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Alpha-synuclein and tau: teammates in
neurodegeneration?
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Abstract

The accumulation of α-synuclein aggregates is the hallmark of Parkinson’s disease, and more generally of
synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients
with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in
numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a
co-existence or crosstalk of these proteinopathies. Interestingly, α-synuclein and tau share striking common
characteristics suggesting that they may work in concord. Tau and α-synuclein are both partially unfolded proteins
that can form toxic oligomers and abnormal intracellular aggregates under pathological conditions. Furthermore,
mutations in either are responsible for severe dominant familial neurodegeneration. Moreover, tau and α-synuclein
appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions
between tau and α-synuclein form a deleterious feed-forward loop essential for the development and spreading
of neurodegeneration. Here, we review the recent literature with respect to elucidating the possible links between
α-synuclein and tau.
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Introduction
Age-related neurodegenerative disorders like Alzheimer’s
disease (AD) and Parkinson’s disease (PD) take an over-
whelming toll on individuals and society [1]. AD and PD
are the two most frequent neurodegenerative diseases
(www.who.org). To date, PD and AD remain incurable
and only very limited palliative treatment options exist
[2]. The etiology of PD and AD is not fully understood,
but appears to involve a complex combination of envir-
onmental and genetic factors [3].
Interestingly, at the molecular level, protein misfolding,

accumulation, aggregation and subsequently the forma-
tion of amyloid deposits are common features in many
neurological disorders including AD and PD. Thus neuro-
degenerative diseases are sometimes referred to as protei-
nopathies [4]. The existence of a common mechanism
suggests that neurodegenerative disorders likely share a
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common trigger and that the nature of the pathology is
determined by the type of the aggregated protein and the
localization of the cell affected (Figures 1, 2 and 3).
PD is pathologically characterized by the presence of

Lewy bodies in the subcortical regions of the brain, which
are composed of aggregated and phosphorylated alpha-
synuclein protein (αsyn) (Figures 2 and 3) [5]. Hence PD
belongs to a cluster of neurodegenerative disorders called
synucleinopathies, which also includes Parkinson’s disease
with dementia (PDD), dementia with Lewy bodies (DLB)
and multiple system atrophy (MSA) [6,7] (Figure 1). AD
can be classified as a tauopathy (as well as an amyloidopa-
thy); a class of disorders with intracellular inclusions com-
posed of hyperphosphorylated and aggregated tau protein
in the form of neurofibrillary tangles or Pick’s bodies
(Figures 2 and 3) [8]. Tauopathies also include fronto-
temporal dementia with parkinsonism linked to tau muta-
tions on chromosome 17 (FTDP-17 T), Pick’s disease
(PiD), progressive supranuclear palsy (PSP) and corticoba-
sal degeneration (CBD) (Figure 1).
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Figure 1 Overlap of proteinopathies. In numerous neurodegenerative disorders, amyloid deposits composed of α-synuclein protein (red circle),
tau protein (blue circle) and Aβ peptide (yellow circle) are found. Histopathological classification of neurodegenerative diseases is based on the
nature and localization of these deposits in the nervous system. The pathologies are not hermetically isolated categories but form a continuum
and concomitance of αsyn and tau pathology is not rare. αSyn pathology (or synucleinopathy) is not restricted to PD but is a feature of several
dementing disorders such as PDD, DLB, and frequently occurs in AD where it contributes to secondary symptoms. By contrast tauopathy is
repeatedly observed in numerous disorders primarily classified as synucleinopathies and may contribute to clinical heterogeneity.
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The concept of the existence of a continuum between
pure synucleinopathies and tauopathies has emerged and is
supported by clinical observations of a high comorbidity
and overlap between neurodegenerative disorders (Figure 1),
in particular between dementia and parkinsonism [9]. In
this continuum theory, two proteins are central: tau and
αsyn. Both form abnormal intracellular inclusions, and
mutations in either are sufficient to cause neurodegenera-
tion. Recently new data has emerged which suggests that
αsyn and tau may interact, and that this interaction is es-
sential for the development and spreading of neurodegen-
eration. In the present manuscript we discuss the recent
data in line with this paradigm.

Co-occurrence of tauopathies and synucleinopathies
There are many exceptions to the classical view that
αsyn and tau pathology are the hallmarks of PD and AD
[10], the obvious being that incidental tauopathy or
synucleinopathy is sometimes observed in asymptomatic
patients [11-14]. Furthermore tauopathies and synucleino-
pathies are not restricted to pure AD and PD respectively,
but rather encompass a variety of other disorders in which
co-occurrence of tau and αsyn inclusions is frequent such
as in PDD, DLB, Lewy body variant of AD (LBVAD),
Guam-Parkinson-ALS dementia complex [15,16] and even
Down’s syndrome [17] (Figure 1). Additionally, there is
considerable crosstalk and comorbidity between PD and
AD. For instance, PD patients are at increased risk of de-
veloping dementia [10,18-21] and more than half of AD
patients have Lewy bodies at autopsy, particularly in the
amygdala [17,22-24], with the presence of Lewy bodies
correlating with faster and more aggressive pathology
[25]. In sporadic PD, neurofibrillary tangles have been
repeatedly described over the past century [26-29] and
synaptic-enriched fractions of AD, PD, and DLB brains
have been shown to contain high levels of S396 phospho-
tau and phospho-αsyn [30]. Interestingly, dementia and
pronounced tau pathology have been described in familial
cases of parkinsonism linked to αsyn gene (SNCA) muta-
tions [31-34]. In addition, in other familial forms of par-
kinsonism linked to PARKIN or LRRK2 gene mutations,
the inconsistent accumulation of tau, αsyn, neither, or
both proteins has been observed [10,35].
In PD and PDD cases with tauopathy, phospho-tau is

restricted to striatal tissues and dopaminergic neurons
[36,37] and some studies even co-localized tau and αsyn
in the same aggregates. For instance in PD and DLB
cases, phospho-tau and αsyn were sometimes found to-
gether in neurofibrillary tangles, Lewy bodies and neur-
ites [38,39]. In one study using mass spectrometry, tau
was found as a component of Lewy bodies in addition to
tubulin and other cytoskeletal proteins [40]. However at
the molecular level, αsyn and tau were shown to segre-
gate into different fibrillar species within one single ag-
gregate [38].

SNCA and MAPT in genetic studies
It is fascinating to observe that familial cases carrying
mutations in the microtubule-associated protein tau
(MAPT) or SNCA genes can phenotypically present with
a combination of both parkinsonism and dementia. For
instance, familial forms of parkinsonism due to αsyn
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Figure 2 Schematic representation of tau and α-synuclein proteins. A- Alternative splicing of the N1, N1 + N2 and R2 regions (white) yields
in 6 different tau isoforms referred to as 0N3R (=tau23 or tau-352), 0N4R (=tau24 or tau-383), 1N3R (=tau37 or tau-381), 1N4R (=tau46 or tau-412),
2N3R (=tau39 or tau-410) and 2N4R (=tau40 or tau-441). Tau has an acidic N-terminus and a tubulin binding region where the vast majority of
the exonic (▽) and intronic (not depicted here) disease-associated mutations are found. B- αSyn is a 14.5 kDa protein divided into 3 major
regions; the amphipathic N-terminus, the hydrophobic Non-Amyloid Component (NAC) domain, and the acidic C-terminus. Pathogenic missense
mutations described to date (▽) are located in the N-terminal region, whereas most disease-related phosphorylation sites (▲) are localized to
the C-terminal region of the protein.
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pathogenic substitutions (A30P, E46K, H50Q, G51D or
A53T) or due to the duplication or triplication of the
wild-type (wt) SNCA gene commonly present with add-
itional atypical clinical signs such as hallucinations, cog-
nitive impairment, and dementia [32,35,41-47].
Mutations in the MAPT gene also cause a variety of

neurodegenerative phenotypes including parkinsonism.
Pathogenicity of MAPT splice-site and missense muta-
tions such as G272V, N279K, P301L, V337M and
R406W were first reported to cause FTDP-17 T in 1998
(Figure 2) [48-52] followed by the description of many
other intronic and exonic mutations (for reviews [53-56]).
While most of the mutations such as P301L and N279K
primarily cause familial FTD [50,57], other phenotypes
such as CBD [58,59], PSP [60] and variable extent of
parkinsonism have been observed in some patients and
families with MAPT mutations. Whereas the S305N mu-
tation provokes FTD with minimal parkinsonism [61],
the K369I mutation is responsible for L-DOPA sensitive
parkinsonism [62] and the deltaN296 mutation is related
to familial atypical PSP [63]. Surprisingly, even single
MAPT mutations cause considerable phenotypic hetero-
geneity even within a single family, with a diverse combin-
ation of symptoms and age of onset [64]. This apparent
randomization of the symptoms raises some questions
about the exact role and specificity of tau in neurodegener-
ation and suggests that tau is a trigger for diverse neurode-
generative cascades. Interestingly, no consistent synuclein
pathology has been reported in FTDP-17 T patients. The
presence of tauopathy combined with the absence of Lewy
bodies in FTDP-17 T and post-encephalitic parkinsonism
cases suggests that tau alone is sufficient to provoke severe
neurodegeneration leading to parkinsonism [65,66]. How-
ever, the absence of macroscopic Lewy bodies does not ex-
clude a role for αsyn in the form of discrete oligomers.
Recently, large-scale unbiased population-based genotyp-

ing studies have attempted to associate disease susceptibil-
ity with common genetic variants. For PD, genome-wide
association studies have identified at least 24 loci so far
[67]. Among them, regions encompassing the GAK, HLA-
DRB5, SNCA, LRRK2 and MAPT genes were the most sig-
nificant hits [68-70]. The observation that common genetic
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Figure 3 Tau and α-synuclein pathologies. A to D- Histological sections from the amygdala of DLB patients immunostained with an antibody
against phosphorylated tau (PHF-1, Abcam, #ab66275) (A and B) or an antibody against phosphorylated αsyn (pSyn#64, Wako, #015-25191)
(C and D). Abnormal proteinaceous inclusions of phosphorylated tau protein, called neurofibrillary tangles (A and B, ), and of αsyn protein,
called Lewy bodies and neurites (C and D, ) are often found in neurons of the amygdala in DLB patients.
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variation in the SNCA and MAPT loci associates with sus-
ceptibility to disease supports a role for these genes in not
only rare familial cases but also in sporadic PD. Common
genetic variations at the MAPT locus can on the whole be
divided in two major haplogroups named H1 and H2 that
arose due to an ancient ~900 kb chromosome inversion.
In comparison to H1, the H2 haplotype has been shown to
correlate with lower expression of tau protein and to have
a protective effect in neurodegeneration [71]. The MAPT
H1 haplotype is therefore considered a genetic risk factor
for a myriad of neurodegenerative disorders, including
both pure tauopathies (PSP [60] and CBD [72-74]) and
synucleinopathies (PD [75], PDD [76,77] and MSA [78]).
However, the H1 haplotype is very polymorphic and the
specific genetic variants that associate with risk for each
disorder are still not clearly defined.
In DLB, although no significant association of the

MAPT locus with disease susceptibility was found in a
recent genome-wide association study [79], correlation
between H1 haplotype and the degree of synuclein path-
ology in the brainstem was observed in a small neuro-
pathological study [80]. The SNCA single nucleotide
polymorphism (SNP) rs2572324 has been correlated
with the extent of neocortical Lewy body and neuro-
fibrillary pathology [81]. These observations indicate that
tau and αsyn may influence their reciprocal aggregation
and suggest that their interaction is a determining factor
for the development of dementia and parkinsonism. Other
genetic/epidemiological studies have also indirectly linked
MAPT/tau with PD. For instance, a SNP located within
the RIT2 gene, was recently nominated through a meta-
analysis of genome-wide association studies. GTP-binding
protein Rit2 binds to calmodulin 1 (phosphorylase kinase,
delta), which also binds to both tau and αsyn [68]. In-
creased PD susceptibility was also associated with two
SNPs in the GSK3β gene, an established tau kinase [82],
although these results could not be confirmed in a subse-
quent study or within the genome-wide association efforts
[83]. Interestingly some epidemiological studies have also
tried to determine if there is an evidence of an epistatic
interaction between genetic variation of the SNCA and
MAPT loci. An additive or even multiplicative effect be-
tween polymorphisms in SNCA and MAPT would be ex-
pected if both genes interact within the same pathogenic
pathway. One study did suggest a synergistic increase in
the susceptibility of developing dementia in patients
with PD when a SNCA risk allele was analyzed with
MAPT H1/H2 inversion polymorphism [76]. Conversely,
no synergistic effect for SNCA and MAPT (or LRRK2)
polymorphisms were found to increase PD suscepti-
bility in two other epidemiological studies [84,85] and one
meta-analysis [86].

Tau and α-synuclein in vivo models
Toxin-based rodent models
Prior to the discovery of the genetic forms of disease,
i.e. mutations of MAPT and SNCA, toxin-based rodent
models characterized in vivo parkinsonism research. The
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discovery that dopaminergic mid-brain neurons are
especially sensitive to oxidative stress inducers such
as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
6-hydroxydopamine (6-OHDA), rotenone, and paraquat
resulted in the creation of toxin-based rodent models to
study parkinsonian phenotype in vivo (for review [87]).
Interestingly, some studies also reported the accumulation
of hyperphosphorylated tau in rodents after the systemic
delivery of rotenone, paraquat, and MPTP, but not maneb
[88-90]. In rotenone treated rats, Hoglinger and colleagues
described fibrillar structures composed of 15 nm straight
filaments positive for phospho-tau, thioflavin S, nitrosa-
mine, and ubiquitin [89]. Insoluble and phosphorylated
tau has been described in mice treated with MPTP [88]
and Duka and colleagues demonstrated that MPTP treat-
ment induces tau hyperphosphorylation on the S396 and
S404 residues via GSK3β kinase in wt but not in αsyn
knock-out (KO) mice [91]. Later, Qureshi and Paudel con-
firmed that αsyn presence is required for the MPTP-
induced phosphorylation of tau at S214, S262, S396 and
S404 residues and identified GSK3β and PKA as the re-
sponsible kinases [92]. However, a connection between
tauopathy and synucleinopathy has not been consistently
observed in these PD toxin-based models. In an interest-
ing study by Morris and colleagues, a reduction of tau ex-
pression did not prevent 6-OHDA neurotoxicity [93].
These apparently contradictory results demonstrate that
the interplay between tau and αsyn is complex.

αSyn and tau viral overexpression in rodents
The effect of targeted human αsyn and tau protein ex-
pression has been investigated using viral vectors-based
models. In these models, co-occurrence of tau and αsyn
pathologies has also been observed. For instance, in rats,
αsyn overexpression induced by stereotaxic injection of
lentivirus increases phospho-tau levels [94]. On the con-
trary, rats transduced with tau and mutant P301L tau
display an increase of αsyn and phospho-αsyn levels
[95]. In another study using adeno-associated vectors for
gene transfer into the substantia nigra of rats, overex-
pression of human wt and P301L tau, but not αsyn, pro-
voked dopaminergic neurodegeneration, reduced striatal
dopamine content, and motor deficit as measured by
amphetamine-stimulated rotational behavior [96]. In this
study behavioral dysfunction preceded the formation of
neurofibrillary tangles suggesting that mature neurofib-
rillary tangles are not required for tau-induced disrup-
tion of dopaminergic transmission [96].

Tau and αsyn genetic mouse models
Numerous genetically modified mice that overexpress
the human tau and/or αsyn proteins have been gener-
ated and are used to model specific aspects of the hu-
man diseases. Interestingly, tau transgenic models not
only develop cognitive changes but also motor dysfunc-
tion. Mice overexpressing the mutant K369I tau develop
L-DOPA sensitive parkinsonism [62], and overexpres-
sion of the pathogenic P301L and P301S forms of tau in
mice provoke severe motor dysfunctions that recapitu-
late some of their effects in humans [97,98]. In the
P301L tau overexpressing mouse line, inhibition of tau
hyperphosphorylation by treatment with a non-specific
protein kinase inhibitor also prevents the motor impair-
ments suggesting that tau could be a target in degenera-
tive movement disorders [99].
Likewise, cognitive deficits and tauopathy have been

observed in αsyn-overexpressing PD models [100-103].
Interestingly different extents of tauopathy and cognitive
impairment were observed depending on the promoter
type used for αsyn overexpression and the species of
αsyn expressed. The presence of hyperphosphorylated
tau was clearly identified in a wt αsyn overexpressing
transgenic mouse line using the PDGF-β promoter at
11 months of age [101,102]. Nonetheless, no tauopathy
was observed at 18 months in a transgenic line overex-
pressing wt αsyn under the prion promoter unless this line
was crossed with a P301L tau mouse [100]. Interestingly,
in two other lines also using the prion promoter to over-
express the A53T and E46K mutant forms of αsyn, abun-
dant tau inclusions were observed without the need of
crossing with the P301L tau expressing line [100,104,105].
The E46K line was reported to have more tau threads than
the A53T αsyn overexpressing transgenic line suggesting
mutation-induced differences [104]. In these mice, tauopa-
thy was restricted to areas with abundant αsyn expression
and initiated simultaneously with synucleinopathy in an
age-dependent fashion, although not always localized
within the same cells [100]. In the PDGF-β-wt-αsyn mice,
hyperphosphorylated tau was primarily found in the
brainstem and in the striatum [101,102]. Kaul and col-
leagues correlated phospho-tau occurrence with the acti-
vation of ERK and JNK but not of GSK3β and p38MAPK
kinases, whereas Haggerty and colleagues noted a match
between the presence of phospho-tau and phospho-
GSK3β. Similarly, in the prion promoter driven A53T
αsyn mice, as well as in patients harboring the A53T
mutation, hyperphosphorylated and non-soluble tau ac-
cumulated in the striatum and was correlated with in-
creased levels of phospho-GSK3β [105,106]. In contrast,
in a Thy-1 promoter driven A30P αsyn overexpressing
transgenic mouse line, hyperphosphorylated and non-
soluble tau accumulated in the brainstem in correlation
with increased phospho-JNK level [107]. Jointly, these
observations suggest the existence of complex region- and
time-dependent interactions between kinases, αsyn and
tau.
Some groups also crossed different transgenic mouse

models to trigger the co-occurrence of tauopathy and
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synucleinopathy with the final aim to better model com-
plex human disorders like DLB. For instance, a quadruple
transgenic mouse line has been generated by crossing a
triple transgenic mouse that overexpresses human AD-
causing M146V presenilin-1, APP Swedish mutation, and
the FTDP-17 T-causing P301L tau with a transgenic
mouse that overexpresses human PD-causing A53T αsyn
[108]. Co-overexpression of these pathogenic proteins had
a strong synergistic effect on neurodegeneration, protein
aggregation, and on cognitive and motor deficits. In con-
trast, crossing of a Thy1 promoter driven human wt αsyn
overexpressing mouse line with a tau KO or tau condi-
tional KO mouse did not prevent neurotoxicity indicating
that αsyn also acts independently from tau [93].
Several tau- and αsyn- deficient mouse lines have been

generated to determine if any particular phenotype or re-
sistance to neurodegeneration might be present. Gener-
ally, tau- or αsyn-deficient mice are viable with only
minor phenotypic differences [109-112]. Remarkably, cog-
nitive alterations were observed in an α- and γ-synuclein
double KO mouse line suggesting that both proteins have
a compensatory role on cognition [103]. Conversely, in
aged tau-deficient animals minor motor deficits were ob-
served in correlation with an iron accumulation and loss
of dopaminergic neurons in the substantia nigra [113],
but could not be reproduced in a subsequent study [112].
Together these data demonstrate that the absence of
both proteins does not appear to have observable sig-
nificant impact, perhaps due to compensatory mecha-
nisms, whereas their overexpression, in particular in
their mutated forms, recapitulates some aspects of the
human pathologies. This is in line with a gain of toxic
function mechanism and validates therapeutic strategies
aimed at clearing tau and/or αsyn for parkinsonism and/
or dementia.

Non-vertebrate models
In addition to rodents, non-vertebrate αsyn and/or tau
transgenic in vivo models have been developed. These
models work surprisingly well and present many prac-
tical aspects [114,115]. For example, in Caenorhabditis
elegans, expression of the human αsyn or tau protein in
neurons recapitulates key features of the human diseases
such as motor deficits and neuronal and dendritic loss
[116]. Human αsyn expression in Drosophila melanoga-
ster also induces neurotoxicity as well as L-DOPA-
sensitive motor deficits and formation of αsyn-positive
fibrils [117]. Remarkably, whereas αsyn expression pro-
vokes the formation of Lewy body-like aggregates in
D. melanogaster but not in C. elegans, tau expression
conversely leads to the formation of insoluble inclusions
in C. elegans but not in D. melanogaster [115,116].
Nonetheless, both proteins are neurotoxic in both
models demonstrating that the formation of protein
aggregates is fundamentally unnecessary for toxicity. In
line with this idea, dopaminergic neurons in αsyn express-
ing D. melanogaster were rescued without suppressing the
presence of αsyn inclusions by co-expression of the Hsp70
chaperone [118]. More recently, co-expression of tau
and αsyn in D. melanogaster has been shown to induce
motor dysfunction, dopaminergic denervation, cyto-
toxicity, formation of abnormal ubiquitin positive in-
clusions, axonal transport disruption, and cytoskeletal and
synaptic disorganization [119]. Tau affected dopaminergic
cell count only when co-expressed with αsyn, demonstrat-
ing the existence of a synergistic deleterious effect be-
tween tau and αsyn once more. However, in contrast to
what was observed in rodent models, the mechanism of
toxicity in D. melanogaster was linked to severe cytoskel-
etal and axonal disorganization and subsequent synaptic
alterations rather than αsyn–promoted tau hyperpho-
sphorylation [119].
Interesting findings have also been made in yeast models.

In Saccharomyces cerevisiae, overexpressing human tau
does not induce significant toxicity [120,121]. However, co-
expression of tau with human αsyn leads to greater toxicity
than αsyn expression alone, and also leads to the formation
of insoluble hyperphosphorylated tau and αsyn aggregates.
The synergistic deleterious effects were increased by ex-
pression of A53T αsyn or P301L tau instead of their wt
forms [120,122]. Finally, in these models, yeast orthologs of
the cyclin-dependent kinase 5 and GSK3β kinases were
shown to be involved in the phosphorylation of tau and in
the αsyn plus tau induced-toxicity [120,122].
In various transgenic or toxin-induced PD models ran-

ging from mice to yeast, the existence of a deleterious and
emulative action between tau and αsyn has been repeti-
tively shown. This corroborates what has been observed in
humans (see Co-occurrence of tauopathies and synucleino-
pathies and SNCA and MAPT in genetic studies sections)
and reinforces the idea that the interplay between αsyn
and tau are pivotal in the neurodegenerative process.
Nonetheless, results from these in vivo models have to be
interpreted with caution. For instance, there is no ortholog
gene of the human SNCA in the fly, worm or yeast,
whereas in rodents the endogenous wt αsyn carries the
A53T mutation without deleterious effect [123,124]. More-
over, in rodents, tau hyperphosphorylation can occur in
instances of hibernation or starvation, making this patho-
logical hallmark difficult to interpret [125,126].

Tau and α-synuclein in molecular studies
The fact that αsyn and tau can physically interact with
each other was demonstrated by Jensen and colleagues
in 1999. In this pioneering study, tau protein from brain
lysates was pulled down by αsyn affinity chromatog-
raphy. The authors also noted a strong effect of ionic
strength on the binding, indicating the implication of
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salt bridges in the interaction [127]. Moreover, in line
with an interaction under physiological conditions, a
binding IC50 value of 50pM was calculated between tau
and αsyn using plasmon surface resonance and a radio-
active binding assay [127]. At the cellular level, tau and
αsyn were co-localized in the same cellular compart-
ments and in particular in axons [127]. This was con-
firmed by Förster resonance energy transfer (FRET) in
more recent studies [128,129].

Docking sites and effects of mutations on tau – αsyn
interactions
Several studies have tried to identify the exact regions and
the critical amino acid residues by which tau and αsyn
interact. Using protein fragmentation and recombinant
peptides, Jensen and colleagues found that the interacting
domains are localized to the C-terminus of αsyn (55 to
140) and the microtubule binding region of tau (192 to
383) [127]. Accordingly two subsequent studies found that
the N-terminal (1 to 153) and C-terminal (352 to 441)
fragments of tau do not interact with αsyn [129,130]. The
question of the role of phosphorylation and disease-
related mutations in the tau and αsyn interaction has also
been addressed and investigated in vitro. Phosphorylation
of the serine 214 residue of tau was identified to increase
αsyn binding [92]. In contrast, phospho-mimic/dead mu-
tations at the serine 129 residue of αsyn had no effect
[129]. No effect of A30P and A53T αsyn disease-related
mutations was initially reported [127], but later in a study
using FRET, the αsyn mutation A30P, but not the A53T
and E46K, was shown to reduce association of αsyn
with tau [129]. Conversely, in a third study using co-
immunoprecipitation, αsyn mutations A30P, A53T, E46K
but not E83P increased binding with tau [92], E83P being
an artificial mutation in the NAC domain that blocks αsyn
aggregation [131]. On the contrary, the P301L tau muta-
tion was found to reduce interaction with αsyn [130].
Consequently the exact role of the disease-related muta-
tions on tau and αsyn interaction still needs to be clarified
especially since in vivo observations suggest that they may
play a role.

Tau – αsyn – kinases
The promotion of tau hyperphosphorylation by αsyn has
been demonstrated in several studies and could be a
mechanism that explains how αsyn triggers tauopathy
(Figure 4). An in vitro study showed that αsyn promotes
tau phosphorylation at S262 and S356 residues via PKA
[127]. Later, another tau kinase, GSK3β, was found to be
recruited and activated in an αsyn-dependent manner
and provoke tau hyperphosphorylation at T181, S396,
and S404 residues [88,91,120,132]. This effect seems to
be the result of both an increase GSK3β kinase activity
[91,105] and the formation of a tripartite GSK3β-αsyn-
tau complex with tau binding to the acidic C-terminus
of αsyn, and GSK3β to the NAC and KTEGV domains
of αsyn [132]. However, it has also been shown that
similar to αsyn, β- and γ-synuclein can also induce GSK3β
autophosphorylation and that β-synuclein could even pro-
mote tau phosphorylation, questioning the specificity of
this mechanism and its physiological relevance [132].
Nonetheless other facts reinforce the idea of a link be-
tween GSK3β, tau and αsyn. For instance, in a cellular
MPTP model, GSK3β inhibition with lithium or TDZD-8
was able to decrease tau phosphorylation but also αsyn ac-
cumulation and cell death [91]. However GSK3β is not the
only kinase that links αsyn with hyperphosphorylated tau.
Indeed, activation of ERK and JNK, that also phosphoryl-
ate tau at S396 and S404 residues, correlate with the pres-
ence of phospho-tau in αsyn overexpressing transgenic
mouse models [102,106,107]. In addition, tau phosphoryl-
ation at S262 and S356 residues by PKA is exacerbated by
αsyn in vitro [127]. Following this, PKA was identified as
the responsible kinase for the αsyn-dependent phosphor-
ylation of tau at S262 residue after MPTP treatment in
cells [92]. Interestingly, PKA does not phosphorylate tau
at S396 and S404 residues, whereas GSK3β does not phos-
phorylate tau at S262 residue suggesting that both kinases
probably have an additive role in the induction of tauopa-
thy by αsyn (Figure 4). Recently, tau has been identified as
a putative substrate for the PD-related kinase LRRK2
[133,134] and genetic correction of the PD-related LRRK2
G2019S mutation in human induced pluripotent stem
cells resulted in a decreased tau and αsyn expression
[135], linking tau once more to PD.

Tau – αsyn – tubulin
αSyn may trigger tauopathy through the destabilization of
the tau-tubulin interaction, which results in both tau ag-
gregation and cytoskeleton disorganization (Figure 4).
Interestingly, the 14-3-3 protein that shares some hom-
ology with αsyn [136] has also been found to bind to tau
and cause tubulin instability [137]. Tau binding to tubulin
is reduced by both direct competition with αsyn and indir-
ectly by αsyn-promoted tau hyperphosphorylation [127].
Nevertheless the overall role of αsyn on cytoskeleton mod-
eling is difficult to interpret. Indeed, similar to tau, wt but
not mutant αsyn is capable of binding to tubulin and pro-
moting tubulin polymerization [138-140]. Overexpression
of A30P, A53T, E46K but not E83P mutated αsyn has been
shown to decrease microtubule stability and promote
phosphorylation of tau at the S262 residue by PKA [92].
Involvement of αsyn in cytoskeleton stability was also
demonstrated by the disruptive effect of treatment with
microtubule-destabilizing agents such as colchicine, noco-
dazole and vinblastine on the tubulin-αsyn interaction
[129,141]. Interestingly it was recently shown that seeds of
αsyn dose-dependently reduce tau-promoted microtubule



Figure 4 Putative pathways of deleterious tau and α-synuclein interactions. Interaction of tau and αsyn may promote pathogenesis via
distinct mechanisms. 1. αSyn may block the normal interaction between tau and tubulin by directly binding to tau and tubulin and thereby
interfering with tau physiological function. 2. αSyn could recruit kinases and promote the hyperphosphorylation of tau. 3. αSyn may also catalyze
tau polymerization and trigger the formation of tau/αsyn co-oligomers. 4. Finally, αsyn oligomers or fibrils may seed tau fibrillization and thereby
initiate and propagate tauopathy.
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assembly, whereas αsyn oligomers impair microtubule-
kinesin interplay [142].

Co-aggregation and seeding
In the last few years, effort has been directed at unravel-
ling the mechanisms by which neurodegeneration pro-
gresses in the brain. In PD and AD, neurodegeneration
and protein aggregation overlap with each other and
seem to follow a preset path giving the impression of
spreading [3]. Moreover, the existence of a prion-like
cell-to-cell propagation mechanism has been suggested
by the unexpected post mortem observation that αsyn
aggregates spread to healthy transplanted neurons in PD
patients [143,144]. Consistently, infection of healthy cells
by a seeding mechanism similar to the self-templating
activity of prions has been shown in vitro and in vivo
using polymerized αsyn and tau [145-154]. Moreover,
αsyn and tau have been shown to be excreted from cells
via non-conventional mechanisms and are found in
exosomes [155,156].
In this perspective, a major difference between tau and

αsyn is that αsyn is prone to self-aggregate, whereas tau
cannot aggregate by itself and requires an inducing agent
[157]. This has raised the question of whether αsyn
could initiate tau aggregation; indeed, in 2003, Giasson
and colleagues demonstrated that αsyn and tau promote
each other’s aggregation in vitro. Whereas the six alter-
native spliced variants of tau were able to aggregate in
the presence of full length wt αsyn, tau aggregation was
neither promoted by the delta71-82 truncated form of



Moussaud et al. Molecular Neurodegeneration 2014, 9:43 Page 9 of 14
http://www.molecularneurodegeneration.com/content/9/1/43
αsyn, nor by β-synuclein, nor by amyloidogenic Aβ
peptide [100]. These observations demonstrate that tau
accelerates αsyn polymerization and that αsyn can act
as an inducing agent of tau polymerization through its
hydrophobic NAC region. Interestingly, mutant A53T
αsyn was shown to have increased tau fibrillization
properties in vitro when compared to wt αsyn [33]. Con-
versely, tau expression enhanced toxicity and secretion,
and changed the pattern of αsyn aggregation by promot-
ing the formation of smaller inclusions in cellular
models [128].
Using the fluorescent intensity distribution analysis

technique (FIDA), Nübling and colleagues have shown
that tau and αsyn can form co-oligomers and that co-
aggregation happens even at nanomolar concentrations
but only in the presence of a cationic aggregation in-
ducer such as Al3+ and Fe3+ or DMSO [158]. Moreover,
tau phosphorylation by GSK3β strongly enhanced the
formation of mixed oligomers [158]. However electron
microscopy revealed that co-incubation of monomeric
tau and αsyn mainly leads to the formation of homopol-
ymeric fibrils [100]. This is consistent with the observa-
tions made in DLB cases [38] and suggests that αsyn
and tau predominantly interact with each other at the
monomeric and oligomeric stages. More recently, a series
of studies tried to reproduce these in vitro findings in vivo
by demonstrating that exogenous αsyn can be taken up by
neurons and induce the formation of intracellular Lewy
body-like structures [159,160] and also hyperphosphory-
lated tau aggregates [151,161]. For instance extracellular
treatment with polymerized recombinant human αsyn
induced the formation of insoluble phosphorylated tau
in cellular models [104,161]. Counterintuitively, wt αsyn
fibrils were more efficient than E46K αsyn fibrils at
cross-seeding tau [104].

Conclusions and future directions
The overlap and numerous similarities between synuclei-
nopathies and tauopathies suggest that therapeutic strat-
egies that target common processes of tau and αsyn
aggregation could benefit patients across a spectrum of
neurodegenerative disorders, and may be particularly
relevant for the treatment of secondary symptoms such
as cognitive impairment in PD or secondary parkinson-
ism in dementia. In the present review we have compiled
data from the literature linking tau and αsyn. The
repeated in vitro and in vivo observations that tau and
αsyn interact highly suggest that αsyn and tau play as
teammates, however how this interaction occurs and
affects neurodegenerative processes is still not fully
elucidated and several scenarios are possible (Figure 4).
αSyn was initially shown to bind to tau and interfere

with the normal interaction between tau and tubulin
[127]. The disruption of the normal physiological
interaction between tau and tubulin for a pathological
interaction between tau and αsyn could explain why
αsyn and tau interaction seems to be deleterious.
However, more recent data suggest that the role of tau
and αsyn interaction on cytoskeleton modeling, axonal
development and synaptic activity in neurons may be
more complex as first thought [119,140,142]. Additional
mechanisms, acting together in a vicious cycle, may
explain how αsyn triggers tau aggregation and vice versa.
Reciprocal promotion of phosphorylation is probably a
key player, suggesting that kinases could be used as targets.
GSK3β inhibition for instance was concomitantly able to
decrease tau phosphorylation, αsyn accumulation and
cell death in a cellular MPTP model [91]. In a P301L tau
overexpressing mouse line, inhibition of tau hyperpho-
sphorylation by treatment with a non-specific protein
kinase inhibitor prevented motor impairments [99].
A mechanistic cross-seeding effect based on templat-

ing of a pathological β-sheet conformation is also highly
suspected [151,159-161]. Indeed, αsyn and tau can form
co-oligomers that catalyze aggregation and finally lead to
the formation of pure homofibrils [100,158]. This resem-
bles the prion self-propagation mechanism and this
parallel is now commonly drawn in the literature, even if
there is no evidence of human-to-human transmission
for αsyn or tau [162,163]. However, mutual misfolding
is probably the first event that leads to αsyn and tau
synergistic co-aggregation. The fact that αsyn has hom-
ology with the 14-3-3 co-chaperone protein, a known
partner of tau and αsyn, and is able to substitute 14-3-3
co-chaperone activity on 14-3-3 targets supports this
hypothesis [136,137]. In this regard upregulation of
chaperone proteins is another promising strategy that is
presently being investigated to restore the normal
conformation of αsyn and tau (Figure 4). Heat shock
proteins (HSPs) increase the association of tau with mi-
crotubules and regulate tau degradation, ubiquitination
and phosphorylation [164,165]. Hsp70 preferentially
binds to tau oligomers and restores anterograde fast
axonal transport [166]. Our group has demonstrated
that αsyn aggregation can be blocked by modulating
different chaperones including Hsp27, Hsp70, Hsp90,
torsinA and CHIP [167-175]. HSPs have been shown
to positively act on αsyn or on tau independently, but
they may also have a neuroprotective effect by restoring
and regulating the normal interaction between both
proteins [130,132].
Observations suggest that αsyn being a trigger of tauo-

pathy is more plausible than the opposite scenario. For
instance, whereas the presence of tau only accelerated
αsyn polymerization, co-incubation with αsyn was ne-
cessary to trigger tau aggregation in vitro [100]. Consist-
ently, tau ablation failed to prevent neurotoxicity in the
6-OHDA or wt αsyn overexpressing mouse models
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[125]. Furthermore, pronounced tauopathy has been
described in αsyn transgenic mice [100-102,104,105] and
in PD patients harboring the A53T mutation [31,33,34],
whereas no consistent αsyn pathology has been reported
in tau transgenic mice or FTDP-17 T patients [66].
However, this is somewhat contradicted by the observa-
tion that αsyn pathology in AD is more pronounced
than the tau pathology in PD [16,22-24,26-29,37].
Nonetheless, even if some gray areas persist regarding

the mechanisms and roles of the interaction between tau
and αsyn, applications and future directions are already
emerging. One future development is the identification
of reliable biomarkers for efficient diagnosis of neurode-
generative disorders at the prodromal stage. In addition
to other proteins, αsyn and tau are presently being de-
veloped as cerebrospinal fluid biomarkers for improved
clinical diagnoses. Cerebrospinal fluid levels of Aβ, total
and phospho-αsyn, and total and phospho-tau change
differentially depending on the nature of the disease.
Consequently, looking at the ratios between these
proteins could enable clinicians to determine the risk of
developing PD, AD, or a mixed disorder such as DLB
and provide them the needed therapeutic window to
start preventive and tailor-made treatments [176].
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