
Kim et al. Molecular Neurodegeneration 2013, 8:15
http://www.molecularneurodegeneration.com/content/8/1/15
RESEARCH ARTICLE Open Access
Normal cognition in transgenic BRI2-Aβ mice
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Abstract

Background: Recent research in Alzheimer’s disease (AD) field has been focused on the potential role of the
amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating
cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid
pathology in the brain and show various levels of cognitive decline. In the present study, we examined the
cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/
Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce
high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology
observed in mutant human APP transgenic models.

Results: Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed
completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice
producing Aβ1-40 or both peptides were also cognitively intact.

Conclusions: These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP
overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is
supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may
contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact
cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.
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Background
Mouse models overexpressing APP and/or presenilin1
(PSEN1) genes implicated in familial AD (FAD) are
powerful tools to study cerebral Aβ accumulation and
its effect on cognition [1]. Though many APP transgenic
mouse models have been shown to develop relevant
AD-related Aβ pathology and exhibit cognitive impair-
ment within 6 to 12 months of age [2-4], the attempts to
find specific correlations between molecular markers of
Aβ processing and cognitive deficits in these mice,
which express high levels of APP, creates challenges in
deciphering the basis for cognitive changes that may
occur in a model.
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The overexpression of full-length human APP in trans-
genic mice generates multiple biologically active APP pro-
teolytic fragments, potentially capable of altering behaviour.
For example, the accumulation of amino-terminal-soluble
APPβ (sAPPβ) and/or β-carboxyl-terminal fragments (β-
CTF) may affect long-term potentiation (LTP) [5] and
memory acquisition in mouse models [6]. Thus, the relative
contribution of Aβ and/or other APP metabolites to cogni-
tive deficits in the APP over-expression models is challen-
ging to resolve. Indeed, the roles of APP and/or Aβ in
mediating cognition do not have to be mutually exclusive,
as complex synergistic interactions may occur. In this
study, we attempted to elucidate whether selective over-
expression of Aβ via a BRI2 fusion strategy that results in
efficient Aβ secretion, and in the case of BRI2Aβ1-42 CNS
amyloid deposition, produces cognitive deficits. The BRI2
transgnic mice studied express Aβ1-40, Aβ1-42, or both
Aβ1-40/Aβ1-42 peptides in the secretory pathway utilizing
an engineered BRI2 gene in which a natural sequence
encoding the 23-amino-acid amyloid Abri peptide at the C-
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terminus of the type II trans-membrane BRI protein was
replaced with a sequence encoding either Aβ1-40 or Aβ1-
42 [7]. The Abri peptide is naturally cleaved by proprotein
convertases [8], and the Aβ peptides are released by
proprotein convertase cleavage in the late secretory com-
partment. Both BRI2-Aβ1-40 and BRI2-Aβ1-42 mice show
the presence of the respective soluble Aβ peptides at the
age of 3 months at levels ~2- to 3-fold higher than the
levels of Aβ in 3- to 6-month-old APP Tg2576 mice. How-
ever, only BRI2-Aβ1-42 mice develop Aβ amyloid path-
ology in the brain at the age of 12 months with robust
compact Aβ plaques in the hippocampus at 14 months [7].
Given the reports of cognitive deficits in mice that express
mutant APP and the association, in some cases, of these
deficits with amyloid deposition, we sought to determine
whether the BRI2-Aβ1-42 mice manifest detectable cogni-
tive deficits. We evaluated all BRI2-Aβ mice in a battery of
non-mnemonic as well as mnemonic tests, used previously
in our lab to characterize phenotypes of PS1 and APP
transgenic mice [9-13]. Specifically, to investigate non-
mnemonic behavior, we focused on the exploration and
emotional behavior (open-field test [14,15]), on motor co-
ordination and balance (rotarod test [16,17]), and on swim-
ming ability and the orientation to a visible cue (visible
platform water maze test [10,11]). Cognitive evaluation
encompassed (i) conditioned context and tone fear mem-
ory evaluated in FC test, a form of Pavlovian associative
learning that employs pairing of an initially neutral explicit
cue as a conditional stimulus (CS), such as tone, with
an aversive unconditional stimulus (US) (e.g. foot shock)
[18,19]. The memory of the context in which an animal
experienced US depends on intact hippocampus [20], while
the association between the tone stimulus and US depends
on amygdala [19]. (ii) Spatial reference memory version
of the WM test which depends on intact hippocampus
[21,22], and (iii) conditioned taste aversion, an implicit
associative learning, a form of Pavlovian classical condi-
tioning, which is relatively independent of motor behavior,
implicates several brain structures (e.g. parabrachial nu-
cleus, amydgala, insular cortex), cholinergic system and
NMDA receptors [23].
Here we report that BRI2-Aβ mice, including the

BRI2-Aβ1-42 mice show a surprising lack of cognitive
impairment; a finding that may have implications re-
garding the mechanisms by which mice overexpressing
mutant APP develop cognitive deficits.

Results
Amyloid-β brain pathology in BRI2-Aβ mice
Post-mortem analysis of Aβ histopathology and Aβ
levels analyzed biochemically in the brains of BRI2-Aβ
mice is depicted (Figure 1). As previously reported,
BRI2-Aβ1-40 mice did not develop amyloid deposits
(Figure 1A), whereas aged BRI2-Aβ1-42 mice developed
Aβ1-42 plaques in the cortex and hippocampus (Figure 1B)
confirming our previous results [7,24]. In 17-month-old
BRI2-Aβ1-42 mice, amyloid plaque pathology as well as
RIPA soluble and insoluble Aβ levels were comparable to
levels found in APP CRND8 mice at the age of 4 months
(Figure 1E-F, and H), when CRND8 mice showed reliable
cognitive impairment in our previous studies [9,13]. Bio-
chemical analysis of Aβ revealed the presence of higher
molecular weight Aβ oligomeric species in brain tissue of
BRI2-Aβ1-42 mice (Figure 1G). Bitransgenic BRI2-Aβ1-40/
BRI2-Aβ1-42 mice showed reduced Aβ, but not absent, de-
position (Figure 1C and I), confirming our previous study
[24], which demonstrated the anti-amyloidogenic propen-
sity of Aβ1-40 with respect to at least early stage amyloid
deposition. The levels of RIPA-soluble and insoluble, for-
mic acid extractable, Aβ1-42 were significantly correlated
(rs = 0.99, p < 0.001), and the combined total pool of bio-
chemically evaluated Aβ1-42 was also significantly cor-
related with Aβ burden pathology (rs = 0.97, p < 0.001) in
17-mo-old BRI2-Aβ1-42 mice, as seen previously in APP
CRND8 mice [10]. The comparison of biochemically
extracted Aβ between males and females in each of the
BRI2-Aβ line did not reveal significant differences in Aβ
levels (data not shown).

BRI2-Aβ mice show uncompromised conditioned fear
memory at the early stage of Aβ deposition
We initially evaluated all BRI2-Aβ lines and non-transgenic
(non-Tg) littermates at 12 months of age (Study 1) when
BRI2-Aβ1-42 mice show the onset of amyloid pathology
defined as deposition of Aβ1-42 in plaques in the hippo-
campus [7]. We employed delay FC paradigm, which
proved to be sensitive paradigm used previously to detect
progressive memory decline in APP CRND8 mice [25], and
to demonstrate memory decline in Tg2576 mice at ages
preceding Aβ aggregation and plaque deposition [26]. The
comparison between non-transgenic (non-Tg) and the
three BRI2-Aβ (BRI2-Aβ1-40, BRI2-Aβ1-42, and BRI2Aβ1-
40/Aβ1-42) lines did not reveal significant genotype differ-
ences in the initial exploration of the training chamber
(Table 1) or in freezing rates during contextual and tone
memory tests (Figure 2, Table 1). Males and females
showed comparable context and tone memories, however,
males froze longer than females during the pre-CS phase of
the tone test (F(1,64) = 4.8, p < 0.05), indicating their
increased generalization of the training context. There was
no significant interaction between the genotype and sex in
any of these analyses, indicating that sex did not influence
the fear conditioned memory within studied genotypes. In
conclusion, the results of Study 1 demonstrated an
uncompromised hippocampus-dependent contextual fear
memory, and amygdala-dependent tone fear memory in all
BRI2-Aβ lines tested at the early stages of Aβ1-42 path-
ology in BRI2-Aβ1-42 mice. Additionally, our analyses
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Figure 1 Aβ pathology in BRI2-Aβ transgenic mice. Images of the hippocampal region immunostained with an anti-Aβ1-16 antibody (A-C)
12-month-old BRI2-Aβ, (D) 17-month-old non-Tg, (E) 17-month-old BRI2-Aβ1-42 and (F) 4-month-old APP CRND8 mice. (G) Representative 82E1
immunoblots of 4-month-old CRND8 mice and 17-month-old BRI2-Aβ1-42 mice show increased presence of Aβ oligomers (di/tri/tetrameric and
higher molecular weight species) as compared to younger 12-month-old BRI2-Aβ and 17-month-old non-Tg mice. The first, control lane includes
H4 cell lysate expressing BRI2-C99 fusion protein. A band between 10 and 15 kDa represents C99 peptide. Molecular weight markers are
indicated on the left (kD). The lower panel represents the 82E1 blot re-probed with anti-β-actin antibody to depict loading amount (* Bands not
characterized). (H-I) RIPA soluble and insoluble Aβ levels in the brains of BRI2-Aβ and CRND8 mice were measured by Aβ ELISA after sequential
extraction using RIPA, SDS, and FA (n = 10-15 per genotype). Scale bars (A, D): 250μm, inserts-80μm. Error bars represent s.e.m. For brevity and
clarity of presentation, we used shorter labels of BRI2-Aβ lines (BRI2-Aβ40; BRI2-Aβ42; BRI2-Aβ40/42) in the panels of all figures.
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revealed that the contextual and tone fear memory scores
were not affected by sex of mice within each genotype and
were not significantly correlated with the levels of bio-
chemically extracted Aβ in each of the studies BRI2-Aβ line
(data not shown).
Table 1 The analysis of the genotype effect in behavioral
tests

Test/behavior Age F dftr,dfer sig ω2

Study 1 FC/exploration 12mo 0.9 3,64 0.44 0.00

FC/context memory 1.0 3,64 0.41 0.00

FC/pre-CS 0.7 3,64 0.53 0.00

FC/CS tone memory 1.7 3,64 0.18 0.02

Study 2 OF/anxiety index 14.2mo 0.7 2,21 0.51 0.00

OF/latency to explore 0.3 2,21 0.92 0.00

OF/path length 1.3 2,21 0.30 0.00

OF/path tortuosity 1.7 2,21 0.20 0.00

OF/object exploration 1.2 2.21 0.82 0.00

RR/latency to fall 14.6mo 2.1 2,20 0.19 0.00

VPWM/path 15.1mo 0.9 2,21 0.42 0.00

VPWM/speed 0.4 2,21 0.79 0.00

VPWM/path tortuosity 2.3 2,21 0.12 0.09

SRWM/search path 15.3mo 0.1 2,21 0.95 0.00

SRWM/swim speed 2.6 2,21 0.10 0.06

SRWM/%path in TQ 0.2 2,21 0.81 0.00

*SRWM/search path *17mo 0.4 1,19 0.53 0.00

*SRWM/swim speed 0.4 1,19 0.52 0.00

*SRWM/%path in TQ 0.3 1,19 0.86 0.00

CTA/D2 15.8 1.0 2,20 0.40 0.00

CTA/D10-D15 1.0 2,20 0.40 0.03

The ANOVA results pertain only to the differences between non-Tg, BRI2-Aβ1-
40, BRI2-Aβ1-42, and BRI2-Aβ1-40/Aβ1-42 mice in Study 1, and the differences
between non-Tg, BRI2-Aβ1-40, BRI2-Aβ1-42 mice in Study 2. Other significant
main effects of sex, repeated testing, and their interactions, as well as
comparisons against chance performance are reported in the text. In Study 1
12mo-old mice were tested in a fear conditioning (FC) test. In Study 2 the
mice were tested in a battery of tests including open-field (OF), rotarod (RR),
visible (VP) and spatial reference (SR) memory of the water maze (WM) tests,
and conditioned taste aversion (CTA) tests following longitudinal experimental
design. Results indicated by * pertain to the SRWM test carried out on a
cohorts of naïve 17 mo-old non-Tg and BRI2-Aβ1-42 mice. ω2 represents the
effect size due to the genotype of mice.
Cognitive behavior of BRI2-Aβ mice was not
compromised at the stage of overt Aβ deposition into
plaques
In Study 2, we evaluated BRI2-Aβ1-40 and BRI2-Aβ1-
42, along with the non-Tg littermates within the age
range of 14–17 months, when robust Aβ1-42 pathology
is present in the forebrain of BRI2-Aβ1-42 mice [7]. The
evaluation commenced at the age of 14.2 months and re-
vealed that both BRI2-Aβ lines and non-Tg mice showed
comparable levels of exploration of OF arena and its
inner part (Figure 3A, Table 1). Additionally both BRI2-
Aβ lines showed comparable to non-Tg littermates la-
tency to initiate exploration, length of exploratory path
and its tortuosity (Table 1). The approach and explor-
ation of the object placed in the center of the arena were
also similar between tested genotypes (2.7% ± 1.2, 3.2% ±
1.7, 2.0% ± 1.2,% of time exploring object, for non-Tg,
BRI2-Aβ1-40, and BRI2-Aβ1-42 mice, respectively,
Table 1). Overall males explored the arena less than fe-
males (F(1,21) = 5.5, p < 0.05), however, both the ratio of
exploration between inner and outer zone and object ex-
ploration were comparable between sexes. Also, no sig-
nificant interaction between sex and genotype was found
in the analysis of any of the variables. Locomotor bal-
ance and coordination of mice was evaluated in the
rotarod test at the age of 14.6 months. There was no
significant effect of the genotype (Table 1), and all mice
significantly increased their time on the rotating rod
during the three sessions F(2,48) = 7.3, p < 0.01, Figure 3B).
The main effect of sex and sex by genotype interaction
were not significant. Next, the mice were tested in the
visible platform version of the WM test at the age of 15.1
months. All mice showed rapid improvement in reaching
the cued platform (F(2.42) = 40.8, p < 0.001, RMANOVA),
and showed comparable swim paths (Figure 3C, Table 1)
and swim speeds (Table 1). Also, all mice improved their
orientation to the visible cue, showing less tortuous path
during successive trials (F(2,42) = 38.9, p < 0.001, RMA-
NOVA, Figure 3D, Table 1). No significant interactions be-
tween the factors were found. The inspection of Figure 3D
revealed that BRI-Aβ1-42 mice showed visibly less tor-
tuous path during the first training session. However,
the post hoc analysis of tortuosity for the first session
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Figure 2 Conditioned fear memory of BRI2-Aβ mice at the onset (12 months of age) of Aβ1-42 deposition in BRI2-Aβ1-42 mice. (A)
Context fear memory and (B) tone fear memory tested after 48h and 72h following CS-US pairing. Freezing to tone (CS) was stronger than
freezing to altered testing chamber (pre-CS) phase (p < 0.01, phase effect). Error bars represent s.e.m.
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revealed no significant differences between the genotypes
(F(2,21) = 2.0, p = 0.2), sex (F(1,21) = 0.1, p = 0.8) or geno-
type by sex interaction (F(2,21) = 0.2, p = 0.8), and none of
the pair wise comparisons reached significance at α = 0.05.
We next evaluated spatial reference memory of the

mice in the WM test at 15.3 months of age. The results
revealed that non-Tg, BRI2-Aβ1-40, and BRI2-Aβ1-42
mice showed a significant improvement in their search
paths for the submerged escape platform during training
(F(4,84) = 10.8, p < 0.001, RMANOVA, Figure 4A), with
no significant effect of the genotype (Table 1), or 2-way
and 3-way interactions between the factors. The geno-
types did not differ in their swim speed during training
(Table 1, Figure 4B), but overall females swam faster
than males (F(1,21) = 10.1, p < 0.01), which resulted in
their slightly longer, although not significantly different,
search paths (7.0 ± 0.7 and 6.7 ± 0.7, for females and
males respectively). None of the interactions involving
sex was found significant. The mice of all three geno-
types demonstrated comparable spatial memory evalu-
ated in a probe trial at the end of training (Table 1,
Figure 4C). The memory for the platform was also com-
parable between sexes (F(1,21) = 2.0, p = 0.17), however,
males showed a tendency of stronger memory than
females (32.2 ± 3.1 and 27.2 ± 7.2, for males and females
respectively, t(25) = 1.4, p = 0.2). The post hoc analysis of
the strength of the spatial memory revealed no signifi-
cantly higher from 25% chance performance memory
scores for all 3 genotypes (Figure 4C). In order to elim-
inate the possibility of floor effect in the spatial memory
development, we repeated the WM test using a separate
cohort of naïve 17 month-old BRI2-Aβ42 mice and their
non-Tg littermates. The results revealed that similarly to
the first WM test, both non-Tg and BRI2-Aβ1-42 mice
showed a significant improvement in their search path
during training (F(4,76) = 5.8, p < 0.001, RMANOVA,
Figure 4D), with no significant differences between the
genotypes (Table 1) or interaction effects. The BRI2-
Aβ1-42 mice tended to swim faster (Figure 4E), however,
not significantly (Table 1). Also, spatial memory was
comparable between the genotypes (Table 1), and both
BRI2-Aβ1-42 and non-Tg controls showed significant
bias for the platform location during a probe trial test
(t(10) = 2.6, p = 0.026 and t(12) = 2.5, p = 0.027, compari-
son against 25% chance level for BRI2-Aβ1-42 and
non-Tg respectively, Figure 4F). The overall comparison
between the two cohorts revealed that mice tested at 15
months had significantly longer search paths during
training than naïve 17 month old mice (F(1,35) = 14.1,
p < 0.01, Figure 4A and D). Also, females showed longer
paths than males (F(1,35) = 4.8, p < 0.05), and faster
swim speed than males (F(1,35) = 11.7, p < 0.01). None of
the other between subject factors were significant at α =
0.05. The analysis of the spatial memory revealed signifi-
cantly stronger than 25% chance level memory bias
(32.0 ± 3.2, t(22) = 2.2, p < 0.05 and 34.7 ± 3.5, t(19) = 2.8,
p < 0.02, for non-Tg and BRI2-Aβ42 mice respectively),
with no significant differences between the genotypes
and sexes. The CTA test was performed at the age of
15.8 months on mice that were repeatedly tested in the
whole behavioral test battery. The results revealed that
all genotypes showed strong and comparable memory of
the association between novel taste of saccharine and ex-
perimentally induced gastric nausea (Table 1), signifi-
cantly avoiding the taste of saccharine during the choice
test carried out on D2 after CS-US pairing (ps < 0.001,
one-sample Student t-test with scores evaluated against
50% chance level, Figure 5A). The developed memory of
taste aversion was comparable between the genotypes
(Table 1), and was long lasting and resistant to extinc-
tion up to 15 days after initial CS-US pairing (Figure 5B).
Post hoc analysis of the avoidance of saccharine against
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Figure 3 Exploratory activity and motor coordination in
BRI2-Aβ mice. (A) The proportion of the exploration of center of
the arena to total exploration path during the open-field test carried
out at the age of 14.4 months. (B) Latency to fall from the
accelerating rotarod performed at the age of 14.6 months. (C) Swim
paths of 15.1 month-old mice to a visible platform in WM. (D) Path
tortuosity, expressed as the sum of absolute changes in walking
direction divided by total path length. The lower tortuosity of
BRI2-Aβ42 mice during first session (S1) did not differentiate the
genotypes (F(2,24) = 2.3, p = 0.1), and the tortuosity of these mice
did not differ from tortuosity of both BRI2-Aβ40 and non-Tg mice
(p = 0.4 and p = 0.15, respectively, t-test with Bonferroni adjustment).
Error bars represent s.e.m.
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50% chance level revealed that mice of all genotypes sig-
nificantly avoided the taste of saccharine during all
retention tests during extinction series (0.05 > ps <0.001,
one-sample Student t-test). Simple effect trend analyses
performed on the avoidance of saccharine during extinc-
tion tests carried out between D10 and D15 for each
genotype yielded non-significant changes in extinction
over time (F(2,40) = 2.0, p = 0.16; F(1,30) = 1.0, p = 0.34; F
(5,30) = 1.3, p = 0.31 (RMANOVAs with Greenhouse-
Geisser adjustment of df), for non-Tg, BRI2-Aβ1-40, and
BRI2-Aβ1-42 respectively, one-way repeated ANOVAs).
Male and female mice did not differ in the rate of the
extinction of taste aversion. The lack of the differences
between the genotypes in the taste aversion was not
caused by the differential intake of saccharine solution by
mice during conditioning trial (D1) of the test (1.3 ml ±
0.2, 1.7 ml ± 0.2), 1.5 ml ± 0.2, F(2,20) = 1.3, p = 0.30). Also,
naïve to saccharine taste and unconditioned mice showed
strong and stable preference for the 0.5% saccharine solu-
tion (Figure 5C). Overall, there were no significant correla-
tions between Aβ1-42 levels in the BRI2-Aβ1-42 mice
forebrain and any measure evaluating non-cognitive or
cognitive behavior obtained in the tests (data not shown).

Discussion
Given the fact that behavioral impairment is seen in most
APP transgenic mouse models [1,27] and after direct in-
jection of synthetic Aβ1-42 or Aβ1-40 into the rodent
brain [28-31], the current findings in BRI2-Aβ mice are
novel and unexpected. Our present results showed con-
clusively that neither BRI2-Aβ line showed compromised
fear conditioned memory at the stage of early onset of Aβ
pathology, which is characterized by a significant increase
in relevant soluble Aβ in single transgenic BRI2-Aβ lines,
or by an increase in both Aβ1-42 and Aβ1-40 peptides in
double transgenic mice [24]. These results are apparently
in contrast with the evaluations of APP transgenic mice
in fear conditioning test, which demonstrated clear mem-
ory impairments in Tg2576 model at ages preceding Aβ
deposition [32]. In our previous studies, we also demon-
strated age-dependent decline of conditioned fear memory
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Figure 4 Normal spatial reference memory in BRI2-Aβ mice. Spatial reference memory was tested in two cohorts of mice. First cohort
(panels A-C) underwent a battery of non-mnemonic test (Figure 3) and was tested in spatial reference memory WM test at the age of 15.3
months. A separate cohort of experimentally naïve mice (panels D-F) was tested at the age of 17 months. (A) Search path, (B) average swim
speed and (C) search bias for the platform location in the target quadrant (TQ) during the probe trial carried out at the end of training for 15.3
month-old mice. Panels D, E, and F represent search path, swim speed and search of TQ, respectively for naïve 17 month-old mice. S1 - S5
represent daily training sessions. The dashed lines (panels C and F) represent a chance level performance. Error bars represent s.e.m. * p < 0.001
indicates the comparison of each genotype against 25% chance level performance.
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in APP CRND8 mice [25]. Our results also indicate that
the presence of aggregated extracellular Aβ42 species
along with concurrent overt Aβ42 amyloid plaque depos-
ition at later ages did not affect motivation to explore
novel environment of the open-field arena, their motor
coordination, or swimming ability. To strengthen experi-
mental and external validity of our study and to eliminate
potential false negative results of cognitive evaluation,
A B

**

*

non-Tg
BRI2-Aβ40
BRI2-Aβ42

Figure 5 Normal acquisition and retention of conditioned taste avers
4A-C) were tested at the age of 15.8 months. All genotypes showed strong
taste of saccharine and gastric nausea. Conditioned taste aversion was not
(A) Saccharine intake in two-choice test carried out on D2 after CS-US pairi
series of retention tests carried out between D10 and D15 after CS-US pair
and stable preference for saccharine. The dashed line (panels A and B) repr
* p < 0.001 indicates the comparison of each genotype against 50% chance
which could be observed only in one test or even limited
to specific experimental settings [33], we characterized
multiple memory systems of BRI2-Aβ mice. The chosen
experimental paradigms were successfully used in our lab
to demonstrate impairment in APP CRND8 mice, and fo-
cused on spatial learning and reference memory evaluated
in WM test [9,10,13] and conditioned taste aversion, a
form of Pavlovian associative learning, [34], in addition to
C

ion in BRI2-Aβ mice. Experimentally experienced mice (Figures 3 and
and resistant to extinction memory of the association between the
impaired by selective expression of Aβ1-40 or Aβ1-42 in the brain.
ng. (B) Strong and resistant to extinction saccharine avoidance in the
ing. (C) Control (saline injected) unconditioned mice showed strong
esents a chance level performance. Error bars represent s.e.m.
level performance.
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the context and tone conditioned fear memory paradigm
[25], used with younger cohorts of BRI2-Aβ mice. Overall,
our results suggest that chronic exposure to aggregated
extracellular Aβ is not, by itself, sufficient to cause mem-
ory impairment in mice. This general conclusion is further
substantiated by the fact that the effect size or amount of
variance explained by the genotype was either negligible
to low (ranging from 0 to 0.09, Table 1). This discrepancy
in cognitive profiles between BRI2-Aβ and APP transgenic
mice, for example APP CRND8 model tested intensively
in our laboratory, cannot be easily attributed to the mouse
genetic background, which is known to modulate behavior
[35-37], since genetic background is comparable between
BRI2-Aβ and CRND8 models [7,9]. In addition, interaction
with testing environment [38,39], or personnel cannot
explain the discrepancy, since the cognitive tests in the
present study were run by the same PI (CJ) and assistant
(AH) as our previously published work on APP CRND8
mice [10,25,34].
The inclusion of males and females in our study

was driven by the hypothesis that the cognitive
characterization of both sexes in the study might provide
more sensitive scenario of modeling human Alzheimer’s
disease in which prevalence in the time of onset and/or
increased severity in women were reported [40-42]. Also,
the increase in amyloid load in females was also reported
in some APP transgenic mouse models [43,44]. Al-
though, our results did not reveal any significant differ-
ences behavioral between males and females within each
studied genotype, which further substantiates the overall
lack of the effect of increased levels of Aβ1-42 on behav-
ior, we observed overall sex effect in tests known to
differentiate the behavior of sex in mice. Recognizing the
fact that sex differences are variable and dependent on the
strain of mice [45], we observed increased exploratory
activity of the OF arena by females, confirming previously
published reports [46,47], and inferior performance of
females in the WM test, also reported previously [48-51].
The present results raise a number of substantive ques-

tions regarding behavioral deficits in APP overexpressing
transgenic mice. Primarily, they point to possible roles of
full length APP or other APP derivatives in mediating Aβ-
associated toxicity in mouse models. This hypothesis is
supported by recent evidence demonstrating that condi-
tional suppression of mutated human APP transgene at
the stage of florid Aβ pathology in a mouse model
restored learning propensity of the mice, despite the pres-
ence of abundant Aβ plaques in the brain [52]. Another
possibility is that seemingly toxic Aβ oligomers may not
be homogenous assemblies of Aβ, but may contain other
APP derivatives that contribute to toxicity [53]. Alterna-
tively, other APP fragments may mediate toxicity. The
accumulation of β-secretase cleaved fragments of APP has
been implicated as mediators of behavioral dysfunction,
and previous studies have shown that aggregated Aβ can
interact with APP [54-56]). Although overall amyloid
plaque pathology was comparable between 17 month old
BRI2- Aβ1-42 mice and 4 month old APP CRND8 mice
(Figure 1E, 1F), BRI2- Aβ1-42 mice have Aβ42 amyloids,
lacking Aβ40 or other derivatives. Therefore, we cannot
exclude the possibility that Aβ40 or other derivatives are
required to trigger cognitive deficits in mice. In future
study, it will be informative to test cognitive performance
with very old BRI2-Aβ1-40/ BRI2-Aβ1-42 mice that have
extensive amyloid deposition. However, extensive prema-
ture death phenotype in the bitransgenic mice has pre-
cluded rigorous evaluation of cognition at old age.
The notion that Aβ aggregates are not sufficient to in-

duce memory dysfunction in mice does not contradict
the results of the studies that show that synthetic Aβ or
Aβ aggregates injected into rodent brain may mediate
memory formation e.g. [28,57]. Our current findings
would parsimoniously suggest that such acute interven-
tions in the adult brain might be more toxic, and might
not reflect the effects of chronic exposures to increasing
levels of extracellular soluble or aggregated Aβ in the
brain during development, a process which models AD-
like amyloid formation in more realistic developmental
time frames. In our models, the prolonged and more
physiological secretion of Aβ with progressing Aβ aggre-
gation and accumulation seem to replicate more realistic-
ally the progression of Aβ pathology in the brain during
ontogeny and the neuronal response to Aβ lesions.
Interestingly, it has been reported that selective

expression of Aβ1-42 and Aβ1-40 in the brain using
virally-mediated gene transfer of BRI2-Aβ fusion pro-
teins modified behavior in a rat model [58]. However,
the reported behavioral outcomes were not fully consistent
with memory impairment. Overall, except for reported
hyperactivity in the open-field test in rats over-expressing
both BRI2-Aβ1-42 and BRI2-Aβ1-40 peptides, the AAV-
BRI2-Aβ injected rats, especially the cohort injected with
BRI2-Aβ1-42, showed comparable spatial learning and
memory, short-term memory of object recognition, and
the latency to re-enter a chamber associated with foot-
shock in a passive avoidance test to control-injected rats.
The apparent lack of a consistent trend in behavioral
changes across behavioral tests in AAV-BRI2-Aβ1-42 rats
and apparently their unimpaired spatial and short-term
object recognition memories [58] are consistent with the
lack of cognitive impairment in BRI2-Aβ1-42 mice ob-
served in the present study.

Conclusions
Overall, the observed dissociation between Aβ accumu-
lation in the brain of BRI2-Aβ1-42 mice and cognitive
decline provides a novel research tool to investigate the
formation of molecular assemblies and conformational
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changes, as well as contribution of additional factors
which may lead to amyloid-β toxicity and consequently
to memory decline [59].

Methods
Mice
BRI2-Aβ mice, maintained on hybrid C57/B6//C3H
background, were generated as described previously [7].
All mice were hemizygous for the respective BRI2-Aβ
transgenes. To generate BRI2-Aβ1-40/Aβ1-42 mice,
BRI2-Aβ1-40 and BRI2-Aβ1-42 mice were crossed to-
gether. Non-transgenic littermates served as controls in
all experiments. Mice were habituated to the experimen-
tal handling one week before the onset of experiments.
They were removed from a home cage using hand-
cupping method [60] and their body weight was recorded
on the last day of pre-experimental handling. We used co-
horts of mice bred in two different animal facilities. Two
cohorts were obtained from the breeding stock at the Uni-
versity of Florida, Gainesville; cohort 1, comprised of 72
mice (23(12m:11f), 18(10m:8f), 19(9m:10f), 12(5m:7f) for
non-Tg, BRI2-Aβ1-40, BRI2-Aβ1-42, and BRI2-Aβ1-40/
Aβ1-42 respectively, m - males; f – females) at the age of
12 months, was tested in fear conditioning paradigm, and
cohort 2, of 24 mice (12(5m:7f) and 12(6m:6f) for non-Tg
and BRI2-Aβ1-42 respectively) at the age of 17 months,
was tested in the spatial reference memory of the water
maze test. A cohort of 27 mice at the age of 14 months
(10(4m:6f), 8(4m:4f), 9(4m:5f) for non-Tg, BRI2-Aβ1-40,
BRI2-Aβ1-42 respectively) at the onset of the experiments
was obtained from Mayo Clinic, Jacksonville, FL, breeding
stock, and was subjected to a battery of behavioral tests
including: open-field (OF), rotarod (RR), visible platform
(VP) and spatial reference (SR) memory versions of the
water maze tests, and conditioned taste aversion (CTA)
test. The tests were administered following longitudinal
experimental design at ages of 14.2, 14.6, 15.1, 15.3, and
15.8 months respectively. One male in BRI2-Aβ1-42 group
died before the onset of CTA test, reducing the sample
size of this group to 8 mice. The tests in the battery were
administered in the above listed order, from least to most
invasive [61], to minimize affecting behavior by prior test
history. Institutional Animal Care and Use Committees of
University of Florida and Mayo Clinic approved all
experiments.

Locomotor activity in open-field (OF) test
The exploration of a novel environment was evaluated
in an open-field arena as described [12]. The white OF
arena was 120 cm in diameter, surrounded by a 40 cm
wall. Overhead incandescent light provided illumination
of about 700 lx in the arena. A cylindrical (5 × 10H cm)
object was placed in the center. Each mouse was tested
in 3 consecutive daily 5-min sessions, with 3–4 min
interval in between sessions. A mouse exploratory be-
havior was recorded by an image tracking system (HVS
Image, Buckingham, UK). The following measures were
extracted using Wintrack program [62]: latency to start
exploration, walking path (m) and walking speed (m/s), %
path in the wall zone (30 cm), path tortuosity (˚/m), time
spent immobile, object approach and total time and fre-
quency of object exploration. The data were averaged
across the 3 sessions for the analysis.

Motor coordination in rotarod (RR) test
The mice were trained in squads of 4 in the Rotamex-5
apparatus (Columbus Inst. OH). One day before the test
the mice were given 3, 5-min pre-training trials with
constant (5 rpm) rotation of the rod. Following, mice
were tested in 3 consecutive days, with 3, 5-min trials
(inter-trial-interval of 40–50 min) and gradual acceler-
ation of the rod from 4 to 40 rpm within 5-min trial.
The speed and the latency to fall from the accelerating rod
were recorded. In the case of passive rotation (a mouse
loses its balance, but clings to the rod and recovers bal-
ance after a full rotation), the latency to the first complete
passive revolution was recorded.

Fear conditioning (FC) test
The test was performed as previously described [25]. A 4-
chamber conditioning apparatus (Coulbourn Inst.) was
located in a dedicated room. A tone (80 dB, pulse (6 clicks
per second), 30-s duration) was used as conditioned
stimulus (CS) and a 0.45 mA, 2s foot shock, which co-
terminated with a tone, as unconditioned stimulus (US).
Mouse activity was recorded by FreezeFrame (Actimetrics)
program, and freezing behavior, defined as cessation of all
movements other than respiratory activity [63], indicating
fear memory of the association between CS and US was
analyzed off-line. Each mouse received 2 CS-US pairings
separated by a 60-s interval during one 5-min training
session. After a day of recovery (D3), the fear-induced
freezing of mice was evaluated in the context of the ori-
ginal training chamber (contextual fear memory), and a
day later (D4) the fear memory elicited by tone only was
evaluated in a test carried out in the modified context of
the chamber (tone fear memory). Both tests were carried
out in an extinction mode with no shock administered.

Water maze (WM) test
Mice were trained in the water maze test as described
[64]. The reference memory version of the test was run
for 5 consecutive days with 4 60-second training trials
per day. A mouse was released into water at semi-
randomly chosen cardinal compass points (N, E, S, W
[11]) and its swim path was recorded by image-tracking
software (HVS Image). Dark, geometrical shapes (2–3
per wall), a cabinet, and divider curtains, separating an
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experimenter from the testing area, served as spatial
cues in the room. An escape platform, submerged 0.5
cm under water surface, was positioned in the center of
the same quadrant of the pool (target quadrant, TQ)
throughout training. The memory for platform location
was evaluated in a probe trial (with escape platform re-
moved) 24 h after the last training trial. During a visible
platform test, run for 3 days with 4 trails per day during
a week preceding spatial reference memory training, the
platform was marked by a visible black cue and a curtain
surrounded the pool.

Conditioned Taste Aversion (CTA) test
The CTA test, which evaluates the association of the novel
taste (CS) with experimentally induced nausea (US), was
carried out as described [34]. On the day of conditioning,
mice, deprived of water over night, were allowed to drink
0.5% saccharine (2,3-Dihydro-3-oxobenzisosulfonazole,
SIGMA) solution (CS) provided in a 15 ml bottle during a
30-min morning session. One hour later, the conditioned
group was injected intra-peritoneally with lithium chloride
(LiCl; 0.14M, 2% body weight) as a nausea-inducing agent
(US), while the control group was injected with corre-
sponding amount of saline. A day later (D2), overnight
water deprived mice were given a two-bottle choice test
between water and saccharin solution. Placement of
saccharine bottles with reference to the water bottles dur-
ing the test was random, following the method used in
our previously published study [34]. The choice test was
repeated daily from D10 to D15 after the CS-US pairing
in order to determine the rate of memory extinction. Sac-
charine preference index was expressed as the percent of
saccharine intake to total fluid intake (ml saccharine/
(ml water +ml saccharine) * 100).

Histochemical staining
Paraffin-embedded tissue was sectioned at a thickness of
5μm and mounted on glass slides. After removal of par-
affin in xylene and rehydration in a series of alcohol
solutions (100% and 95%), sections were steamed for 30
min in distilled water for antigen retrieval. Immuno-
staining was performed with anti-total Aβ antibody
(33.1.1, 1:1,000; [65]) on a DAKO autostainer according
to the manufacturer’s instructions using DAKO envision1
system peroxidase kit, with 3,3-diaminobenzidine as the
chromogen (DAB; Dako, Carpinteria, CA). After immuno-
staining, sections were counterstained with hematoxylin
and coverslipped.

Aβ sandwich ELISA
Forebrains were homogenized in radioimmunoprecipitation
assay (RIPA) buffered with 1× protease inhibitor cock-
tail (Roche). The homogenate was ultracentrifuged at
100,000 × g for 1 h at 4°C to collect RIPA-soluble fractions.
RIPA-insoluble pellets were sonicated in 2% SDS, ultracen-
trifuged at 100,000 × g for 1 h at 4°C to collect SDS-soluble
fractions. Lastly, the SDS-insoluble pellets were sonicated in
70% formic acid (FA) and ultracentrifuged at 100,000 × g for
1 h at 4°C to yield the formic acid fraction. The following
dilutions of the brain lysates were used in Aβ ELISAs: For
12 mo Bri42: RIPA 1:10, SDS 1:50, FA 1:00; For 17 mo
Bri42 and 4 mo CRND8: RIPA 1:10, SDS 1:60, FA 1:300.
Aβ40 levels were determined by Aβ sandwich ELISAs

using Ab9 (anti-Aβ1-16) as the capture antibody and
13.1.1-HRP (anti-Aβ35-40) [65] as the detection anti-
body for Aβ1-40. Aβ1-42 levels were measured by using
Ab2.1.3 (anti-Aβ35-42) [65] as the capture antibody for
Aβ1-42 and Ab9-HRP as the detection antibody.

Aβ Western blotting
SDS brain lysates, heated at 50°C for three minutes in the
presence of denaturing sample buffer, were separated on
16.5% Tris-Tricine gel (Bio-Rad) in 1x Tris/Tricine/SDS
running buffer. The SDS-PAGE resolved samples were
transferred 0.2 μm nitrocellulose membrane, boiled for 5
minutes in TBS, blocked in Starting Block (Thermo
Scientific, Waltham, MA) and incubated overnight in 82E1
antibody (Aβ1-16; IBL, Hamburg, Germany). Detection
was performed with donkey anti-mouse antibody conju-
gated to HRP (Jackson ImmunoResearch, West Grove,
PA). Chemiluminescence signal was visualized using West
Femto Chemiluminescent Substrate (Thermo Scientific)
with a FujiFilm system.

Statistical analysis
Factorial analysis of variance (ANOVA), with genotype and
sex as between subject and sessions as repeated factors
(RMANOVA), was used to analyze data. Omega squared
(ω2) is reported as the estimate of the effect size accounted
by the genotype of mice to augment significance of statis-
tical tests. Omega squared estimates the proportion of sys-
tematic variance in the population instead of the sample
[66], thus allowing better generalization of results, and it is
relatively independent of sample size [67,68]. Simple effects
were evaluated using one-way ANOVA. When necessary,
degrees of freedom were adjusted by Greenhouse-Geisser
epsilon correction for the heterogeneity of variance. In
multiple planned comparisons, the Bonferroni adjustment
of α level minimizing Type I error rate was used. Compari-
sons between two independent groups were done using a
Student t-test. Comparisons against chance performance
(25% in the case of search path in the TQ; and 50% in the
case of saccharine intake in CTA) were done using one-
sample t-test. Spearman’s rank correlation was used to
assess the associations between Aβ levels and behavior.
The critical α level was set to 0.05. Only significant results
are reported in a text, while all ANOVAs results pertaining
to the genotype effect are reported in Table 1.
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