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coactivator-1alpha (PGC-1a) improves motor
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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord
and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction
contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1a (PGC-
1a) is a principal regulator of mitochondrial biogenesis and oxidative metabolism.

Results: In this study, we examined whether PGC-1a plays a protective role in ALS by using a double transgenic
mouse model where PGC-1a is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1a). Our results
indicate that PGC-1a significantly improves motor function and survival of SOD1-G93A mice. The behavioral
improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss,
restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord.

Conclusion: Our results demonstrate that PGC-1a plays a beneficial role in a mouse model of ALS, suggesting that
PGC-1a may be a potential therapeutic target for ALS therapy.

Background
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s dis-
ease, is one of the most common adult-onset neurode-
generative diseases. ALS results in the progressive loss
of upper and lower motor neurons and gradual muscle
weakening, which ultimately will lead to paralysis and
death. No apparent genetic links have been found in the
majority of the ALS patients, but the disease was inher-
ited in the remaining cases (about 10%) [1]. The first
ALS gene identified was the copper-zinc superoxide dis-
mutase (SOD1), and it is the most extensively studied
gene. SOD1 accounts for about 20% of familial ALS
cases [2]. Mutations cause SOD1 to undergo toxic mis-
folding and aggregation, possibly causing a heightened
presence of reactive oxygen species. Among more than
90 mutations on the SOD1 gene that have been

associated with ALS through various studies, the muta-
tion of glycine 93 to alanine (G93A) has been particu-
larly well-studied [3,4]. It has been used to create the
popular SOD1-G93A transgenic mouse model of ALS
[5].
Many mechanisms are involved in the pathology of

ALS, including glutamate toxicity, oxidative stress,
defective axonal transport, glia cell pathology and mito-
chondrial dysfunction. The mitochondrion is a vital
organelle that performs multiple functions in aerobic
cells. It is the major site of ATP production, maintaining
calcium homeostasis, participating in calcium signaling,
and regulating intrinsic apoptosis. Therefore, mitochon-
drial malfunction presents multiple effects on the cell,
especially neurons with an elevated susceptibility to
aging and stress. Mitochondrial pathology is a key player
among working hypotheses in the study of ALS [6-8].
Altered mitochondrial electron transport chain (ETC)
enzyme activities have been observed in ALS patients
and ALS mouse models [4,9-12]. Treatment with
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creatine, which could enhance mitochondrial activity,
was found to improve motor performance and survival
time in SOD1-G93A mice [13].
The transcriptional coactivator peroxisome prolifera-

tor-activated receptor gamma co-activator-1a
(PPARGC1A or PGC-1a) is a master regulator of mito-
chondrial biogenesis and oxidative metabolism [14]. In
PGC-1a knockout mice, expression of genes that are
responsible for mitochondrial respiration is markedly
dulled and mitochondrial enzymatic activities are also
decreased [15].
In this study, we crossed PGC-1a transgenic animal

with SOD1-G93A transgenic animal to test the potential
effect of PGC-1a in this mouse model of ALS.

Results
Characterization of PGC-1a transgenic animal
Since the PGC-1a gene inserted is on a rat neuron-spe-
cific enolase (NSE) promoter, we first examined the
expression of inserted human PGC-1a in the mouse
spinal cord. As expected, we only found human PGC-1a
expression in the spinal cord of PGC-1a single

transgenic and SOD1-G93A/PGC-1a double transgenic
animals (Figure 1A). Then we looked at the expression
level of PGC-1a in the brain. A significant overexpres-
sion of PGC-1a was observed in the hippocampus and
cortex of PGC-1a transgenic mice (Figure 1B). We also
examined SOD activity in these animals. A higher SOD
enzymatic activity was observed in SOD1-G93A trans-
genic animals as previously described [16], but not in
other experimental groups (data not shown).

PGC-1a Reduced Blood Glucose Level in SOD1-G93A Mice
Impaired glucose tolerance has been reported in ALS
patients [17]. To see whether presence of PGC-1a could
have any beneficial effect in the glucose level, we per-
formed a glucose tolerance test in the WT, PGC-1a,
SOD1-G93A and SOD1-G93A/PGC-1a transgenic ani-
mals. We first compared the fasting blood glucose levels
between the four groups (Figure 1C) and found that
SOD1-G93A/PGC-1a double transgenic animals had a
significantly lower baseline glucose reading than the
SOD1-G93A animals (100.8 ± 6.111 vs. 69.00 ± 7.382
mg/dL, N = 5, p = 0.0106). We also recorded their

Figure 1 PGC-1a expression and blood glucose level in transgenic animals. (A) Expression of human PGC-1a transcript in the spinal cord;
(B) Overexpression of PGC-1a in the brain of PGC-1a transgenic animal; (C) Base line blood glucose level in WT, PGC-1a, SOD1-G93A and SOD1-
G93A/PGC-1a animals (*p < 0.05); (D) Glucose tolerance test of WT, PGC-1a, SOD1-G93A and SOD1-G93A/PGC-1a animals.
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glucose levels at 15, 30, 60, and 120 minutes after glu-
cose injection (2 mg glucose per g body weight).
Although two way ANOVA analysis did not reveal a
major difference between the SOD1-G93A single trans-
genic animals and the SOD1-G93A/PGC-1a double
transgenic animals, (Figure 1D), a significantly lower
peak glucose level (at 15 min) was observed in the
SOD1-G93A/PGC-1a double transgenic animals (Bon-
ferroni post-test, p < 0.05).

PGC-1a Improved Motor Performance and Survival in
SOD1-G93A Mice
Important behavioral and physiological characteristics of
SOD1-G93A transgenic mice include impaired motor per-
formance, weight loss and reduced survival as compared
to the wild-type. We assessed motor performance of the
single and double transgenic animals using an accelerating
rotarod apparatus for mice. At pre-symptomatic/mid-
symptomatic stages, there was no apparent difference in
the motor function between SOD1-G93A and SOD1-
G93A/PGC-1a double transgenic animals. Remarkable
improvement in the motor function was observed in the
double transgenic as compared to the ALS mice at post-
symptomatic stage (week 17) (latency of 104.3 ± 14.42 vs.
37.13 ± 15.80 s, N = 8, p = 0.0078) (Figure 2A).
We also assessed the survival of the experimental ani-

mals. SOD1-G93A/PGC-1a double transgenic animals
have a median survival of 139 days, which is signifi-
cantly longer than SOD1-G93A animals with a median
survival of 129 days (Figure 2B) as determined by the
Mantel-Cox test (p = 0.0064).
The body weight of each mouse was monitored weekly

during the study period (Figure 2C). We compared the
peak weight at pre-symptomatic stage (day 87) with the
weight at their post-symptomatic stage (day 127), and
found that SOD1-G93A/PGC-1a double transgenic ani-
mals had a significantly less weight loss (percentage of
peak weight) than their SOD1-G93A littermates (two-
way t-test, p = 0.0214) (Figure 2D).

PGC-1a Protected Against Motor Neuron Death in SOD1-
G93A Mice
To determine whether PGC-1a can protect against the
motor neuron loss that accompanies the clinical symp-
toms of ALS, we counted the number of motor neurons
in the lumbar spinal cord in age and gender matched
WT, SOD1-G93A, PGC-1a and SOD1-G93A/PGC-1a
mice at post-symptomatic stage (day 110) (Figure 3A).
Wild type animals had a mean of 20.40 ± 0.5099 (N =
5) motor neurons per spinal cord section. As expected,
motor neuron counts in SOD1-G93A mice were signifi-
cantly lower compared to WT (p < 0.01). In SOD1-
G93A/PGC-1a double transgenic mice, there were sig-
nificantly more motor neurons in the ventral horn

compared to those in the SOD1-G93A mice (22.25 ±
1.548 vs. 13.00 ± 1.414, p = 0.003) (Figure 3B).

PGC-1a Restored Mitochondrial Electron Transport Chain
Activities in the Spinal Cord
To evaluate the effect of PGC-1a in mitochondrial ETC
activities, we isolated the spinal cords of age, gender-
matched WT, SOD1-G93A, PGC-1a and SOD1-G93A/
PGC-1a animals. In situ histochemical assays were per-
formed in the lumbar spinal cord sections as previously
described [13,18]. We detected a decrease of complex
activities in the ventral horn of lumbar spinal cord in
mutant SOD1-G93A animals as compared to their wild-
type littermates. Notably, SOD1-G93A/PGC-1a double
transgenic animals showed a similar level of complex I
(Figure 4A, B) and complex IV activities (Figure 4C, D)
as wild-type animals, suggesting that the presence of
PGC-1a attenuated the mitochondrial ETC transport
defect in mutant ALS animals. No significant improve-
ment of complex II activity was observed in SOD1-
G93A/PGC-1a double transgenic animals when com-
pared to SOD1-G93A animals (data not shown).

PGC-1a Decreased Phosphorylation of JNK and p38 MAPK
in SOD1-G93A Mice
Since hyper-phosphorylation of stress-activated kinases
JNK (c-jun N-terminal kinase) and p38 MAPK has been
demonstrated in SOD1-G93A mice [13,19,20], we used
a bead-based multiplex luminex assay to examine the
phosphorylation of JNK (Thr183/Tyr185) and p38
(Thr180/Tyr182). In spinal cord lysates of SOD1-G93A/
PGC-1a double transgenic animals, significantly less
amount of phospho-JNK (Figure 5A, p = 0.0025) or
phospho-p38 (Figure 5B, p = 0.0064) was detected as
compared to the single transgenic mice.

Discussion
Our study demonstrated that SOD1-G93A/PGC-1a
double transgenic animals showed significant improve-
ments in the clinical signs of ALS. The improvement of
motor performance in SOD1-G93A/PGC-1a double
transgenic animals was accompanied by a significant
preservation of motor neurons and mitochondrial elec-
tron transport chain activities in the ventral horn of the
lumbar spinal cord. Additionally, SOD1-G93A/PGC-1a
double transgenic animals showed remarkably less
weight loss at their end stages and had a notably longer
life span as compared to their SOD1-G93A littermates.
Transport of materials (protein and organelles) between

the cell body and neuron processes is essential to signal
transduction and neuronal survival. Disruption of slow
axonal transport of the cytoskeleton is one of the earliest
pathological events in mutant SOD1 mice [21]. Fast axonal
transport is responsible for transporting membrane-bound
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organelles, such as mitochondria, to maintain axonal and
synaptic function. While it remains unclear how impair-
ment of axonal transport causes motor neuron dysfunc-
tion and degeneration, some transport cargos such as
neurotrophic factors, signaling molecules and mitochon-
dria are obvious targets. Increased stress signaling (p-JNK,
caspase-8 and p75NTR) was recently found in SOD1-
G93A mice [19]. The p38 stress-activated kinase is acti-
vated and phosphorylates neurofilaments in SOD1-G93A
mice [20,22]. p38 is also involved in regulating fast axonal
transport including transport of mitochondria [23,24]. Our
data showed a significant decrease of phosphorylation of
JNK at Thr183/Tyr185 and p38 MAPK at Thr180/Tyr182,
suggesting that the neuroprotective effect of PGC-1a in
SOD1-G93A mice might partially work through inhibiting
the stress-activated signaling pathway and/or regulating
mitochondria transport.
A growing amount of evidence identifies PGC-1a as a

potential therapeutic target in neurodegenerative diseases,
including Alzheimer’s disease (AD), Parkinson’s disease
(PD), and Huntington’s disease (HD). Genome-wide
expression studies revealed that PGC-1a might be a

therapeutic target for early intervention in PD [25]. Pre-
vious studies from our lab showed that PGC-1a expression
decreased in AD patient brain as a function of dementia
[26]. PGC-1a is implicated to play a key role in controlling
energy metabolism in the early stages of HD pathogenesis
[27,28]. To date there is no direct evidence that PGC-1a
plays a role in ALS pathogenesis. However some circum-
stantial evidence suggests that this represents a line of
investigation worth pursuing. For instance, thiazolidine-
diones (TZDs) such as rosiglitazone and pioglitazone,
which induce PGC-1a expression and activate the PPARg
pathway have been shown to be beneficial in the SOD1
transgenic mouse model of ALS by two independent
research groups [29,30]. Our in vivo evidence, for the first
time demonstrates the neuro-protective role of PGC-1a in
an ALS mouse model, suggesting that PGC-1a might be a
potential therapeutic target for early intervention in ALS.

Methods
Experimental animals
Rat neuron-specific enolase (NSE) promoter plasmid
containing hPGC-1a was constructed by inserting 3.1

Figure 2 PGC-1a improved motor performance and survival in SOD1 mutant mice. (A) Motor performance as measured by rotarod test in
WT, PGC-1a, SOD1-G93A and SOD1-G93A/PGC-1a animals (**p < 0.01); (B) Survival analysis of WT, PGC-1a, SOD1-G93A and SOD1-G93A/PGC-1a
animals (**p < 0.01 by Mantel-Cox test); (C) Average body weight of WT, PGC-1a, SOD1-G93A and SOD1-G93A/PGC-1a animals; (D) Average
weight loss (percentage of peak weight) of SOD1-G93A and SOD1-G93A/PGC-1a animals (*p < 0.05).
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kb cDNA fragment with entire coding region of hPGC-
1a (NM_013261.2, OriGene Technologies, Inc. Rock-
ville, MD) in Not I site of the plasmid vector. A cassette
of ~8 kb SalI fragment containing NSE promoter and
hPGC-1a was gel purified and microinjected into one-
cell mouse egg (C57BL6 × SJL)as described previously
[31,32]. TgPGC-1a founders were identified by PCR-
based genotyping.
Male TgSOD1-G93A mutant transgenic mice (C57BL6 ×

SJL) were purchased from the Jackson Laboratory and bred
with female PGC-1a transgenic mice in our transgenic
mouse facility to generate TgSOD1-G93A/TgPGC-1a dou-
ble transgenic mice and their TgSOD1-G93A, TgPGC-1a
or wild-type littermates. Mice were housed on a 12-hour-
light, 12-hour-dark cycle and allowed ad libitum access to
food. Mice were weighed weekly starting from 8 weeks of
age. The survival study endpoint was defined as meeting
any one of the following conditions: no spontaneous breath-
ing or movement for 60 seconds with no response to pain;
the animal is unable to roll over the normal position within
10 seconds following a push over; or complete hind limb
paralysis. The Institutional Animal Care Committee of
Mount Sinai School of Medicine reviewed and approved all
experimental protocols used in this study.

Immunostaining
The brains of 5 months old Wild type and Tg2576 mice
were dissected, cut into two hemispheres and fixed in

4% Paraformadehyde. After extensive wash with PBS,
equilibrated with 30% sucrose and embedded in Tissue
Freezing Medium (Triangle Biomedical Sciences). The
frozen brains were transversely sectioned (14 uM). The
tissue sections were incubated with PGC-1a antibody
(Santa Cruz Technology, H-300, 1:500 dilution) over-
night at 4°C. The sections were then washed and incu-
bated with FITC-conjugated secondary antibody (1:250
dilution) for 1 hour. Following several washes with PBS,
images were acquired under fluorescence microscope.

Motor Function Assessment
TgSOD1-G93A/TgPGC-1a mice and TgSOD1-G93A
mice were tested on an accelerating rotarod (7650 Ugo
Basile Biological Research Apparatus, Comerio, Italy) as
previously described. In brief, mice are placed onto a
grooved cylinder (facing away from the experimenter)
rotating at a predetermined speed that incrementally
increases to a maximal rotation at 300s; the time main-
tained on the rod by each mouse (latency) is then
recorded (300 s max). A diminishing latency indicates
declining performance and at values of 0 s is suggestive
of severe muscular weakness and impaired coordination.
Mice were tested beginning at 80 days of age weekly
until they could no longer perform the test. Before test-
ing, mice underwent a 1 week training period wherein
they were introduced to the apparatus and handled by
the experimenter daily. Testing was conducted during

Figure 3 Nissl-stained motor neuron count in the lumbar spinal cord. The effect of the PGC-1a on neuron numbers in SOD1-G93A
transgenic mice at post-symptomatic stage (day 110) was examined following Nissl-staining. (A) Photomicrographs of representative Nissl-stained
sections through the ventral horns of the lumbar spinal cord from wild-type (WT), SOD1-G93A, PGC-1a and SOD1-G93A/PGC-1a double
transgenic mice. (B) Motor neuron counts in lumbar spinal cord (data = Mean ± SE, n = 5, **p < 0.05).
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Figure 4 Detection and quantification of mitochondrial electron transport chain complex activities in the ventral horn of lumbar
spinal cord. (A) Representative images of complex I activity in the four experimental groups; (B) Quantification of complex I activity (*p < 0.05);
(C) Representative images of complex IV activity in the four experimental groups; (D) Quantification of complex IV activity (*p < 0.05).

Figure 5 PGC-1a inhibited phosphorylation of JNK and p38 MAPK. Bead-based multiplex luminex assay was performed to examine the
phosphorylation of (A) JNK and (B) p38 MAPK. Mean fluorescence intensities were recorded and data were plotted as percentage of SOD1-G93A
animals (*p < 0.01).
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the last 4 h of the day portion of the light cycle in an
environment with minimal stimuli such as noise, move-
ment, or changes in light or temperature.

Glucose Tolerance Test
Mice were fasted overnight in clean cages with free
access to water in new clean bottles. The next morning
each mouse was weighed, and a baseline fasted blood
glucose measurement was taken by applying tail blood
to a Contour Blood Glucose Monitoring System (Bayer).
Each mouse was injected intraperitonealy with a filter-
sterilized solution of 20% (w/v) D-glucose, with the size
of the bolus determined by animal weight (2 mg glu-
cose/g body weight). Blood glucose measurements were
taken as described above for each animal at 15, 30, 60
and 120 minutes. The data were plotted as blood glu-
cose concentration (mg/dL) over time (minutes).

Luminex Assay
A Bead-based multiplex luminex assay was performed
using MILLIPLEX MAP 8-Plex Multi-Pathway Signaling
Kit, Phosphoprotein (Millipore, Billerica, MA) following
the manufacturer’s protocols. Briefly, the spinal cords
were homogenized in ice-cold Milliplex lysis buffer with
protease inhibitors and then centrifuged at 12,000 rpm
for 10 minutes at 4°C. Protein concentration was mea-
sured using the Bradford method. 25 μg protein of each
sample was used for analysis.

Preparation of Mouse Spinal Cord Sections
Age and gender-matched wild type, TgSOD1-G93A,
TgPGC-1a and TgSOD1-G93A/TgPGC-1a double
transgenic mice were euthanized by ketamine and their
spinal cords were dissected out. The lumbar region was
separated and rapidly frozen under 2-methylbutane on
dry ice. The samples were stored at -80°C until sec-
tioned. For sectioning, samples were embedded in OCT
compound and transverse sections were cut at -20°C
using a Leica CM3050 cryostat. The sections were col-
lected on positively-charged glass slides (Superfrost Plus,
Fisher Scientific) and stored at -80°C till use.

Histology
Ten serial sections (25 μm thick) were cut 350 μm apart
through the lumbar (L3-L5) spinal cord of each animal
(n = 5). The sections were mounted onto Superfrost
Plus slides and Nissl staining was performed using cresyl
violet as previously described [33]. Large (>25 μm), Nissl
stained neurons were counted within the ventral horns
under a light microscope at a magnification of 200.

Histochemical Reaction, Imaging and Analysis
8 μm thick sections of the lumbar spinal cord were air
dried for 30 min and used for activity staining of

mitochondrial complexes [1,18]. All the staining reac-
tions were carried out at room temperature in the dark.
To quantify complex I activity, the sections were incu-
bated in 0.1 M Tris-HCl (pH 7.4), 0.14 mM NADH, 1
mg/ml nitroblue tetrazolium, 2 μg/ml antimycin, 84
mM malonate and 2 mM potassium cyanide. For com-
plex II histochemistry, the enzyme was activated [34,35]
by a 10 min incubation in 0.05 M potassium phosphate
buffer (pH 7.4), followed by the addition of the reaction
mix consisting of 4.5 mM EDTA, 2 mg/ml nitroblue tet-
razolium, 50 mM succinate, 0.2 mM phenazonium
methosulfate, 2 μg/ml antimycin, 60 μM rotenone and 2
mM potassium cyanide in the same buffer. The complex
IV reaction required 75 mg/ml sucrose, 1 mg/ml diami-
nobenzidine HCl, 24 U/ml catalase, 1 mg/ml cyto-
chrome c, 2 μg/ml antimycin, 60 μM rotenone and 84
mM malonate in 0.05 M potassium phosphate buffer
(pH 7.4). The negative controls contained 60 μM rote-
none, 84 mM malonate or 2 mM potassium cyanide to
specifically inhibit complexes I, II or IV respectively.
After incubations of 20 min for the complex I and IV
reactions or 10 min for the complex II reaction, the sec-
tions were washed twice in phosphate buffered saline,
once in distilled water and then mounted in glycerin
jelly.
Stained sections were visualized under an Olympus

MVX10 Macroview stereomicroscope controlled by
MicroSuite Five Biological Suite software and photo-
graphed using the attached Hamamatsu C8484 mono-
chrome camera. Images were taken with particular care
to use uniform gray scales and below the level of satura-
tion. Optical intensities of the ventral horn area on
these sections were quantified using ImageJ software
(NIH). Optical intensities were converted to optical den-
sities (OD) by the formula: OD = log10 (Ibk/Im), where
Ibk is background intensity and Im is measured intensi-
ties from different regions of the sections.
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