Simoes-Pires et al. Molecular Neurodegeneration 2013, 8:7
http://www.molecularneurodegeneration.com/content/8/1/7

MOLECULAR
NEURODEGENERATION

REVIEW Open Access

HDAC6 as a target for neurodegenerative
diseases: what makes it different from the other

HDACs?

Claudia Simoes-Pires'", Vincent Zwick'", Alessandra Nurisso', Esther Schenker?, Pierre-Alain Carrupt’

and Muriel Cuendet’”

Abstract

the modulation of HDAC6 activity.

Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of
neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs,
especially those from class |, via chromatin deacetylation. However, other mechanisms may contribute to the
neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the
neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially
elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial.
Specific inhibitors exert neuroprotection by increasing the acetylation levels of a-tubulin with subsequent
improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand,
an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize
various neurodegenerative disorders, including Alzheimer's, Parkinson’s and Hutington'’s diseases. This review
describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by
collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other
HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain
regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the
mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding
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Introduction

Histone deacetylases (HDACs) are enzymes that deace-
tylate lysine residues from histones as well as from
several other nuclear, cytoplasmic and mitochondrial
non-histone proteins. In mammals, 18 HDACs have
been phylogenetically classified into four classes. Classes
L, II, and IV belong to the Rpd3/Hdal family [1]. Class I
includes the constitutively expressed HDACs 1 to 3 and
HDACS8 [2]. Class II is subdivided into classes Ila
(HDACH4, 5, 7, and 9) and IIb (HDAC6 and 10). Enzymes
from class Ila are able to shuttle between the cytosol
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and the nucleus, and show a weaker deacetylase activity
[3]. Class IIb is mostly found in the cytosol with a pre-
ference for non-histone proteins [4], whereas HDAC11
is the sole member of class IV. These HDACs are usually
referred as classical HDACs, whereas class III, called sir-
tuins, are NAD"' dependent enzymes with different
structural features [5].

The role of HDACs has been studied within several
cell processes based on phenotypic changes after
isoform-specific knockdown or treatment with HDAC
inhibitors. The consequences of an inhibition of HDACs
may result in contradictory results, which seem to de-
pend partially on cell type [6]. Knockout analyses of
various class I and class II HDAC proteins suggested
that class I HDACs are involved in cell proliferation and
survival and are expressed ubiquitously in different body
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tissues, while class II HDACs seem to have tissue-
specific roles [7,8]. Moreover, the specific role of each
HDAC is directly related to their specific molecular sub-
strates. To our knowledge, more than 50 non-histone
proteins have been identified as substrates for HDACs
[9]. On the basis of animal tissue expression and serial
analysis of gene expression (SAGE) data from the human
transcriptome map [7,10,11], the distribution of HDAC
isoforms in body tissues is presented in Figure 1 to-
gether with their distribution in rat brain [11]. It is also
important to notice that the level of expression may dif-
fer when specific pathologies are present, such as cancer,
where some HDAC isoforms are overexpressed [10].
The deacetylase activity of HDACs is opposed to that
of histone acetyl transferases (HATSs) and several studies
have demonstrated the relevance of the HDAC/HAT
enzymatic balance in neuronal homeostasis [14]. This
balance is involved in neurophysiological functions,
memory processes and learning. A deregulation of
HDAC/HAT activity has been observed in several neuro-
degenerative diseases (NDs), and a decrease in histone
acetylation levels may affect the expression of genes
involved in apoptosis and neuroprotection [14-16].
Several reviews discussed the importance of various
HDACs in specific NDs [17,18] and recently, HDAC6
was suggested to be a promising target for some of them
[19]. In the present work, we aim at reviewing the pub-
lished data regarding HDAC6. The structural and func-
tional features of this specific isoform are compared to
other classical HDACs. The specific role of HDAC6
in NDs is discussed and the impact of HDAC6 modula-
tion via inhibition, induction and interaction with other
proteins in various diseases such as Alzheimer’s (AD),
Parkinson’s (PD) and Huntington’s (HD), frontotemporal
dementia (FTLD), amyotrophic lateral sclerosis (ALS)
and Charcot-Marie-Tooth disease (CMT) is discussed.

Structural differences between HDACs: what
makes HDAC6 different from the others

The bacterial HDAC homologue HDLP from Aquifex
aeolicus was the first HDAC-like protein structure
solved by X-ray in 1999 [20]. Alignment studies com-
bined with structural analyses revealed the presence of a
conserved 11 A deep channel among all HDAC struc-
tures, with a zinc ion located at the bottom [21-23]. The
zinc-dependent catalytic action consists in the removal
of acetyl groups from lysine residues belonging to his-
tone or non-histone proteins [24]. Even if a certain de-
gree of homology in the catalytic domains was found,
the so-called zinc-dependent HDACs have been classi-
fied into three families (classes I, II and IV) depending
on their primary sequence similarity to homologous
enzymes from Saccharomyces cerevisiae [25].
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Class I is characterized by four ubiquitous and rela-
tively small enzymes (~500 amino acids) essentially
located in the nucleus of cells [25,26]. HDACs 1 to 3 are
found in complexes with specific transcriptional co-
repressors, blocking the expression of tumor suppressor
genes [27]. Interestingly, these enzymes share an internal
dynamic cavity adjacent to the catalytic pocket that
seems to facilitate the egress of the enzymatic products
from the active site [20,22]. Another nuclear zinc-
dependent HDAC, HDAC11, was found to be closely
related to class I. However, this enzyme did not show
enough identity to this class to be placed in it and a new
class (IV) was proposed with HDACI11 as the only
member [10].

Class II consists of six larger enzymes (~1000 amino
acids) that can be further classified according to their
sequence homology and domain organization into classes
ITa and IIb [10]. The N-terminal domain found in class Ila
members is the one responsible for nuclear-cytoplasmic
shuttling through a phosphorylation-dependent binding to
specific 14-3-3 proteins. Such interactions regulate the ac-
tivity of transcription factors such as the myocyte enhan-
cer factor-2 (MEF2), which exerts a repressor role in a
variety of biological functions, from myogenesis to
Epstein-Barr virus transcriptional regulation [27]. More-
over, this class shows another zinc ion coordinated to a
Cys-Cys-His-Cys motif close to the cavity that may
participate in substrate recognition or in protein interac-
tions [28].

The presence of two catalytic domains in HDAC6
allows this isoform to be classified into class IIb together
with HDAC10. While HDACI10 has catalytically inactive
domains whose biological function is still unknown,
HDACG6 was shown to take part in the microtubule net-
work by acting as a specific a-tubulin deacetylase. More-
over, HDAC6 was able to deacetylate other substrates
and to bind ubiquitin, thus modulating cell protective
response to cytotoxic accumulation of misfolded and
aggregated proteins [19,29,30].

To be fully understood, the biological role of HDAC6
requires a deep structural knowledge. The 1215 amino
acid residues characterizing the human HDAC6 are
arranged in the space to form two independent catalytic
domains with a zinc finger ubiquitin-binding domain
located at the C-terminus [20]. In the enzymatic struc-
ture, it is also important to highlight the presence of a
zone characterized by a Ser-Glu containing a tetradeca-
peptide repeating domain (SE14) responsible for HDAC6
intracellular retention and tau interaction. There are as
well two leucine-rich nuclear export sequences (NESI,
NES2), which play an essential role in the cytoplasmic/
nuclear shuttling process [31,32] (Figure 2). What makes
HDAC6 unique among all HDAC enzymes is the pres-
ence of the C-terminal zinc finger domain able to
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Figure 1 (See legend on next page.)
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Figure 1 HDAC isoforms distribution in tissues and rat brain regions, as well as their subcellular localization. Am: Amigadala, As:
Astrocytes, Ca/Pu: Caudate/Putamen, Co: Cortex, GP: Globus palidus, Hi: Hippocampus, LC: Locus coeruleus, Ne: neurons, Ol: oligodendrocytes,
SNpc: Substantia nigra compacta, SNpr: Substantia nigra reticulata, VEC: Vessel endothelial cells; * classified from 1 (most expressed HDAC isoform)
to 11 (less expressed HDAC isoform); ** diagrams are a graphical representation of the relative expression of each HDAC isoform in a scale from

low to high (0-5), adapted from Broide et al. [11-13].

recognize unanchored C-terminal diglycine motif of ubi-
quitin characterizing aggresomes [29,33]. This domain,
recently solved by X-ray, alone and in complex with
ubiquitin, is formed by a compact structure of 5 anti-
parallel B-strands, 2 a-helices, and 3 zinc ions with a dis-
tinct aromatic pocket [29]. Such a three-dimensional
organization is similar to other human zinc finger
domains recognizing ubiquitin [34,35]. Ubiquitin inter-
acts with HDAC6 mainly through a hydrogen bond net-
work. The last three residues of ubiquitin are found in
an extended conformation which is stabilized by interac-
tions with the HDAC6 aromatic pocket. Arg 1155 and
Tyr 1156 residues act as gatekeepers, moving the ubiqui-
tin binding site from an open to a closed conformation
[29]. While the mechanism of aggregate recruitment by
HDACS6 via ubiquitin is known from a biological [19]
and structural [29] point of view, crystallographic infor-
mation about the two catalytic domains is still missing.
The lack of such information is quite problematic for
the conception of isoform selective compounds able to
modulate HDACG6 activity. Nowadays, this issue is over-
come through the generation and refinement of three-
dimensional HDAC6 homology models combined with
computational interaction and molecular dynamics cal-
culations. Whereas the design of HDAC6 inducers has
never been the object of scientific studies, recent reviews
accurately describe the structural features that may be
interesting for the design of selective HDACG6 inhibitors
[22,26,36].

Computational and in vitro results were put together
to investigate the structural origin of selectivity of the
HDACS6 specific inhibitor tubacin [37]. In particular,
docking and molecular dynamics calculations high-
lighted differences in the shape of HDAC surfaces sur-
rounding the binding site. Moreover, the relatively high
flexibility of the HDAC6 pocket allowed protein con-
formational changes by accommodating the cap portion
of the studied ligands. These findings were also con-
firmed by Charrier et al. [38] and by Kozikowski et al.
[39], through in vitro and docking studies of a set of
phenylisoxazole-containing hydroxamates showing ICsq
values as low as 2 pM for HDACS6. In both studies, the
design and modeling of specific inhibitors were based on
the differences found in the region adjacent to the
HDACEG catalytic channel, the so-called cap domain. The
HDAC6 homology model built by Butler et al. [40]
revealed that, while the active site is highly conserved

among HDACs, the cap domain differs greatly in terms
of shape and properties. Moreover, the rim of the cata-
lytic channel appears wider and shallower in HDAC6
compared to the other HDAC channels. Thus, com-
pounds with bulkier and shorter aromatic moieties were
designed. For instance, HDACS6 selectivity was enhanced
by adding a large and rigid cap group, such as in tubas-
tatin A [40]. Accordingly, in vitro and docking studies
on homology models confirmed the HDACG6 selectivity
of a series of pyridylalanine-containing hydroxamic acid
derivatives [41]. Recently, Kong et al. [42] developed a
fluorescent HDAC6 inhibitor characterized by a planar
ring of a dansyl moiety interacting with the hydrophobic
portion of the HDAC6 cap domain. The molecule also
showed an HDAC4 trapping action by sequestrating this
specific nuclear isoform in the cytoplasm, which led to a
modification of its expression and function.

Another structural selective element of the HDAC6
catalytic site was identified by studying new HDAC6
hydroxamate inhibitors isolated from a virtual screening
of 55,000 molecules [43]. The selectivity of these com-
pounds was explained by the presence of a small sub-
pocket close to the zinc ion, able to stabilize the position
of the thiazole and pyridine rings characterizing such
compounds. Moreover, the carbamated form of one of
them was shown to act as a prodrug in cell cultures [43].

Table 1 summarizes the key amino acid residues in the
second catalytic domain of HDAC®6, which are respon-
sible for recognition and binding of inhibitors and ubi-
quitin [44,45]. The chemical structures of the main
HDACS6 specific inhibitors are depicted in Additional
file 1.

HDACs other than HDAC6 act mainly as
epigenetic modulators in cognition and neuronal
death

Several studies show the implication of HDACs, espe-
cially those of class I, in memory processes in mice
[9,46]. These processes seem to rely at least in part on
epigenetic modulation through HDAC activity on his-
tones, which is demonstrated by the relationship estab-
lished between cognition, HDAC inhibition and histone
acetylation levels [9]. As a matter of fact, HDAC pan-
inhibitors were shown to significantly improve long-
term memory and learning after inducing neuronal loss
in mice. These findings could be correlated with the in-
crease of the acetylation of histones H3 and H4 in the
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Figure 2 HDAC6 domain organization. Catalytic Domain | (CDI) primary sequence is highlighted in pale red; CDI three-dimensional structure
obtained by homology modeling techniques by using HDAC7 x-ray structure as a template is represented with red ribbons. Catalytic Domain Il
(CDIN) primary sequence is highlighted in pale green; CDII three-dimensional structure obtained by homology modeling techniques by using
HDACY x-ray structure as a template is represented with green ribbons. Primary sequence of HDAC6 ubiquitin binding domain (ZnFUBP) is
highlighted in blue whereas its three-dimensional structure (PDB ID 3C5K) is represented with cyan ribbons. Sequences corresponding to the

HDAC6 (PDB ID 3C5K) x-ray structures.

tetradecapeptide repeating domain (SE14) and to the nuclear export domains NEST, NES2 are highlighted in pale gray, orange and yellow,
respectively. Information about HDAC6 CD I/Il and ZnFUBP secondary structures was retrieved from the human HDAC7 (PDB ID 3C10) and

hippocampus and the cortex of mice few hours
after being treated [47,48]. Other studies corroborate the
influence of histone acetylation levels in memory. One
of them showed that the specific modification of acetyl-
ation in histone H4 lysine 12 (H4K12) was able to
modify the expression of several genes from the hippo-
campus involved in memory consolidation. The use of
the HDAC inhibitor vorinostat (SAHA) was shown to
promote the expression of these genes by increasing the
acetylation of H4K12, thus resulting in improved cogni-
tive function in mice [49]. Other pan-inhibitors were ex-
tensively studied for their effects on in vitro and in vivo
neurodegenerative models. These results, together with
the ICs, for various HDAC isoforms, are summarized in

supplementary material for SAHA (Additional file 2),
scriptaid (Additional file 3), trichostatin A (TSA,
Additional file 4), sodium butyrate (Additional file 5)
and valproic acid (VA, Additional file 6).

The specific roles of the HDAC isoforms have not
been completely elucidated so far. The identification of
the isoforms playing a major role in memory and neuro-
degenerative processes would be rather useful in finding
specific inhibitors with a therapeutic potential. Up to
now, four HDAC isoforms seem to be closely involved
in memory processes: HDACs 1 to 4 [5,8,50-60].

Kim et al. [51] showed that HDACI1 was inactivated in
CK-p25 mice. These animals are used in models of NDs,
since they overexpress protein p25, which has been

Table 1 Key amino acid residues present in the HDAC6 catalytic pocket and in the binding domain
HDAC6 catalytic pocket (CDII) HDAC6 ubiquitin binding domain (ZnFUBP)

His 499
Pro 501
Leu 749
Phe 679
Asp 567
Ser 498
His 500
Glu 502
Val 503
Phe 566
Met 682

Catalytic channel rim
(cap domain)

Arg 1155 **
Tyr 1156 **
Tyr 1184
Trp 1143
Tyr 1189
Trp 1182

Inhibitor
stabilization

Ubiquitin stabilization
Zinc

Asp 649*
Asp 742*
His 610
His 611
Pro 608
Phe 620
Cys 621
Tyr 782
Phe 680"
Phe 620"

Internal cavity ZBG + linker
domain

* zinc coordination; ** gatekeeper; * hydrophobic sub-pocket.
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associated with some AD features: it accumulates in
neurons of AD patients and complexes with Cdk5 kin-
ase. This complex is considered responsible for tau
hyperphosphorylation and then for cytoskeletal disrup-
tion. By inhibiting HDACI, p25 may lead to important
DNA damage and aberrant cell cycle activity, which
would contribute to neuronal death [50]. Interestingly,
the overexpression of HDAC1, but not HDAC2, in cells
and in an in vivo model of stroke was able to protect
neurons from p25 toxicity [51]. Even if the epigenetic
role of nuclear HDAC1 has mostly been associated
with neuroprotection, cytosolic HDAC1 was found in
damaged axons in the brain of humans suffering from
multiple sclerosis, in mouse brain after induced demye-
lination, as well as in cultured neurons exposed to glu-
tamate and TNF-a [61]. It was then demonstrated that
the export of HDACI1 from the nucleus to the cytoplasm
was induced by pathological conditions and was essen-
tial for the onset of axonal damage. The interaction with
the nuclear receptor CRM-1 triggered the nuclear export
of HDACI1 that formed complexes with proteins of the
kinesine family, finally impairing mitochondrial trans-
port. These events were prevented by the treatment with
leuptomycin B, an inhibitor of HDACI nuclear export,
by non-specific HDAC inhibitors and also by silencing
HDACI but no other HDACs [61].

The role of HDACI1 and 2 was investigated in primary
dissociated hippocampal neurons isolated from floxed
HDACI-, floxed HDAC2-, and floxed HDAC1&2-mice.
The deletion of both HDAC1 and 2 during early synaptic
development caused a facilitation of excitatory synapse
maturation and a modest increase in synapse numbers,
which were not observed in the specific deletion of HDAC1
or 2 alone. In contrast, in mature neurons, a decrease of
HDAC?2 levels alone attenuated basal excitatory transmis-
sion without changing the number of detectable nerve
terminals. Accordingly, HDAC2-overexpressing mature
neurons increased excitatory synapses, suggesting a role for
HDAC2 in spontaneous excitatory neurotransmission at
least in mature neurons [60].

While the observation of mature hippocampal neurons
from mice overexpressing HDAC2 showed an increase
in excitatory synapses [60], HDAC2 negatively regulated
memory processes and synaptic plasticity after neuron-
specific overexpression of HDAC2 in transgenic mice
[52]. Moreover, the treatment of these HDAC2-
overexpressing mice with the non-specific HDAC inhibi-
tor SAHA resulted in improved memory and increased
synapse formation [52].

HDAC3 seems to negatively influence long-term
memory processes according to two main observations:
first, genetically modified mice with homozygous dele-
tions of Hdac3 showed improved long-term memory;
secondly, the administration of the specific HDAC3
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inhibitor RGFP136 also provided memory improvement
[54]. In addition to this, the overexpression of HDAC3
resulted in cytotoxicity in cortical neurons and in hippo-
campally derived HT22 cells, but not in primary kidney
fibroblasts, HEK293 and HeLa cell lines [55].

Based on all these published results on nuclear enzymes
HDAGC: 1 to 3, it seems clear that class I HDACs interact
with cognitive processes mainly through epigenetic modu-
lation. All of these mechanisms are probably involved to-
gether in the enhancement of long-term memory observed
in vivo after treatment with an HDAC pan-inhibitor (TSA)
and a class I specific inhibitor (MS275) [53].

Finally, HDAC4 was also taken into consideration by
several authors as a promising target to fight against
neurodegeneration. This enzyme, as others from the
same class, can shuttle between the nucleus and the
cytoplasm [5,8,56]. It was suggested that HDAC4 is a
key effector in the multi-step pathway regulating neur-
onal death. This hypothesis was supported by two major
observations: 1) trafficking of HDAC4 from the cyto-
plasm into the nucleus induced apoptosis in neurons; 2)
the inactivation of HDAC4 resulted in protection from
neuronal death [57]. In terms of cognition, the intracel-
lular trafficking of HDAC4 was also related to long-term
memory in a Caenorhabditis elegans model. In this
worm, the deletion of hda4, a homolog of hdac4,
resulted in enhanced learning and long-term memory.
Moreover, the expression of the mammalian HDAC4 in
the neuronal nuclei of the worm was able to impair
neuronal function, but not in the cytosol, suggesting that
HDAC4 could impair memory formation through inhib-
ition of gene transcription [59].

The specific role of HDAC6 in the
neurodegenerative cascades

There is enough evidence about the involvement of
HDACS6 in several NDs and many inferences could be
addressed on the basis of results obtained with specific
HDACS6 inhibitors. One of the most studied HDAC6
specific inhibitor is tubacin. ICsg, in silico information
and biological activities related to NDs are summarized
in Table 2 for tubacin together with other known
HDACES specific inhibitors.

The role of HDAC6 as a tubuline deacetylase was
investigated within the cascades of various NDs. It is
now clear that HDACS6 plays a central role in protein ag-
gregate elimination, in neuronal oxidative stress and in
the mitochondrial transport. The implication of HDAC6
in these three particular processes is discussed below.

HDAC6 and protein aggregates

Protein folding inside cells is not always a spontaneous
event. Many synthesized proteins need a complex bio-
logical machinery in the cell to achieve their efficient



Table 2 In vitro activity and in silico data of the main HDAC6 specific inhibitors

Tubacin
Inhibition of HDAC isoforms
Class | Class Il Class IV
HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC7 HDAC9 HDAC6 HDAC10 HDAC11
ICay (M) 1400 [40] 6270 [40] 1270 [40] 1270 [40] 17300 [40] 3350 [40] 9700 [40] 4310 [40] 4 [40] - 3790 [40]
995 [62] - - 6100 [62] - - - - 28 [62] - -
In silico data Homology modeling, molecular docking and molecular dynamics simulations highlight differences between HDAC1, HDAC6 and HDACS [37]
Model Outcomes Observed in
AD Decrease of tau phosphorylation with no disruption Human.embryomc kidney cells (HEK) and HEK cells stably
of HDAC6-tau interaction [32] expressing tau (HEK-tau) [32]
Block of the centrosomal recruitment of parkin [63] HEK-293T and SH-SY5Y cells [63]
PD Block of the formation of aggresome-like bodies and  Rat pheochromocytoma cell line (PC12) and SH-SY5Ys [64]
In vitro interference with autophagy [64]
Neuroprotection [65] Mouse striatal cells derived from WT htt mice and from HdhQ'%
HD knock-in mice, HEK-293 cells, Cos7 cells, primary cortical neurons
(65]
Disruption of autophagic degradation of aggregated = Neuro2a [66]
ND and Co huntingtin [66]
Neuroprotection against oxidative stress [67] LNCaP, Du145, PC3 HFS and LAPC4 cells [67]
Improvement of mitochondrial movement [68] Rat hippocampal neurons [68]
Mercaptoacetamide derivative
Inhibition of HDAC isoforms
Class | Class Il Class IV
HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC7 HDAC9 HDAC6 HDAC10 HDAC11
ICso (NM) 3220 [69] 7380 [69] - - - - - - 95 [69] 10700 [69] -
In vitro Model Outcomes Observed in
ND and Co Neuroprotection against oxidative stress [69] Rat cortical neurons [69]
Tubastatin A
Inhibition of HDAC isoforms
Class | Class Il Class IV
HDAC!1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC7 HDAC9 HDAC6 HDAC10 HDAC11
ICso (NM) 16400 [40] >30000 [40] >30000 [40] 8540 [40] >30000 [40]  >30000 [40] >30000 [40] >30000 [40] 15 [40] >30000 [40] >30000 [40]
In silico data Homology modeling and molecular docking highlight differences between HDAC1 and HDAC6 [40]
In vitro Model Outcomes Observed in
ND and Co Neuroprotection against oxidative stress [40] Rat primary cortical neurons [40]
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Table 2 In vitro activity and in silico data of the main HDAC6 specific inhibitors (Continued)

M344
Inhibition of HDAC isoforms
Class | Class Il Class IV
HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC7 HDAC9 HDAC6 HDAC10 HDAC11
1Cs50 (NM) 249 [70] - - - - - - - 88 [/0] - -
Model Outcomes Observed in
In vitro AD Effect on AR pathology [71] Human neuroblastoma cells; rat hippocampal neurons, primary
astrocytes, cerebral cortices and midbrain [71]
WT-161
Model Outcomes Observed in
In vitro Myeloma cells Increased acetylated a-tubulin (K40) over total Human MM1.S cells
acetylated lysine at 2 uM
Model Outcomes Observed in
Increased acetylated a-tubulin (K40) [52] Area CA1 of hippocampus from mice treated with WT-161 at 25
In vivo o mg/kg i.p. during 10 days [52]

Did not improve cognition [52]

Memory test in mice treated with WT-161 at 25 mg/kg i.p.
during 10 days [52]

AD: Alzheimer’s disease; ND: neurodegeneration (disesase not specified); Co: cognition.
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conformation. Large proteins may refold inefficiently,
resulting in misfolded intermediates that tend to aggre-
gate [72]. Protein aggregates are usually deleterious to
the cell and are a common feature in NDs. HDACG6 is
involved within 3 cellular mechanisms able to counter-
vail the accumulation of protein aggregates: 1) the bind-
ing to ubiquitinated misfolded proteins, 2) the formation
of an aggresome followed by autophagy, and 3) the in-
duction of heat shock proteins (HSPs) (Figure 3). Such
mechanisms are involved in the cell response to
cytotoxic protein aggregate formation in various NDs
[73-75]. The process of autophagy is especially import-
ant to counter-balance the accumulation of aggregates
since the main route of protein degradation via the
ubiquitin-proteasome system is impaired in NDs. Ubi-
quitin acts as a molecular marker by addressing the sub-
strates to the proteasome 26S in order to be eliminated
[76,77]. The accumulation of protein aggregates in NDs
may inhibit proteasome activity [78]. This results in an
increased number of highly ubiquitinated misfolded pro-
teins commonly observed in AD, PD and HD [78-87].
At this level, HDAC6 was able to increase cell viability
under misfolded protein stress [88]. The enzyme could
bind polyubiquitinated proteins thanks to its zinc-finger
containing domain [89]. This binding led to the active
transport of highly ubiquitinated protein aggregates
dispersed within the cytoplasm to constitute a novel or-
ganelle, the aggresome, where they were eventually
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eliminated by autophagy [88]. Moreover, HDAC6 inter-
acted with p97/VCP, an AAATPase (ATPase associated
with a variety of activities) which is directly involved in
protein degradation via the ubiquitin-proteasome system
[4,90,91]. As a matter of fact, p97/VCP was able to dis-
sociate the complexes formed between HDAC6 and
polyubiquitinated proteins to favor protein degradation.
The fate of the ubiquitinated proteins, whether they
were being degradated or accumulated into the aggre-
some depended, at least in part, on the balance between
HDACS6 and p97/VCP [92,93].

HDACS6 could also interact with FAT10, a ubiquitin-
like modifier which is another marker for protein elimin-
ation. In case of ubiquitin-proteasome impairement,
HDAC6 promoted FAT10-containing aggresome in
order to eliminate marked protein aggregates [94]. The
binding of HDAC6 to polyubiquitinated proteins was
also shown to trigger the dissociation of the HDAC6/
HSP90/HSF1 complex. This led to the activation of heat
shock transcription factor 1 (HSF1) which then induced
gene expression of chaperones HSP70 and HSP27, exert-
ing a protective role against the toxic effects of the
aggregates in cells [4]. On the other hand, HSP90 to-
gether with other proteins are involved in tau burden.
The loss or inhibition of HDAC6 correlated with a de-
crease of tau burden in cells [95]. This may be due to
increased HSP90 acetylation, which favors degradation
of HSP90 client proteins, such as tau. Chaperones,
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Figure 3 The role of HDACS6 in various processes related to neurodegeneration. |) The ubiquitin-proteasome system is impaired in many
NDs resulting in the accumulation of highly ubiquitinated misfolded proteins tending to aggregate. Il) HDAC6 binds to ubiquitinated protein
aggregates (lla) to constitute a novel organelle, the aggresome (lIb), where they are eventually eliminated by autophagy. Ill) The AAATPase p97/
VCP is able to dissociate the complexes formed between HDAC6 and polyubiquitinated proteins to favor protein degradation. IV) Binding of
HDACS6 to polyubiquitinated proteins triggers the dissociation of the HDAC6/HSP90/HSF1 complex, resulting in the activation of HSF1 (IVa). This
induces gene expression of HSP70 and HSP27 (IVb), which exert a protective role against the toxic effects of the aggregates in cells. V) In AD
neurons, HDAC6 interacts with tau and the excess of tau inhibits the deacetylase and ubiquitin ligase activities of HDAC6.
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mainly HSP40 and HSP70, also prevented misfolded
protein formation [72].

HDAC6 and oxidative stress

HDACS is involved in the deacetylation of peroxiredoxin-1
and peroxiredoxin-2, two enzymes allowing the reduction
of peroxides. Since their acetylation increased their redu-
cing properties, HDAC6 inhibition by tubacin could en-
hance antioxidant properties in the cell [67,96], a
mechanism to be considered in the case of neurodegenera-
tion. Moreover this inhibition was able to promote neurite
growth on myelin-associated glycoprotein and chondroitin
sulfate proteoglycan substrates. TSA, scriptaid and sodium
butyrate showed the same effects than tubacin, but their
reduced selectivity induced some toxicity [97]. Butler et al.
[35] designed a new HDACS selective inhibitor, tubastatin
A, which showed a neuroprotective effect against oxidative
stress induced by homocystic acid. It is also important that
no neurotoxicity was observed at the tested concentrations,
which is not the case for TSA or other HDAC pan-
inhibitors [69,98]. Thus, selectivity seems to be important
to avoid some toxicity [40].

HDAC6 and the mitochondrial transport

An interesting relationship between HDAC6 and mito-
chondrial transport was established in hippocampal neu-
rons. Microtubule-dependent intracellular trafficking
was shown to be regulated by the activity of HDACS6, via
the Akt-GSK3-B signaling pathway [68]. As a matter of
fact, the inhibition of GSK3-p increased microtubules
acetylation and improved at the same time the mito-
chondrial transport [99]. However, GSK3-p remains a
controversial target in NDs since this protein kinase is
involved in many biological processes [99]. GSK3-f is
present in large quantities in the brain and HDAC6 is
one of its targets [68]. The treatment of hippocampal
neurons with tubacin, a specific HDAC6 inhibitor,
strongly enhanced mitochondrial movement. This inhib-
ition resulted in higher levels of acetylated tubulin and
enhanced binding of the motor protein kinesin-1 to
tubulin, which promoted the transport of cargo proteins
along microtubules [68].

The role of HDAC6 in Alzheimer’s disease

The main areas of the brain affected by AD are the
hippocampus, entorhinal cortex, associative cortex, and
amygdala [100]. Neurofibrillary tangles, a typical intra-
neuronal lesion in AD, follows a defined progression.
Gradually, brain regions affected by the accumulation of
tau protein expand, starting at the entorhinal region,
an adjacent area of the hippocampus. Then, tau path-
ology reaches the hippocampus, which plays a major role
in memory formation (memory training) and more spe-
cifically in the memory of events, called declarative or
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explicit memory [101,102]. The expression of HDAC6 in
the hippocampus is thus worth of notice. HDAC6 pro-
tein level was increased by 52% in AD cortex and by
91% in AD hippocampus, when compared with young
normal brains. In order to confirm that HDAC6 protein
is overexpressed in AD, the HDACS6 protein level in the
brain of patients with AD was compared to age-matched
normal brains.

Proteasome inhibition is a well documented feature in
AD and seems to potentiate HDAC6-tau interaction.
Such interaction could be observed in vitro, in cells and
in brains of AD patients. HDAC6 and tau co-localised
within the perinuclear aggresome-like compartment,
independently of the tubulin deacetylase activity of
HDACS6. Treatment with tubacin or HDAC6 knockdown
in vivo did not impair the interaction between HDAC6
and tau but was able to decrease tau phosphorylation
[32]. Moreover, the post-mortem study of the brain of
AD patients denoted low levels of a-tubulin and
increased levels of tubulin acetylation. These events were
mainly observed in neurons presenting neurofibrillary
tangles. By binding to HDACS, tau inhibited the deace-
tylase activity and led to an increase in tubulin acetyl-
ation. This increase was also observed in human cells
over-expressing tau protein. The excess of tau acted as
an HDACG6 inhibitor and prevented the autophagy in-
duction followed by proteasome inhibition in cells. Thus,
tau can act as an inhibitor of both the deacetylase activ-
ity of HDAC6 and the aggresome pathway, depending
upon the HDAC6 binding to polyubiquitinated proteins
[103]. Ding et al. [32] hypothesized that even if HDAC6
up-regulation in AD brains contributes to the sequestra-
tion of ubiquitinated protein aggregates and recruitment
of autophagic components, it would eventually be dele-
terious to cell survival in AD, due to decreased tubulin
acetylation and increased tau phosphorylation. Finally,
the positive impact of HDAC6 depletion in cognition
has been recently demonstrated by crossing HDAC6
knockdown mice with a model for severe amyloid path-
ology. The loss of HDAC6 improved the impairment of
associative and spatial memory formation and was able
to recover the deficits in mitochondrial trafficking
induced by AP [104]. These findings suggest HDACS6 in-
hibition as a promising target in AD.

The role of HDACG in Parkinson'’s disease

PD affects the extrapyramidal system and is character-
ized by a progressive degeneration of the nigrostriatal
dopaminergic (DA) pathway with the presence of Lewy
bodies (LBs), which are cytoplasmic inclusions mainly
composed of a-synuclein. During the disease, a-synu-
clein accumulates in an insoluble form within the sub-
stantia nigra pars compacta (where HDACS6 is expressed,
Figure 1) and other regions [105]. HDAC6 is an
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attractive target in this process, since this isoform was
involved in the elimination of protein aggregates of a-
synuclein within a cellular model of PD [64]. Most of
the LBs are located in the nigrostriatal DA system but
other systems may be affected, including the locus coer-
uleus (where HDACEG6 is also well expressed, Figure 1)
and the nucleus basalis of Meynert [106]. HDAC6 was
also found in the cortex (Figure 1), another region
affected in PD by the presence of LBs and neurofibrillary
tangles.

There are some uncertainties on the specific role of
LBs in PD [107,108]. While several authors claimed the
in vitro cytotoxicity of a-synuclein in DA neurons
[84,85,105,109], Du et al. [110] demonstrated in the
Drosophila model of PD that LBs-like inclusions were
rather cytoprotective in the process of PD neurodegen-
eration. Here, the crucial role of HDACS6 is highlighted.
HDAC6 promoted the formation of inclusions from a-
synuclein toxic oligomers. The amount of inclusions was
increased when HDAC6 was coexpressed with a-synu-
clein in DA neurons, compared to neurons expressing
only a-synuclein. Thus, HDACG6 exerted a cytoprotective
role in DA neurons by allowing inclusion formation and
decreasing the amount of a-synuclein oligomers in the
fly PD model [110]. Furthermore, HDAC6 co-localized
with o-synulcein in the perinuclear region to form
aggresome-like bodies in a MPP" induced cellular model
of PD. In this specific case, HDAC6 knockdown or in-
hibition by tubacin resulted not only in the reduction of
perinuclear inclusions but also in the increase of a-synu-
clein in the nucleus with increased cell death. The nu-
clear accumulation of o-synuclein after HDAC6
inhibition may be strongly related to the role of HDAC6
in the autophagic process of misfolded proteins as an
elimination route, an alternative to the ubiquitin-
proteasome system impaired in PD and other NDs [64].
A mutation in the gene encoding DJ-1 resulted in mis-
folding and accumulation of this protein, which is char-
acteristic of an early-onset form of PD. Misfolded DJ-1
aggregates were eliminated by autophagy via parkin-
HDACS6 binding [97]. Parkin is an E3 ligase that partici-
pates in the addition of ubiquitin molecules in order to
mark misfolded proteins. A mutation in the gene encod-
ing parkin is also responsible for an autosomal-recessive
form of early PD [111]. In case of proteasome impair-
ment, parkin formed a complex with the heterodimeric
E2 enzyme UbcH13/Uevla to polyubiquitinate misfolded
DJ-1 [97]. Even if the mechanisms by which parkin sup-
pressed parkinsonism remain unclear, parkin partici-
pated in the elimination of impaired mitochondria
(mitophagy) via the HDAC6-dependent mitochondria
ubiquitination [112]. Moreover, the HDAC6 inhibitor
tubacin prevented the recruitment of parkin by the
centrosome via proteasome inhibition [63].
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The role of HDAC6 in Huntington'’s disease

HD is caused by gene modification of CAG trinucleotide
repeats expansion, resulting in pathological polyglutamine
expansion in proteins, and leading to the accumulation of
huntingtin aggregates [86,113-115]. The toxicity of these
aggregates in a Drosophila model correlated with changes
in histone acetylation, and transcriptional failing [80]. In a
transgenic mouse model of HD, the expression of many
genes was considerably modified in the striatum. Some
components of the ubiquitin-proteasome had their expres-
sion increased. This is interesting in the context of this dis-
ease, since the ubiquitin-proteasome is directly related to
the accumulation of huntingtin [116].

In a Drosophila model of HD, the co-expression of
human chaperones HSP70 and HSP40 acted synergistic-
ally to suppress the degenerative phenotype without
changing the morphology of cell huntingtin aggregates.
In addition, HSP70 and HSP40 were sequestered within
the cell aggregates of huntingtin. This might significantly
reduce the intracellular availability of these chaperones
and lead to an increase in abnormal folding of proteins
[117]. Thus, the presence of HDACS6 in these structures
may have a protective role in HD through its capacity to
induce protective chaperones (cf. chapter 4) [4].

HDACS6 was shown to be expressed in both structures
of the striatum, caudate nucleus and putamen (Figure 1),
where the most outstanding neuropathological process
of HD takes place.

It has been suggested that HDAC6 forms a complex
with both dynein and aggregates (via ubiquitin binding),
linking protein aggregates to the microtubule motor ne-
cessary for the autophagic process. HDAC6 deacetylase
activity was shown to be important for this whole
process in HD cell models, since the specific inhbition
of HDAC6 deacetylase activity blocked the recruitment
of components of the autophagy machinery to the aggre-
some. The yet non-elucidated mechanism by which the
HDAC6 deacetylase activity is essential to autophagy
may be linked to the acetylation levels of HDAC6 sub-
strates [66]. Taken together, these data suggest that an
inhibition would not be beneficial for the elimination of
protein aggregates in HD. However, the inhibition of
HDACS6 stimulated the microtubule-dependent traffick-
ing of vesicles, a process which appears deficient in HD.
The inhibition of the deacetylase activity of HDAC6 by
TSA and SAHA increased tubulin acetylation and
resulted in an improved intracellular vesicle trafficking
and release of BDNF. These two processes are disrupted
in neurons affected by HD. Even if TSA and SAHA are
not specific inhibitors of HDACS6, the authors of this
study attributed the observed effects to HDAC6 inhib-
ition based on the fact that MS-275, a specific inhibitor
of HDACI1, had no effect on the release of BDNF [65].
Despite these promising results, a study conducted with
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Hdac6 knockout mice failed to prove the influence of
HDACS6 genetic depletion to the clinical manifestations
of HD. Even if acetylation levels of tubulin were
increased in this model, no effect could be observed in
the disease progression. Accordingly, the transport of
BDNF from the cortex to the striatum was not improved
in this model [118].

The role of HDAC6 in other neurodegenerative
diseases

HDACS6 may also be implicated in several other NDs in-
cluding FTLD, ALS and CMT [119,120]. In FTLD and
ALS, the down regulation of HDAC6 was observed in a
Drosophila model based on the knockout of transactive
response DNA-binding protein (TDP-43). Inclusions of
TDP-43 are hallmarks of FTDL and ALS, and the silen-
cing of TDP-43 in cells caused HDAC6 downregulation
which increased proteotoxicity [120]. On the opposite,
in CMT, HDAC6 inhibition could be an interesting
therapeutic strategy. Symptomatic improvement was
observed in a transgenic mouse model of CMT after the
treatment with specific HDAC6 inhibitors, together with
the increase in tubulin acetylation [119].

Critical insights on HDAC6 as a target to fight
against neurodegeneration

There is no doubt that HDACS6 is involved in several
events of the neurodegenerative cascades and differs
from other HDACs not only from a structural point of
view, but also in its subcellular localization. Impaired
mitochondrial transport and elimination of protein
aggregates are common features in various NDs and are
linked to both deacetylase and ubiquitin ligase activities
of HDAC6. However, it seems that the results obtained
with the specific inhibition of HDAC6 in neurodegenera-
tive models cannot be extrapolated from one disease to
another. One possible explanation is that different dis-
eases involve specific proteins and the protein-protein
interactions (PPI) are not to be neglected in the case of
HDAC6. One example is the interaction between
HDAC6 and tau, leading to the inhibition of HDAC6
and preventing its role in autophagy [32]. In the case of
NDs, PPI mechanisms should be further studied not
only in the case of HDACS6, but also in the case of class
I HDACs. As a matter of fact, class I HDAC inhibition
succeeded to improve cognition, memory and learning
in animal models, depending on the disease and the tar-
geted isoform (Additional files). Considering HDAC1
and 2, despite the high level of identity between these
isoforms, various outcomes were observed through the
overexpression of one enzyme or the other. This may be
related to the role of PPI in HDAC activity modulation.
In this way, HDAC1 may play a role in neurodegenera-
tion not only via epigenetic mechanisms as HDAC2, but
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also upon nuclear export followed by its interaction with
the nuclear factor CRM-1 and kinesin complex formation
in order to intervene with mitochondrial transport [61].
Even if the specific inhibition of HDAC6 would
be beneficial to countervail mitochondrial transport
impairement and oxidative stress in NDs [67,68,96], as
well as tau accumulation [95] in general cell assays, the
role of HDACS in protein aggregate elimination was also
highlighted [88]. Moreover, WT-161, a selective HDAC6
inhibitor failed to improve cognitive function in a mouse
memory test [49]. The in vitro and in vivo results of a
specific HDAC6 inhibition (Table 2) did not show an
improvement of the cognitive function in NDs. Also,
there was a strong evidence that HDAC6 was inhibited
by tau in AD [103]. Recently, cognitive improvement
was obtained in a mouse model of AD crossed with
HDACS6 knockout. Thus, while HDAC6 seems to be ne-
cessary for aggregate elimination by autophagy, an in-
duction could also fail to countervail AD pathological
conditions, since overexpressed HDAC6 would be even-
tually inhibited by tau (Figure 3). In this regard, it would
be interesting to further investigate PPI between HDAC6
and other proteins involved in specific neurodegenera-
tive processes. PPI inhibitors have been of great interest
in drug discovery since they allowed to interact with the
specific pathway of an enzyme without interfering with
the enzyme activity needed for other processes. More-
over, PPI could be also modulated by small molecules
[121], which is a requested feature in order to allow oral
administration and blood—brain barrier permeability.
Thus, the study of PPI underlying HDAC6 mechanisms
seems to be a promising approach in modulating
HDACEG activity in the context of neurodegeneration.

Additional files

Additional file 1: HDAC6 specific inhibitors.

Additional file 2: Activity of vorinostat on HDACs.
Additional file 3: Activity of scriptaid on HDACs.
Additional file 4: Activity of trichostatin A on HDACs.
Additional file 5: Activity of sodium butyrate on HDACs.
Additional file 6: Activity of valproic acid on HDACs.
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