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Abstract

Background: APP expression misregulation can cause genetic Alzheimer’s disease (AD). Recent evidences support
the hypothesis that polymorphisms located in microRNA (miRNA) target sites could influence the risk of
developing neurodegenerative disorders such as Parkinson’s disease (PD) and frontotemporal dementia. Recently, a
number of single nucleotide polymorphisms (SNPs) located in the 3’UTR of APP have been found in AD patients
with family history of dementia. Because miRNAs have previously been implicated in APP expression regulation, we
set out to determine whether these polymorphisms could affect miRNA function and therefore APP levels.

Results: Bioinformatics analysis identified twelve putative miRNA bindings sites located in or near the APP 3’UTR
variants T117C, A454G and A833C. Among those candidates, seven miRNAs, including miR-20a, miR-17, miR-147,
miR-655, miR-323-3p, miR-644, and miR-153 could regulate APP expression in vitro and under physiological
conditions in cells. Using luciferase-based assays, we could show that the T117C variant inhibited miR-147 binding,
whereas the A454G variant increased miR-20a binding, consequently having opposite effects on APP expression.

Conclusions: Taken together, our results provide proof-of-principle that APP 3’UTR polymorphisms could affect AD
risk through modulation of APP expression regulation, and set the stage for further association studies in genetic
and sporadic AD.
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Findings
AD is the most common form of dementia worldwide.
Pathologically, the disease is defined by the intracellular
accumulation of aggregated and hyperphosphorylated
protein tau and the extracellular deposition of Ab pep-
tides, derived by proteolytic processing of APP. In genetic
AD, mutations in the genes coding for APP, PSEN1 and
PSEN2 lead to APP processing dysregulation resulting in
Ab over-production, accumulation and deposition, which
ultimately leads to neuronal death [1]. Accumulating evi-
dences also support the notion that increasing APP pro-
tein levels directly results in Ab over-production [2], and
that APP overexpression alone is sufficient to induce
neurodegeneration an dementia [3-6].
miRNAs function as negative regulators of gene

expression regulation, and play a critical role in

neuronal function and survival [7]. These small (~21nt)
non-coding RNAs interact with the 3’UTR of their tar-
get messenger RNA (mRNA) transcripts by partial
sequence complementarity resulting in mRNA destabili-
zation and/or translational inhibition [8,9]. This function
is dependent on the miRNA seed region, comprising
nucleotides 2-8 of the mature miRNA sequence. As
changes in APP expression is intimately involved in AD
development, several groups have now investigated the
impact of miRNA modulation on APP expression.
These studies identified a number of miRNAs capable of
regulating APP expression in vitro and in vivo, including
miR-20a, miR-17 (previously referred as miR-17-5p,
http://www.mirbase.org), miR-106a, miR-106b, miR-101
and miR-16 [10-15]. Interestingly, miR-101, and miR-
106b have been shown to be down-regulated in AD
brain, therefore potentially contributing to increased
APP expression and Ab production [16,17].
Increasing evidence supports the hypothesis that genetic

variants that either abolish existing miRNA binding sites
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or create illegitimate miRNA binding sites could contri-
bute significantly to risk for neurodegenerative disorders.
For instance, Wang et al. showed that a SNP located in
the 3’UTR of the fibroblast growth factor 20 (FGF20) gene
confers risk for developing PD, possibly by loss of miR-
433 binding [18]. In addition, Rademakers et al. showed
that increased binding of miR-659 to the 3’UTR of the
progranulin (GRN) gene provides an important risk for
TDP43-positive frontotemporal dementia [19]. More
recently, Bettens et al. identified a number of AD-specific
genetic mutations in the 3’UTRs of APP and BACE1 [20].
We extended these findings and established a detailed list
of miRNAs with potential binding sites in or near poly-
morphisms located in the 3’UTR of human APP (hAPP)
(Table 1). These include the APP variants T171C
(unknown SNP ID), A454G (unknown SNP ID) and
A833C (SNP ID rs3200120). These bioinformatics predic-
tions were performed using logarithms available on-line,
such as Microcosm [21], TargetScan [22] and microRNA.
org[23]. In this study, we focused on polymorphisms pre-
dicted to abrogate (completely or partially) miRNA
binding.
We initially set out to determine whether candidate

miRNAs could regulate APP expression. To this end, a
luciferase construct harboring the hAPP full-length
(~1100 bp) 3’UTR (Figure 1A) [10] was co-transfected
with precursor miRNAs (pre-miRs) for miR-20a, miR-
655, miR-147, miR-323-3p, miR-644, miR-203, miR-383,
miR-106b, miR-153, miR-17, miR-128, miR-199b-5p,
miR-1245 in HEK293 cells (Figure 1B). We used a

scrambled miRNA sequence as negative control (SCR).
As previously observed, miR-20a and miR-17 could sig-
nificantly down-regulate luciferase (APP) reporter
expression. We could not detect, however, a consistent
effect of miR-106b on luciferase expression. Other miR-
NAs including miR-655, miR-147, miR-323-3p, miR-644
and miR-153 could negatively regulate luciferase expres-
sion, which is consistent with the bioinformatics predic-
tions (Table 1). Taken together, these data suggest that
miRNAs miR-20a, miR-17, miR-655, miR-147, miR-323-
3p, miR-644 and miR-153 could be APP expression regu-
lators. The candidate miRNAs that did not affect the
luciferase signal, or increased its expression, were
excluded in further analyses.
In order to validate these observations in more physio-

logical conditions, we transfected our candidate pre-miRs
into mouse neuroblastoma Neuro2A cells, a model pre-
viously used to study neuronal APP expression regulation
by miRNAs [10]. Except for miR-147, each miRNA seed
region was conserved between human and mouse
APP 3’UTRs [22]. For this reason, miR-147 was omitted
from the mouse cell line experiments. In Neuro2A cells,
all pre-miRs tested decreased endogenous APP expres-
sion when compared to the scrambled miRNA control
(Figure 1C). We also transfected human HeLa cells with
our candidate pre-miRs. All but one miRNA (miR-655)
decreased endogenous APP expression when compared
to the scrambled miRNA control (Figure 1D). Notably,
miR-147 could efficiently down-regulate endogenous
APP in these cells. Taken together, these data add to the

Table 1 Polymorphisms located in or near miRNA target sites located in the 3’UTR of hAPP

SNP ID Position in 3’UTR Polymorphism Patient-specific Predicted miRNA Seed region

unknown 171 T/C Y hsa-miR-644 Y

hsa-miR-147 N

hsa-miR-323-3p N

unknown 454 A/G Y hsa-miR-153 N

hsa-miR-20a N

has-miR-17 N

hsa-miR-106b N

hsa-miR-1245 Y

hsa-miR-383 Y

rs3200120 833 A/C unknown hsa-miR-655 N

hsa-miR-128 Y

hsa-miR-199b-5p Y

rs736479 914 G/A Y - -

rs1059461 937 G/A unknown - -

unknown 965 C/G Y - -

rs45541739 967 G/A unknown - -

The SNP ID, the nature of the polymorphism, as well as the patient specificity are indicated. The unknown SNP IDs can be found in Bettens et al. [20]. miRNAs
which are predicted to interact with the 3’UTR of hAPP are listed, and it is noted when the SNP is located within the seed-region of the miRNA in question. Y =
yes, N = no.
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growing list of miRNAs that could regulate endogenous
APP expression in cultured cells, including neuronal-like
cells. These include miR-147, miR-323-3p, miR-644 and
miR-153, in addition to the previously identified miR-20a
and miR-17.
We next tested whether the “APP-positive” miRNAs

were affected by the APP 3’UTR polymorphisms (Table 1).
For these experiments, we focused on AD-specific SNPs,
and generated hAPP 3’UTR luciferase constructs with
T171C or A454G mutations. Our screens indicated that
miR-147, but not miR-644 or miR-323-3p, was signifi-
cantly affected by the T171C mutation when compared to
the wild-type (WT) construct (Figure 2B, upper panel). In

a similar set of experiments, we could show that miR-20a,
but not miR-153 or miR-17, was affected by the A454G
mutation (Figure 2B, lower panel). As expected, miR-147
is a less potent inhibitor of APP expression in the presence
of T171C. On the other hand, and surprisingly, miR-20a
further decreased the expression of APP in the presence of
A454G. For miR-147, the effect may be explained by the
fact that T171C is located immediately adjacent to the
miR-147 seed region, therefore directly inhibiting miRNA
binding (Figure 2C, upper panel). This effect can also be
explained as the mutation increased the binding energy
(ΔG = -18.9 kCal/mol vs. -16.8 kCal/mol) between miR-
147 and the 3’UTR of hAPP, which makes the binding less

Figure 1 In vitro functional analysis of APP A. Schematic representation (not to scale) of the luciferase reporter construct used in this study.
TK; thymidine kinase promoter, AAAA(n); PolyA site B. HEK293T cells were transfected with 50nM pre-miRs (as indicated) as well as a reporter
construct containing the 3’UTR of hAPP. The cells were lysed 24h post-transfection and luciferase signal was measured. Signals were
normalization for transfection efficiency and graph represents the luciferase signals compared to the scrambled control (SCR). Statistical
significance was assessed by Student paired t-test. (* = p < 0.05, ** = p < 0.01, *** = p < 0.001) C. and D. Neuro2A cells (C) and HeLa cells (D)
were transfected with 50nM pre-miRNAs (as indicated). The cells were lysed 48h post-transfection and western blotting was performed.
Representative (n = 3, in triplicate) western blots are shown. The ratios of the APP/b-Actin signals are presented. Measurements were normalized
to the scrambled control (SCR). Statistical significance was assessed by Student’s paired t-test. (* = p < 0.05, ** = p < 0.01, *** = p < 0.001).
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favorable. Although we observe a net gain of function of
miR-20a towards the SNP A454G form compared to the
WT 3’UTR, A454G is not predicted to change the binding
energy (ΔG = -22.8 kCal/mol) between miR-20a and the
3’UTR of hAPP, and the SNP is also not located within the
seed region (Figure 2C, lower panel). Taken together, we
identified two miRNAs, that is, miR-147 and miR-20a,
affected by AD-specific 3’UTR SNPs.
In conclusion, we provide evidence for the first time that

polymorphisms located in the 3’UTR of hAPP may affect
its expression, at least in the experimental conditions
tested here. Indeed, we show that two AD-specific 3’UTR
variants previously identified by Bettens and colleagues
[20] affect the modulating activity of miR-147 and miR-
20a on the expression of APP. SNP T171C decreases the
ability of miR-147 to down-regulate APP, theoretically
leading to increased APP and Ab production. On the
other hand, SNP A454G increases the effect of miR-20a,
suggesting that APP expression is reduced in these

patients. Although these data seem to contradict with the
main hypothesis that increased APP levels lead to AD,
some reports indicate that decreasing the APP levels
might have deleterious consequences in the brain [24,25].
Another possibility is that miR-20a levels (or function)
vary depending on brain region or disease state, therefore
only locally affecting APP. In line with this hypothesis, our
preliminary data suggest that certain “APP-positive” miR-
NAs are differently expressed between human regions
(Delay et al., not shown). Finally, we cannot exclude at
this stage of investigation that the second, less functional
miR-20a binding site located at position 709-715 in the
hAPP 3’UTR [10], could become more prone to miRNA
regulation in the presence of SNP A454G. While follow-
up studies are required to evaluate the incidence of these
variants in other populations, our results suggest that
3’UTR mutations may contribute to risk for AD develop-
ment. These studies also set the stage for validation studies
regarding APP expression regulation by specific miRNAs

Figure 2 SNPs are located near predicted miRNA binding sites on the APP 3’UTR and affect the function of miR-147 and miR-20a A.
Schematic representation (not to scale) of SNP localization and predicted miRNA binding sites in the 3’UTR of hAPP. Red mutations represent
the AD-specific SNPs, while the black mutations are not yet tested for their disease specificity. B. HEK293T cells were transfected with 5nM pre-
miRs (as indicated) as well as a reporter construct containing the WT, T171C or A454G mutated 3’UTR of hAPP. The cells were lysed 24h post-
transfection and luciferase signal was measured. After normalization for transfection efficiency, the signals were compared to the WT.
Representative results (n = 3, performed in triplicate) are shown. Statistical significance was assessed by 2-way ANOVA (* = p < 0.05, ** = p <
0.01, *** = p < 0.001). SCR; scrambled, A.U.; Arbitrary Unit. C. Schematic representation of base pair matching between miRNAs and the 3’UTR of
hAPP. The seed region of the miRNAs is indicated. The red bases represents the SNPs T171C (upper panel) or A454G (lower panel).
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in vivo in the brain, and further evaluation of 3’UTR var-
iants in AD-related genes in general.

Methods
Cell culture
Human HEK293 and HeLa cells, as well as mouse Neuro2A
cells, were cultured in DMEM medium (Invitrogen, Carls-
bad, CA, USA) supplemented with 10% heat-inactivated
fetal bovine serum. One day before transfection, HEK293
cells were plated at 100,000 cells per well in 24-well plates,
Neuro2A cells at 192,000 cells per well in 6-well plates,
while HeLa cells were plated at a 20% confluence in 6-well
plates. Transfection was performed using Lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) according to the
manufacturers instructions.

cDNA constructs
The full-length hAPP 3’UTR luciferase construct was
described previously [10]. Mutagenesis was performed
by TOPgene technologies (Montreal, Quebec, Canada)
and validated by sequencing.

Luciferase assay and protein analysis
Cells were transfected with 5 or 50 nM (see text) pre-
miRs (Applied Biosystems, USA), 2.5 ng/cm2 pRL control
vector, and 50ng/cm2 pGL3_HSV TK_3’UTR hAPP WT
or T171C or A454G plasmids. Twenty-four hours post-
transfection, cells were lysed, and luciferase activity was
measured according to the manufacturer’s instructions
(Promega, USA). For western blots, cells were lysed in
RIPA buffer [50mM Tris Hcl, 1% NP40, 0.9% NaCl,
0.25% Na-deoxycholate, 1mM EDTA, 1x proteinase inhi-
bitors (Roche, Basel, Switzerland), 1mM PMSF, 1mM
Na3VO4 and 1mM NaF], mixed with LDS sample buffer
(Invitrogen, Carlsbad, CA, USA) containing 5% beta-mer-
capto-ethanol and boiled at 95°C for 8 min. Crude pro-
tein lysates (10 μg) were immunoblotted with the APP
C1.61 (for human APP), the APP C-ter (Sigma Aldrich,
St-Louis, MO, USA) (for mouse APP) or b-Actin (Sigma
Aldrich, St-Louis, MO, USA) antibodies, and detected
using the ECL detection kit (Millipore, Billerica, MA,
USA). Quantifications were performed using the Multi
Gauge software (FUJIFILM, Minato-ku, Tokyo, Japan).

Statistics
Statistical significance of western blots and lumines-
cence quantifications were determined using 1-way
ANOVA, 2-way ANOVA or Student’s paired t-test as
indicated in the text. Calculations were made using the
GraphPad Prism 5 software.
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