provide an API for programmatic access,
for which there are multiple language bindings, notably
in Perl [7], Python [8] and Java [9]. Here we describe the
Ruby language binding to the SAMtools library, devel-
oped for our own work and distributed as a BioRuby
plug-in [10].

© 2012 Ramirez-Gonzalez et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6 Page 2 of 6
http://www.scfbm.org/content/7/1/6

Implementation
The bio-samtools package is a wrapper around libbam.so
(for Linux) and libbam.1.dylib (for Mac OS X), the core
shared object library from the SAMtools package. To
make it possible for the C functions in libbam to be called
from within Ruby code we have used the Ruby Foreign
Function Interface (FFI) [11] package as a bridge between
the two languages. The flexible FFI package can pro-
gramatically load dynamic libraries and bind functions
without the need to make changes to Ruby itself or to
recompile any extensions, so our package can easily run
on standard Ruby interpreters without installation and
compilation issues beyond that of the normal Ruby gem
installation. Importantly, FFI also has useful methods for
managing memory, pointers, structs and binary fields are
converted to Ruby boolean variables. A further advantage
of using FFI is that the binding is compatible with both the
standard Ruby interpreter Matz’s Ruby Interpreter (MRI)
and the alternative Java implementation of the Ruby lan-
guage (JRUBY). By wrapping SAMtools in this way the
scientist may use the high level easily learned and fast
to develop with Ruby that facilitates quick development
rather than the native C of SAMtools. bio-samtools hides
the low-level API completely making bio-samtools a use-
ful and easily used tool for working with Next-Generation
Sequencing data in BAM files. Each .c library from the
SAMtools API is represented by a separate Ruby module
mapping the C functions (Figure 1), which are unified in
the class Sam.

Bio::DB::Sam
The main object representing the SAM/BAM file is a
Bio::DB::Sam object. Objects of class Sam, have several
attributes and methods, summarised in Table 1. Most
of the attributes relate to the alignment file type and

Figure 1 bio-samtools and its relationship to the underlying
libbam. Green boxes indicate C source code in libbam, red boxes
indicate Ruby files that interact the Ruby FFI represented in yellow.

the location of the BAM file in the file system. The
BAM file itself is not held in the object or Ruby mem-
ory, rather the Ruby wrapping is used to access the
information via the C API. The methods of the Sam
object can be divided into utility methods that affect
the BAM files, (#sort and #merge), retrieval meth-
ods that return objects of other classes representing
individual read alignments (#fetch, #fetch with function)
and summary methods (#average coverage, #chromo-
some coverage and #mpileup,#index stats).

Bio::DB::Alignment
The fetch and fetch with function method of the
Bio::DB::Sam object return individual alignments one
at a time from an iterator. The individual alignments
represent a single read and its mapping to the refer-
ence and are Bio::DB::Alignment objects, whose attributes
are described in Table 2. These attributes are derived
directly from the SAM format definition [6]. The
fetch with function method is distinct from fetch in that
it allows the user to pass a Ruby Proc object or a block.
These are functionally equivalent to closures in other
languages and provide advantages in terms of encapsu-
lation and often speed compared to the standard block
based equivalent, advanced Ruby programmers are likely
to appreciate this feature.

Bio::DB::Pileup
The pileup format is a straightforward way of structuring
alignments over single positions for the easy identification
of genetic polymorphisms, the format has a long history
and has been in use in SAMtools for a while. The orig-
inal ’pileup’ function has recently been deprecated and
removed in favour of ’mpileup’. The output from mpileup
is exactly equivalent to the pileup command called with-
out the -c flag set, that is to say the six column format.
The class Pileup can parse the old ten column pileup for-
mat if an instance is created manually by passing it a raw
line from the pileup file. Calling the mpileup method of
a SAM object results in the return of a stream of Pileup
[12] objects, which have the attributes and methods listed
in Table 3. Some of the attributes are related to the ten
column format only. Notably, SAMtools will calculate a
consensus base call if asked to return a ten column pileup
file, so the Pileup class will use SAMtools consensus call if
it is available, otherwise it will call a consensus based on a
simple majority count.

Results and discussion
Using bio-samtools: a brief tutorial
bio-samtools in use is straightforward, here are a
few examples of interacting with BAM files with the
package. More information on specific functions is
provided in the RubyDoc documentation and in the

Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6 Page 3 of 6
http://www.scfbm.org/content/7/1/6

Table 1 Attributes andmethods of the Bio::DB::Sam object

binary denotes whether this is a binary file

compressed denotes whether this file is compressed

fasta path path to the reference FASTA file

sam path to the associated BAM file

chromosome coverage return Ruby Array of coverage over a region

fetch fetch alignment in a region from a bam file, returning a Ruby Array object

fetch reference fetch regions of the reference file returning a String object of the relevant sequence

fetch with function fetch all alignments in a region passing in a Ruby Proc object as a callback, returning an iterator

index stats get information about reference and number of mapped reads

merge merge two or more bam files

mpileup an iterator that returns Pileup objects representing the reads over a single position

sort sort the BAM file

files bioruby-samtools/doc/tutorial.html and bioruby-
samtools/doc/tutorial.pdf. The location of the bio-
samtools installation folder can be found by typing ’gem
which bio-samtools’ at the command-line.

Table 2 Attributes of the Bio::DB::Alignment object

calend nucleotide position of the end of the alignment

cigar CIGAR string describing the matches/mismatches

failed quality this read failed the quality threshold

first in pair first of a pair

is duplicate this read is a suspected optical or PCR duplicate

is mapped the read was aligned

is paired the read is one of a pair

isize the insert size distance between mapped mates

mapq the PHRED scaled mapping quality of the alignment

mate strand the strand of the mate

mate unmapped the mate is unmapped

mpos start position of the mate on the reference

pos start position of the alignments

primary is a primary alignment

qlen read length

qname read name

qual read quality string

query strand strand of alignment

query unmapped query is unmapped

rname name of reference to which read mapped

second in pair this is second in the pair

seq read sequence

tags Bio::DB::Tag object representing the tags for

this alignment

Installation
bio-samtools is easily installed from a machine with an
internet connection and a Ruby installation with the
straightforwardGem invocation ’gem install bio-samtools’.
bio-samtools automatically downloads the original lib-
bam C source code and compiles it for Linux or OSX as
appropriate. The new version of the library is kept locally
to the bio-samtools code to avoid conflicts with other
installations of the library.

Loading a BAM file
A SAM object represents the alignments in the BAM
file, and is very straightforward to create, you will need a
sorted BAM file, to access the alignments and a reference
sequence in FASTA format to use the reference sequence.
The object can be created and opened as follows:

require ’bio-samtools’
bam=Bio::DB::Sam.new(:bam=>"my sorted.bam",
:fasta=>’ref.fasta’)
bam.open
bam.close

Opening the file needs only to be done once for multiple
operations on it, access to the alignments is random so
you don’t need to loop over all the entries in the file, as you
would with a manual SAM file parse.

Getting summary information
The length of reference sequences and the num-
ber of reads mapped to each can be obtained with
the index stats function. A Hash object, keyed by
reference name and with a Hash at each value is
returned. The Hash at the value has keys :length,
:mapped reads and :unmapped reads and values for each
of these. The index stats function wraps the SAMtools
idxstats command.

Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6 Page 4 of 6
http://www.scfbm.org/content/7/1/6

Table 3 Attributes andmethods of the Bio::DB::Pileup object

consensus the consensus nucleotide calculated as the nucleotide with highest count multiple nucleotides returned in a tie

coverage the number of reads covering this position

non ref count the number of reads that disagree with the reference nucleotide

non ref count hash a Hash with A,T,G and C as keys and the number each nucleotide appears in the pileup when that nucleotide is not

the reference

pos the position in the reference sequence that this pileup represents

read bases the read nucleotides covering this position

read quals the quality scores of the read nucleotides covering this position

ref base the reference sequence nucleotide

ref count the number of times the reference nucleotide appears in the read nucleotides covering this position

ref name the name of the reference sequence

ar1, ar2, ar3 the allele calls from pileup

consensus1 the consensus of the reads according to SAMtools method of calculation

consensus quality1 the quality score of the consensus according to SAMtools method of calculation

rms mapq1 the root mean square mapping quality at the position

snp quality1 the SNP quality at the position

1ten column format only.

sam.index stats
returns { "chr 1" => {:length=>69930,

:mapped reads=>1000,
:unmapped reads=>0 },

}

Retrieving reference sequence
Retrieving the reference can only be done if the reference
has been loaded, which isn’t done automatically in order
to save memory. Reference need only be loaded once, and
is accessed using reference name, start, end in 1-based co-
ordinates. A standard Ruby String object is returned. In
this example a 500 nucleotide region from the start of the
sequence is returned.

bam.load reference
seq = bam.fetch reference("Chr1", 1,
500)

Retrieving alignments in a region
Alignments in a region of interest can be obtained one at
a time by giving the region to the fetch() function.

bam.fetch("Chr1", 3000, 4000).each do |
alignment |

puts alignment.qname #do something
with the alignment object
end

Get a summary of coverage in a region
It is easy to get the total depth of reads at a given position,
the chromosome coverage function is used. This differs

from the previous functions in that a start position and
length (rather than end position) are passed to the func-
tion. An array of coverages is returned, eg [26,26,27 ...].
The first position in the array gives the depth of coverage
at the given start position in the genome, the last position
in the array gives the depth of coverage at the given start
position plus the length given.

coverages = bam.chromosome coverage
("Chr1", 3000, 1000)

Similarly, average (arithmetic mean) of coverage can be
retrieved, also with start and length parameters

av cov = bam.average coverage("Chr1",
3000, 1000)

Getting pileup information
Pileup format represents the coverage of reads over a sin-
gle base in the reference. Getting a Pileup over a region is
very easy. Note that this is done with mpileup and NOT
the now deprecated and removed from SAMTools pileup
function. Calling the mpileup method creates an iterator
that yields a Pileup object for each base.

bam.mpileup do |pileup|
puts pileup.consensus

end

The mpileup function takes a range of parameters to
allow SAMTools level filtering of reads and alignments.
They are specified as key, value pairs. In this example a

Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6 Page 5 of 6
http://www.scfbm.org/content/7/1/6

Table 4 SAMtools options recognised by the Bio::DB:Sam#mpileupmethod and the symbols used to invoke them

SAMTools option description short symbol long symbol default

r limit retrieval to a region :r :region all positions

6 assume Illumina scaled quality scores :six :illumina quals FALSE

A count anomalous read pairs scores :A :count anomalous FALSE

B disable BAQ computation :B :no baq FALSE

C parameter for adjusting mapQ :C :adjust mapq 0

d max per-BAM depth to avoid excessive memory usage :d :max per bam depth 250

E extended BAQ for higher sensitivity but lower specificity :E :extended baq FALSE

G exclude read groups listed in FILE :G :exclude reads file FALSE

l list of positions (chr pos) or regions (BED) :l :list of positions FALSE

M cap mapping quality at value :M :mapping quality cap 60

R ignore RG tags :R :ignore rg FALSE

q skip alignments with mapping quality smaller than value :q :min mapping quality 0

Q skip bases with base quality smaller than value :Q :imin base quality 13

region is specified by :r and a minimum per base quality
score is specified by :Q.

bam.mpileup(:r => "Chr1:1000-2000", :Q
=> 50) do |pileup|

puts pileup.coverage
end

Not all the options SAMTools allows you to pass to
mpileup are supported, those that cause mpileup to return
Binary Variant Call Format (BCF) [13] are ignored. Specif-
ically these are g,u,e,h,I,L,o,p. Table 4 lists the SAMTools
flags supported and the symbols you can use to call them
in the mpileup command.

Conclusions
Ruby is an easily written and understood high-level lan-
guage, ideal for beginners or those wishing to develop
analysis scripts and prototype applications in short time-
frames. A major advantage of scripting in Ruby for biolo-
gists is the BioRuby project that provides a lot of classes
and functionality for dealing with common biological data
types and file formats. bio-samtools is a BioRuby plugin
which extends the original BioRuby framework by pro-
viding a useful and flexible interface for Ruby coders who
wish to have programmatical access to the data in BAM
and SAM files without losing performance, the C API
is very much quicker than a pure Ruby implementation
would be and wrapping it provides the best of both lan-
guages. The interface we provide gives access to all the
API components of the SAMtools core library libbam.so
and extends with some useful high level methods. The
open class system of Ruby means that the SAM class
which encapsulates the functionality of SAMtools can eas-
ily be extended at run-time by the user. These features

together mean that bio-samtools can be an extremely
useful tool for scientists wishing to examine the results of
next-generation sequencing alignments.

Availability and requirements
Project name: bio-samtools
Project home page: http://rubygems.org/gems/bio-
samtools
Operating systems: Linux and Mac OS X
Programming language: Ruby
Other requirements: none
License: as BioRuby
Any restrictions to use by non-academics: none

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RRG wrote the binding, tests, co-wrote the documentation and co-wrote the
manuscript, RB created and organised the Gem and contributed to the
binding and tests and co-wrote the manuscript and DM conceived of the
binding, contributed to the binding and tests, tested the implementations
with sample data and co-wrote the manuscript. RRG and RB contributed
equally to this work. All authors read and approved the final manuscript.

Acknowledgements
RHRG and MC are supported by the BBSRC and DM is supported by The
Gatsby Charitable Foundation. RHRG and RB contributed equally to this work.

Author details
1The Genome Analysis Centre, Norwich Research Park, Colney Lane, Norwich,
NR4 7UH, UK. 2Istituto Nazionale Genetica Molecolare, Via F. Sforza 28, Milan
20122, Italy. 3The Sainsbury Laboratory, Norwich Research Park, Colney Lane,
Norwich, NR4 7UH, UK.

Received: 26 April 2012 Accepted: 26 April 2012
Published: 28 May 2012

References
1. Li H, Durbin R: Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754–60.
[http://bioinformatics.oxfordjournals.org/cgi/content/full/25/14/1754?
view=long&pmid=19451168]

http://rubygems.org/gems/bio-samtools
http://rubygems.org/gems/bio-samtools
http://bioinformatics.oxfordjournals.org/cgi/content/full/25 /14/1754?view=long&pmid=19451168
http://bioinformatics.oxfordjournals.org/cgi/content/full/25 /14/1754?view=long&pmid=19451168

Ramirez-Gonzalez et al. Source Code for Biology andMedicine 2012, 7:6 Page 6 of 6
http://www.scfbm.org/content/7/1/6

2. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009, 10(3):R25. [http://genomebiology.com/
content/10/3/R25]

3. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24(5):713–4.

4. Novocraft. [http://www.novocraft.com]
5. Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large

scale genome resequencing. PLoS ONE 2009, 4(11):e7767.
6. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R, Subgroup GPDP: The Sequence Alignment/Map
format and SAMtools. Bioinformatics 2009, 25(16):2078–9. [http://
bioinformatics.oxfordjournals.org/cgi/content/full/25/16/2078]

7. Bio-SamTools. [http://search.cpan.org/lds/Bio-SamTools/]
8. pysam. [http://code.google.com/p/pysam/]
9. Picard. [http://picard.sourceforge.net/index.shtml]
10. BioRuby plugins. [http://bioruby.open-bio.org/wiki/Plugins]
11. Ruby Foreign Function Interface. [https://github.com/ffi/ffi/wiki]
12. Pileup Format. [http://samtools.sourceforge.net/pileup.shtml]
13. Variant Call Format. [http://www.1000genomes.org/node/101]

doi:10.1186/1751-0473-7-6
Cite this article as: Ramirez-Gonzalez et al.: Bio-samtools: Ruby bindings
for SAMtools, a library for accessing BAM files containing high-throughput
sequence alignments. Source Code for Biology andMedicine 2012 7:6.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://genomebiology.com/content/10/3/R25
http://genomebiology.com/content/10/3/R25
http://www.novocraft.com
http://bioinformatics.oxfordjournals.org/cgi/content/full/25 /16/2078
http://bioinformatics.oxfordjournals.org/cgi/content/full/25 /16/2078
http://search.cpan.org/ lds/Bio-SamTools/
http://code.google.com/p/pysam/
http://picard.sourceforge.net/index.shtml
http://bioruby.open-bio.org/wiki/Plugins
https://github.com/ffi/ffi/wiki
http://samtools.sourceforge.net/pileup.shtml
http://www.1000genomes.org/node/101

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Bio::DB::Sam
	Bio::DB::Alignment
	Bio::DB::Pileup

	Results and discussion
	Using bio-samtools: a brief tutorial
	Installation
	Loading a BAM file
	Getting summary information
	Retrieving reference sequence
	Retrieving alignments in a region
	Get a summary of coverage in a region
	Getting pileup information

	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

