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Rheumatoid arthritis-associated polymorphisms
are not protective against Alzheimer’s disease
Christopher R Simmons1, Fanggeng Zou2, Steven G Younkin2 and Steven Estus1*

Abstract

Background: Rheumatoid arthritis (RA) and Alzheimer’s disease (AD) are inversely associated. To test the
hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we
evaluated RA genetic risk factors recently identified in genome-wide association studies (GWAS) for their
association with AD in a two-stage, case-control analysis.

Results: In our Stage 1 analysis of ~800 AD and ~1,200 non-AD individuals, three of seventeen RA-associated SNPs
were nominally associated with AD (p < 0.05) with one SNP, rs2837960, retaining significance after correction for
multiple testing (p = 0.03). The rs2837960_G (minor) allele, which is associated with increased RA risk, was
associated with increased AD risk. Analysis of these three SNPs in a Stage 2 population, consisting of ~1,100 AD
and ~2,600 non-AD individuals, did not confirm their association with AD. Analysis of Stage 1 and 2 combined
suggested that rs2837960 shows a trend for association with AD. When the Stage 2 population was age-matched
for the Stage 1 population, rs2837960 exhibited a non-significant trend with AD. Combined analysis of Stage 1 and
the age-matched Stage 2 subset showed a significant association of rs2837960 with AD (p = 0.002, OR 1.24) that
retained significance following correction for age, sex and APOE (p = 0.02, OR = 1.20). Rs2837960 is near BACE2,
which encodes an aspartic protease capable of processing the AD-associated amyloid precursor protein. Testing for
an association between rs2837960 and the expression of BACE2 isoforms in human brain, we observed a trend
between rs2837960 and the total expression of BACE2 and the expression of a BACE2 transcript lacking exon 7
(p = 0.07 and 0.10, respectively).

Conclusions: RA-associated SNPs are generally not associated with AD. Moreover, rs2837960_G is associated with
increased risk of both RA and, in individuals less than 80 years of age, with AD. Overall, these results contest the
hypothesis that genetic variants associated with RA confer protection against AD. Further investigation of
rs2837960 is necessary to elucidate the mechanism by which rs2837960 contributes to both AD and RA risk, likely
via modulation of BACE2 expression.

Background
There is a long-standing, inverse relationship between
the prevalence of Alzheimer’s disease (AD) and of rheu-
matoid arthritis (RA). Jenkinson and colleagues first
described the decreased prevalence of RA in patients
suffering from senile dementia of the Alzheimer’s type
as compared to cognitively intact individuals [1]. Further
retrospective studies of clinical and autopsy data
revealed that patients with RA exhibit a reduced preva-
lence of AD [2]. A study by Myllykangas-Luosujarvi and

colleagues evaluating AD pathology in patients with and
without RA revealed that AD-associated neuropathology
occurred four times less often in patients with RA as
compared to the general population [3].
The basis of this inverse relationship is unclear but

may include both genetic and environmental factors. RA
and AD each have a strong genetic component, i.e., 50%
of RA risk and 60% of AD risk is attributable to genetic
factors, supporting the original hypothesis of Jenkinson
and colleagues that genetics might explain the relation-
ship between AD and RA [4,5]. Alternatively, anti-
inflammatory medications used therapeutically for the
treatment of RA could decrease AD risk by reducing
AD-associated inflammation or via other mechanisms, .
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e.g., modulation of APP processing [6,7]. Supporting this
possibility, an initial double-blind, placebo-controlled
study by Rogers et al. provided evidence that indo-
methacin slowed cognitive decline in patients with AD
relative to placebo [8]. These findings were further sup-
ported by Breitner and colleagues who found that multiple
anti-inflammatory medications slow disease progression
and delay disease onset [9]. However, there has been little
success replicating these findings in larger, randomized
clinical trials [10-13]. Hence, whether anti-inflammatory
agents delay the onset of AD remains unclear.
The recent advent of RA genome wide association stu-

dies (GWAS) has identified single nucleotide poly-
morphisms (SNP)s associated with RA that provide a
foundation for evaluating the initial hypothesis of Jen-
kinson et al. that genetic variants that increase the risk
of RA also decrease the risk of AD. To this end, we
tested whether seventeen RA-associated SNPs with gen-
ome-wide significance were associated with AD in a
two-stage analysis using separate AD case-control popu-
lations. We found that none of the seventeen alleles
associated with increased RA risk were also associated
with reduced AD risk. Rather, we found three RA-asso-
ciated SNPs that were nominally associated with AD
(p < 0.05). One of these SNPs, rs2837960, was found to
be significantly associated with AD in a combined analy-
sis of our Stage 1 and Stage 2 populations when the Stage
2 population was restricted to individuals of similar age
as Stage 1. The gene closest to rs2837960 is BACE2, the
product of which has been implicated in amyloid protein
precursor (APP) processing [14,15]. When we evaluated
the expression of BACE2 isoforms as a function of
rs2837960, we found a trend for BACE2 expression with
rs2837960. In summary, genetic variants that increase RA
risk do not decrease AD risk. The inverse relationship
between RA and AD may thus be better explained by
environmental factors such as the use of anti-inflamma-
tory medications. Further functional investigation of
rs2837960 is needed to elucidate the mechanism by
which this SNP may modulate AD and RA.

Results
RA-associated SNPs are generally not associated with AD
To evaluate whether RA-associated SNPs are also asso-
ciated with AD, we began by identifying SNPs that are
robustly associated with RA risk and then evaluated these
SNPs for their association with AD in an exploratory
Stage 1 case-control population of ~800 AD and ~1200
non-AD individuals. Contrary to the hypothesis that
alleles associated with increased RA risk are also asso-
ciated with reduced AD risk, only three of the seventeen
RA-associated SNPs in our Stage 1 study were nominally
significant for association with AD (p < 0.05, Table 1).
Moreover, for each these SNPs, the allele associated with

increased RA risk was also associated with increased AD
risk, further refuting the hypothesis that genetics under-
lies the inverse epidemiologic relationship between RA
and AD prevalence. The AD-associated SNPs are located
in or near the genes BACE2 (rs2837960; p = 0.002, OR =
1.29), TRAF1/C5 (rs3761847; p = 0.006, OR = 1.19) and
SALL3 (rs2002842; p = 0.04, OR = 1.15). When a Bonfer-
roni correction for multiple testing was applied to mini-
mize false-positive associations between RA-associated
SNPs and AD, only rs2837960 exhibited a significant
association with AD (p = 0.03). Furthermore, rs2837960
remained significantly associated with AD after correct-
ing for age, sex and APOE genotype per logistic regres-
sion (p = 0.012 OR = 1.26, Table 2). Rs3761847 remained
significant following correction of Stage 1 analysis for
covariates (p = 0.007 OR = 1.21).

Rs2837960 is significantly associated with AD in
individuals
The three RA- and potentially AD-associated SNPs from
Stage 1 were evaluated further for their association with
AD in a Stage 2 case-control series that consisted of
2677 non-AD and 1102 AD subjects. Contrary to our
initial results, these SNPs exhibited no association with
AD in our Stage 2 population (Table 3). Correction for
age, sex and APOE genotype had marginal, non-significant
effects on the association between these three SNPs and
AD. Our Stage 1 and Stage 2 populations were combined
with the intention of clarifying the overall association
between these three SNPs and AD. Analysis of this
combined population, consisting of 3949 non-AD and
1965 AD subjects, suggested that rs2837960 is significantly
associated with AD (p = 0.04, OR = 1.11, Table 4). When
these results were corrected for age, sex and APOE geno-
type this association between rs2837960 and AD showed
only a trend (p = 0.14).
Due to the large discrepancy in average age between

our Stage 1 and Stage 2 populations, and the possibility
that the impact of genetic risk factors may decline with
age, we next evaluated a subset of Stage 2 individuals
that had an age of AD diagnosis between 60 and
80 years of age along with non-AD individuals with the
same age range [16]. Thus, our age parameters and
average population ages for Stage 2 mimicked those of
Stage 1. This effort resulted in a sample population that
consisted of 186 AD (average age 73) and 912 non-AD
individuals (average age of 74). This population showed
a trend in the OR of rs2837960 that was consistent with
that of the Stage 1 analysis (Table 5), i.e., the minor
rs2837960_G allele appeared to impart an increased,
although non-significant, risk of AD. The SNPs
rs3761847 and rs2002842, that were associated with AD
in Stage 1, failed to show an association with AD in
Stage 2. We note that there was significant overlap in
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the 95% confidence intervals between Stage 1 and Stage
2 for all three of these SNPs. Analysis of the combined
data from Stage 1 and the Stage 2 subset revealed that
only rs2837960 maintained a significant association with

AD (p = 0.002, OR = 1.27, Table 6). This association
between rs2837960 and AD remained significant follow-
ing correction for the covariates age, sex and APOE (p
= 0.02, OR = 1.20). Thus, when the Stage 1 and Stage 2
populations were matched for age, rs2837960 was signif-
icantly associated with AD risk.

In silico analyses suggest that rs2837960 is associated
with BACE2 expression and splicing
To gain insights into the possible actions of rs2837960,
we first identified genes within the vicinity of rs2837960
by using HapMap [17]. This analysis found that
rs2837960 resides within a haplotypic block that
includes the promoter region and 5’-UTR of BACE2
(Figure 1A). Due to the presence of distinct proximal
and distal BACE2 promoters, and the potential contribu-
tion of upstream regulatory elements to BACE2 expres-
sion, we considered the possibility that rs3846662 may
affect BACE2 expression [18-20]. We then queried
whether there was an association between rs2837960
and BACE2 expression in human brain by using the
SNPexpress database, which includes data from 93
human brain samples [21]. This analysis revealed a
trend towards increased BACE2 expression in rs2837960
minor allele carriers (p = 0.08, Figure 1B). Since these
data suggest that rs2837960 may modulate BACE2
expression and since BACE2 function in turn may mod-
ulate AD and cognition, we hypothesized that rs2837960
modulates AD risk by altering BACE2 expression in the
human brain [22-24].

Table 1 Stage 1 Analysis of RA-SNPs Association with AD

CHR SNP Gene RA OR RA P-value AD OR [96% CI] AD P-value BF p-value

21 rs2837960 BACE2 1.05 2 × 10-6 1.29 [1.10-1.52] 0.002 0.03

9 rs3761847 TRAF1, C5 1.32 4 × 10-14 1.19 [1.05-1.35] 0.006 0.11

18 rs2002842 SALL3 1.61 6 × 10-6 1.15 [1.01-1.31] 0.04 0.65

9 rs881375 TRAF1, C5 NR 4 × 10-8 1.11 [0.97-1.26] 0.12

6 rs660895 HLA-DRB1 3.62 1 × 10-108 0.93 [0.80-1.09] 0.39

12 rs3184504 SH2B3 0.92 6 × 10-6 0.95 [0.84-1.08] 0.41

8 rs2736340 BLK 1.19 6 × 10-9 0.95 [0.82-1.10] 0.47

2 rs13031237 REL 1.13 8 × 10-7 1.04 [0.92-1.19] 0.52

6 rs6457617 HLA-E 2.36 5 × 10-75 1.03 [0.91-1.17] 0.61

4 rs13119723 IL2, IL21 1.12 7 × 10-7 0.96 [0.80-1.14] 0.62

2 rs13017599 REL 1.21 2 × 10-12 1.03 [0.90-1.17] 0.67

9 rs951005 CCL21 0.81 4 × 10-10 1.03 [0.87-1.22] 0.73

6 rs6910071 HLA-DRB1 2.88 1 × 10-299 0.98 [0.84-1.14] 0.75

1 rs2476601 PTPN22 1.94 9 × 10-74 1.03 [0.84-1.27] 0.77

7 rs10488631 IRF5 1.19 4 × 10-11 0.99 [0.81-1.20] 0.91

2 rs231735 CTLA4 0.83 6 × 10-9 1.01 [0.89-1.14] 0.91

1 rs3890745 TNFRSF14 0.88 4 × 10-6 0.99 [0.87-1.13] 0.93

Seventeen SNPs exhibiting genome-wide significant associations with RA were tested for their association with AD risk using allelic models in a Mayo Clinic AD
GWAS series of 843 AD and 1264 non-AD individuals. Three of the seventeen RA-associated SNPs were nominally associated with AD (p < 0.05). Multiple testing
was addressed by applying a Bonferroni (BF) correction for the number of tests performed. The only SNP that retained significance after BF correction was
rs2837960 (p = 0.03). NR = value not reported in initial study.

Table 2 Stage 1 Analysis of RA-SNP’s Association with AD
Corrected for Age, Sex and APOE Genotype

CHR SNP OR L95 U95 P

9 rs3761847 1.211 1.054 1.392 0.007

21 rs2837960 1.256 1.051 1.502 0.012

18 rs2002842 1.147 0.995 1.323 0.059

9 rs881375 1.125 0.973 1.300 0.111

6 rs660895 0.903 0.759 1.076 0.254

8 rs2736340 0.920 0.786 1.077 0.298

2 rs13031237 1.067 0.926 1.230 0.372

6 rs6457617 1.056 0.921 1.211 0.435

2 rs13017599 1.055 0.914 1.217 0.467

9 rs951005 1.060 0.880 1.278 0.539

6 rs6910071 0.949 0.797 1.130 0.558

2 rs231735 1.027 0.895 1.178 0.705

7 rs10488631 0.961 0.774 1.193 0.717

4 rs13119723 0.969 0.800 1.174 0.746

1 rs3890745 1.022 0.882 1.186 0.770

1 rs2476601 1.018 0.811 1.278 0.880

12 rs3184504 0.998 0.869 1.146 0.976

Using logistic regression, SNP-AD associations were corrected for the potential
effects of age, sex and APOE genotype (all of which were independent
predictors of AD in our Stage 1 analysis). The minor alleles of both rs2837960
and rs3761847 were significantly associated with increased risk of AD (p <
0.05) while the minor allele of rs2002842 exhibited only a trend toward an
increased risk of AD.
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Relationship between rs2837960 and BACE2 isoforms in
the human brain
To pursue this hypothesis, we sought to directly quan-
tify BACE2 isoforms as a function of rs2837960 in a ser-
ies of human brain samples. We began by confirming
the presence of previously identified BACE2 isoforms
that lack exons seven or eight (BACE2d7 and BACE2d8,
respectively) as well as the full-length, nine-exon BACE2
transcript (BACE2_FL). We also identified a novel iso-
form lacking both exons 7 and 8 (BACE2d7/8) that was
confirmed by direct sequencing (Figure 2). Considering
the biological relevance of these isoforms, we note that
the loss of exon 7 is predicted to result in an in-frame
deletion of 50 amino acids, resulting in a 50.3 kDa pep-
tide. Moreover, the BACE2 protein found in human
brain appears to correspond to the BACE2d7 isoform
based upon its size and pattern of epitope reactivity
[14]. In contrast, the loss of exon 8 or exons 7-8 results
in a frameshift and prematurely truncated BACE2 pro-
teins of 43.0 kDa and 37.5 kDa, respectively. Hence, we
chose to use real-time PCR to quantify BACE2tot and
BACE2d7 since they represent the expression of total
BACE2 and functional BACE2, respectively. A total of
53 brain cDNA samples were analyzed for genotypic
associations between rs2837960 and expression of
BACE2tot and BACEd7. This effort revealed a trend
between rs2837960 and the expression of BACE2tot (p
= 0.07) and BACE2d7 (p = 0.10, Figure 3). It is note-
worthy that the trend toward greater expression of
BACE2tot and BACE2d7 in rs2837960 minor allele car-
riers in our results is similar to the results from
SNPExpress.

Discussion
The primary finding of this investigation is that the
majority of seventeen SNPs that exhibit a genome-wide
significant association with RA are not associated with
AD. Furthermore, the minor allele of rs2837960, which
was found to be significantly associated with AD risk
after combined analysis of Stage 1 and age-matched
Stage 2 data, was associated with an increased risk of
both RA and AD. Hence, these results contest the
hypothesis that genetics underlie the inverse relationship
between RA and AD, i.e. that alleles associated with an
increased risk of RA are protective against AD. A sec-
ondary finding is that we have pursued the role of
rs2837960 in its possible regulation of the nearby
BACE2 gene. We report the presence of multiple
BACE2 isoforms in human brain and that rs2837960
shows a trend for association with BACE2tot and
BACE2d7, which represent total BACE2 and functional
BACE2, respectively [14]. In summary, the genetic
underpinnings of RA have negligible overlap with AD
with the exception of rs2837960, which is associated
with both RA and AD, possibly through its effects on
BACE2 expression.
RA and AD each have a strong genetic component

that accounts for approximately 50% and 60% of their
risk, respectively [4,5]. The remainder of RA and AD
risk is likely derived from environmental influences. The
vast majority of RA-associated SNPs implicate gene pro-
ducts involved in immune system processes. Chronic
inflammation of the brain is a common feature of AD
pathology, raising the possibility that RA-associated
SNPs that influence immune system function could
influence AD risk [25-27]. It is well established that
some of the most strongly AD-associated genes, includ-
ing CLU, CR1, TNF and CCR2, exhibit ontological asso-
ciation with immune system processes [28-36]. Hence,
the impetus for pursuing genetic overlap between RA
and AD is greater than that provided by their epidemio-
logic relationship alone. However, our results indicate
that RA-associated SNPs, which pertain largely to gene
products involved in immune system processes, are not
associated with AD.
There are several possible interpretations of our primary

findings. The lack of overlap between RA-associated SNPs

Table 3 Stage 2 Analysis of Top RA-SNPs Associated with AD

Uncorrected Logistic Regression Regression Corrected for Age, Sex and APOE

CHR SNP OR L95 U95 P OR L95 U95 P

21 rs2837960 1.011 0.887 1.153 0.865 1.000 0.867 1.154 0.997

18 rs2002842 0.992 0.896 1.099 0.880 0.990 0.886 1.106 0.857

9 rs3761847 0.921 0.832 1.019 0.112 0.905 0.809 1.012 0.080

No RA-associated SNP that exhibited an association with AD in Stage 1 was found to exhibit an association with AD in our Stage 2 population. This remained
true when data were analyzed and corrected for covariates including age, sex and APOE genotype of Stage 2 individuals, who on average were significantly
older than Stage 1 individuals (p < 0.001, Students t-test).

Table 4 Combined Stage 1 and Stage 2 Analysis of Top
RA-SNPs for Association with AD

Regression Corrected for Age, Sex and
APOE

Uncorrected Logistic
Regression

CHR SNP OR L95 U95 P OR L95 U95 P

21 rs2837960 1.113 1.007 1.230 0.037 1.087 0.974 1.212 0.138

18 rs2002842 1.031 0.952 1.116 0.460 1.017 0.933 1.110 0.699

9 rs3761847 1.011 0.934 1.093 0.793 1.002 0.920 1.091 0.965

Initial analysis of combined Stage 1 and Stage 2 populations revealed that
rs2837960 remained overall nominally significant for association with AD per
logistic regression (p < 0.05). When this analysis was repeated to include
covariate data, rs2837960 showed only a trend for association with AD.
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and AD could be due in part to the tissue-specific expres-
sion of DNA and RNA binding proteins required to inter-
act with these SNPs to manifest effects on gene expression
[37]. However, if any of the seventeen RA-associated SNPs
included in this study are capable of modulating peripheral
immune system activity, either alone or in combination
with each other, then it is probable that their peripheral
effects on the immune system would indirectly affect
immune system activity within the CNS. Evidence sup-
porting the ability of peripheral inflammation to modulate
CNS inflammation has been reported previously [38].
Therefore, if RA-associated SNPs are only functional in
the periphery then their effects on immune system func-
tion and inflammation should manifest in the CNS, even if
the same SNPs do not modulate endogenous immune sys-
tem function within the brain.
What is yet unclear is whether RA-associated alleles

actually propagate inflammation and, if so, why they
would not be expected to increase, rather than decrease,
AD risk. In fact, the results of our study suggest that
alleles that increase RA risk may likewise increase AD
risk, i.e., rs2738960_G increases risk of both RA and
AD, while rs3761847_G and rs2002842_A show a simi-
lar trend. If these observations are replicated in future
studies, alleles that are pro-inflammatory may emerge as
risk factors for both RA and AD. More explicitly, con-
sidering the role of genetics and environment in RA and
AD, these results suggest that RA genetics alone may
enhance rather than reduce AD risk. Hence, the inverse
epidemiologic relationship between RA and AD is likely
explained by an environmental RA-associated influence.
In this regard, McGeer et al. postulated that the reduced
prevalence of AD in RA patients is related to the use of
anti-inflammatory drugs for the treatment of RA [2].

Multiple studies of anti-inflammatory agents have since
been performed to test for their ability to modify AD
risk and cognitive decline in AD patients, yielding
mixed results [8,39-42]. To some extent, variability in
study outcome may be explained by the additional abil-
ity of a subset of anti-inflammatory medications to
reduce production of the neurotoxic Ab1-42 peptide [6].
Further investigation is required to clarify the functional
genetics of RA- and AD-associated SNPs and the role of
anti-inflammatory medications in AD.
In pursuit of the functional genetics of rs2837960,

which is associated with an increased risk of RA and
AD, we investigated its association with the expression
of BACE2 isoforms in human brain [43]. Thus, our sec-
ondary finding is that the minor allele of rs2837960
showed a strong trend for association with increased
expression of BACE2tot and BACE2d7, the latter of
which may represent the majority of functional BACE2
in human brain [14]. BACE2 encodes a transmembrane
aspartic protease and is ~75% homologous with BACE1
with regard to amino acid sequence [20]. Although the
function of BACE2 is disputed, it appears to possess
both b-secretase and a-secretase-like activities [15].
Data obtained from the study of BACE1/BACE2 double-
knockout mice suggest that BACE2 expressed in glia
contributes significantly to Ab production [44]. This
glial-specific expression is likely due to the more distal
of the two distinct BACE2 promoters, neither of which
share similarity with the BACE1 promoter [18-20].
Several factors are consistent with the possibility that

rs2837960, or SNPs in tight linkage with rs2837960 (LD
of r2 >0.8), are functional in modulating BACE2 expres-
sion. This evidence includes the observation that (i)
rs2837960 resides within a haplotypic block that spans

Table 5 Analysis of RA-SNP’s Association with AD in Stage 2, Age-Matched to Stage 1

Uncorrected Logistic Regression Regression Corrected for Age, Sex and APOE

CHR SNP OR L95 U95 P OR L95 U95 P

21 rs2837960 1.218 0.922 1.609 0.165 1.225 0.903 1.664 0.192

18 rs2002842 1.002 0.802 1.253 0.983 1.013 0.794 1.292 0.920

9 rs3761847 0.897 0.723 1.113 0.324 0.878 0.694 1.110 0.278

The three RA-associated SNPs suggesting association with AD were tested further for their association with AD risk by using logistic in a series of 912 non-AD
and 186 AD individuals whose ages more closely resembled those of Stage 1 individuals. Although significant associations were not observed between these
SNPs and AD, the results for each SNP were not significantly different from those obtained in Stage 1.

Table 6 Analysis of Top RA-SNPs for Association with AD in Combined Stage 1 and Age-Matched Stage 2

Uncorrected Logistic Regression Regression Corrected for Age, Sex and APOE

CHR SNP OR L95 U95 P OR L95 U95 P

21 rs2837960 1.239 1.083 1.418 0.002 1.199 1.032 1.392 0.018

18 rs2002842 1.056 0.948 1.178 0.323 1.050 0.931 1.184 0.430

9 rs3761847 1.090 0.981 1.210 0.108 1.075 0.958 1.207 0.217

Combined analysis of Stage 1 and Stage 2 data from individuals between 60 and 80 years of age was performed to clarify the association of rs2837960,
rs3761847 and rs2002842 with AD risk. The only SNP found to retain a significant association with AD was rs2837960, the G allele of which appears to increase
AD risk.
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the region containing both the proximal and distal
BACE2 promoters as well as the 5’UTR and first exon
of BACE2, (ii) the region surrounding rs2837960 and its
proxy SNPs (r2 = 1.0, ~4 kb window) is well conserved
in primates per rVISTA analysis (data not shown), and
(iii) the alleles of rs2837960 and its proxy SNPs are pre-
dicted to differentially affect transcription factor binding
per PROMO 3.0 analysis of the TRANSFAC database
(data not shown) [45-47].
Other studies that examined the association between

BACE2 polymorphisms and AD risk have yielded mixed

results [48-54]. These studies differ with our study in
that (i) they have focused on SNPs much more proximal
to BACE2 that are not in strong linkage disequilibrium
with rs2837960 and (ii) they generally utilized smaller
populations than those utilized in our present study.
Future analyses of the association between BACE2 SNPs
and AD should therefore take into account SNPs that are
more distal to BACE2, such as rs2837960, as well as uti-
lize larger population sizes that are sufficiently powered
to detect associations with AD. Thus, in future studies
rs2837960 may emerge as a risk factor for both RA and
AD that functionally modulates BACE2 expression. Eluci-
dation of the precise mechanism by which rs2837960, or
a SNP that is proxy to it, modulates BACE2 expression
may contribute to a better understanding of the role of
BACE2 in both AD and RA pathology.

Conclusions
In summary, we have provided evidence that RA genet-
ics do not underlie the inverse relationship between RA
and AD but rather may promote AD. Furthermore, we
have found that rs2837960 is associated with both RA
and AD and that it, or one of its proxy SNPs, may mod-
ulate the expression of BACE2. As we learn more about
the pathologic processes behind both RA and AD,
including the contribution of BACE2 to each disease, a
greater understanding of the factors underlying the
inverse relationship between these two diseases may be
obtained.

Materials and methods
SNP Selection
The Human Genome (HuGE) Navigator (http://www.
hugenavigator.net) was queried using the search term
“rheumatoid arthritis” to identify RA-associated SNPs of
genome-wide significance [55]. Six available studies uti-
lizing individuals of European decent were chosen to
mimic the AD MAYO GWAS demographics (Table 7).
Sample sizes ranged from ~1,600 (810 RA, 794 non-RA)
to ~25,500 (7,322 RA, 18,262 non-RA). Thus, we identi-
fied twenty-eight candidate SNPs for study from the lit-
erature. SNPs which appeared more than once or that
were in tight linkage disequilibrium with each other, i.e.
r2 >0.8 (according to the CEU HapMap population),
were considered to be redundant and only those with
the lowest RA-associated p-value were retained for
further analysis [17]. This effort reduced the number of
candidate SNPs to twenty-two. If a candidate RA-asso-
ciated SNP was not available within the Mayo Clinic
AD GWAS, an appropriate proxy SNP (LD of r2 >0.8)
was selected by using the HapMap-based SNAP proxy
search (http://www.broadinstitute.org/mpg/snap/) [56].
Ultimately, seventeen of the candidate SNPs or their
proxies were present in our AD GWAS dataset.

Figure 1 Location of s2837960 and trend between rs2837960
and BACE2 expression. The gene nearest to rs2837960 is BACE2,
whose transcription start site is ~27.8 kb downstream. (A) Analysis
of the HapMap CEU population reveals that rs2837960 resides
within a linkage disequilibrium block that includes the BACE2
promoter region and first exon. (B) Analysis of exon tiling array data
within the SNPExpress database suggests a trend between
rs3837960_G and increased BACE2 expression (p = 0.08).
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Case and Control Samples
The Mayo Clinic case-control samples used for the
Stage 1 analysis have been described in detail in a prior
GWAS publication [57]. The Mayo Clinic case-control
series used for the Stage 2 study have also been

previously described [58]. Briefly, clinical diagnoses of
probable AD were made according to NINCDS-ADRDA
criteria for samples from Jacksonville, FL (JS) and
Rochester, MN (RS); age-matched controls had a score
of 0 on the Clinical Dementia Rating scale. Additional

Figure 2 BACE2 isoforms present in human brain. Human brain cDNA samples were screened for BACE2 isoforms using conventional PCR
amplification across the alternatively spliced regions of exons 7 and 8. (A) Four alternatively spliced BACE2 isoforms were detected among
multiple individuals. (B) Direct sequencing of the resulting splice variants confirmed their identities as BACE2d7, BACE2d8 and BACE2d7/8. Deletion
of BACE2 exon 7 results in an in-frame deletion of 50 amino acids whereas deletions of BACE2 exon 8 or exons 7 and 8 lead to a frameshift and
premature truncation of the protein.

Figure 3 Quantification of BACE2tot and BACE2d7 in human brain. Real-time PCR with isoform-specific primers was used to quantify the
expression of BACE2tot and BACE2d7 in cDNA prepared from human brain. (A-B) Samples exhibit a trend toward increased expression of both
BACE2tot and BACE2d7 in the presence of rs2837960_G (p = 0.07 and p = 0.10, respectively, using Jonckheere-Terpstra testing).
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samples were obtained from the Mayo Clinic brain bank
(AUT); autopsy-confirmed diagnosis of AD (NINCDS-
ADRDA, Braak score >4.0) was utilized for AD samples
while non-AD samples exhibited limited AD pathology
(Braak <2.5, not including other unrelated pathology).

AD Association Testing
Association testing of RA-associated SNPs for AD risk
was carried out in two stages by using PLINK software
(http://pngu.mgh.harvard.edu/purcell/plink/) [59]. All
genotyped samples were subject to strict quality control
including elimination of samples with call rates <90%,
MAF <0.01, HW p < 0.001, discrepancy between
reported and genotyped sex, cryptic relatedness and dis-
cordant genotype clustering. Stage 1 consisted of 1264
non-AD and 843 AD subjects with average ages of 74.3
± 4.5 (age at last assessment, mean ± SD) and 72.4 ±
4.6 years (age at diagnosis), respectively. The non-AD
and AD groups in this series consisted of 51.7% and
57.5% female individuals, respectively. Stage 1 samples
were genotyped by using HumanHap300-Duo Genotyp-
ing BeadChips processed with an Illumina BeadLab sta-
tion (Illumina, San Diego, CA) at the Mayo Clinic
Genotyping Shared Resource center (Rochester, MN).
We proceeded to test for an association between the

seventeen RA-associated SNPs and AD in this Stage 1
case-control population. Stage 1 association testing was
performed by using PLINK to generate allelic models
that included odds ratios (OR), 95% confidence intervals
(CI)s and uncorrected p-values. Logistic regression was
also performed using the covariates age, sex and APOE
genotype. With regards to multiple testing we expected
to obtain approximately one false positive result given a
= 0.05 (seventeen unique SNPs; 17 tests × 0.05 = 0.85).
Bonferroni correction for multiple testing was also
applied to data generated using allelic models.
Stage 2 samples were genotyped by using SEQUE-

NOM MassARRAY iPLEX Platform (Sequenom, San
Diego, CA). Overall, Stage 2 consisted of 2677 non-AD
and 1102 AD subjects with average ages of 81.0 ± 6.2

and 83.5 ± 6.6 years of age, respectively. The non-AD
and AD groups were composed of 55.0% and 64.0%
female individuals, respectively. Stage 2 AD-SNP asso-
ciation testing was performed using only the three SNPs
identified in Stage 1 as being associated with both RA
and AD. PLINK software was used to generate odds
ratios, 95% CIs and p-values per allelic modeling. Logis-
tic regression including the covariates age, sex and
APOE genotype was also performed. To evaluate the
overall significance of Stage 1 and 2 data, they were
combined and examined collectively.
Due to the considerable difference in mean age

between Stage 1 and Stage 2 individuals, and due to our
interest in focusing on genetic, rather than environmen-
tal factors, we also chose to examine only Stage 2 indivi-
duals between 60 and 80 years of age. Hence, when
Stage 2 was limited to individuals between 60 and 80
years of age, our analysis included 912 non-AD and 186
AD subjects with average ages of 73.9 ± 3.8 and 72.8 ±
5.1 years. The non-AD and AD groups consisted of
49.9% and 57.0% female individuals, respectively. Similar
to our analysis of our initial Stage 2 population, logistic
regression of this modified Stage 2 population was also
performed to test for an association between the three
AD-associated SNPs from Stage 1. Furthermore, we
evaluated the overall significance of RA-associated SNP
associations with AD in combined Stage 1 and Stage 2
individuals between 60 and 80 years of age.

Human Tissue
Human anterior cingulate brain specimens were gener-
ously provided by the Sanders-Brown AD Center Neu-
ropathology Core and have been described elsewhere
[60]. The samples were from deceased individuals with
an average age at death for females of 82 ± 7 years
(mean ± SD, n = 29) and for males of 81 ± 8 (n = 24).
The average postmortem interval (PMI) for females and
males was 3.2 ± 0.8 h and 3.0 ± 0.8 h, respectively.

Evaluation of BACE2 isoforms in vivo
To gain insights into the functionality of rs2837960 we
tested for an association between rs2837960 and BACE2
expression in human brain. We first screened anterior
cingulate samples for the presence of BACE2 and its
known alternatively spliced isoforms that lack exons 7
and 8, respectively. Total RNA and genomic DNA were
prepared from human tissue samples; the RNA was
reverse transcribed as we have reported elsewhere
[61,62]. Conventional PCR using Platinum Taq (Invitro-
gen, Carlsbad, CA) was used to amplify the region of
BACE2 spanning exons 6-9 (Table 8). Thermal cycling
conditions consisted of denaturation at 95°C for 5 min
followed by 32 cycles of 95°C for 30 s, 60°C for 30 s,
72°C for 1 min and a final extension at 72°C for 2 min.

Table 7 RA GWAS reports identifying RA genetic risk
factors

Article PMID # of GWAS Hits

Gregersen et al., Nat Genet, 2009 19503088 5

Raychaudhuri et al., Nat Genet, 2008 18794853 9

Julia et al., Arthritis Rheum, 2008 18668548 2

WTCCC, Nature, 2007 17554300 7

Plenge et al., N Engl J Med, 2007 17804836 3

Plenge et al., Nat Genet, 2007 17982456 2

Six RA GWAS manuscripts were identified by querying the HuGE Navigator
database for “rheumatoid arthritis.” Together, these studies document twenty-
eight SNPs that are significantly associated with RA, p < 10-6. Of these twenty-
eight SNPs, seventeen (or their proxies) were present in our AD GWAS and
evaluated further for their association with AD.
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PCR products were separated using 8% TBE-PAGE gel
electrophoresis and visualized using SYBR-gold fluores-
cent stain (Invitrogen) and a fluorescence imager (FLA-
2000, Fuji). To confirm the identities of the BACE2
splice variants, bands were excised, purified and directly
sequenced (Davis Sequencing, Davis, CA).
To quantify total BACE2 expression (BACE2tot) and

expression of the BACE2 isoform lacking exon 7
(BACE2d7) we designed separate primer sets. BACE2tot
expression was measured by amplification of a product
spanning a non-alternatively spliced region of BACE2
(exons 5-6). Isoform-specific primers designed to
amplify BACE2d7 consisted of a forward primer specific
to BACE2 exon 6 and a reverse primer specific to the
junction of exons 6-8 (Table 8). DNA samples were gen-
otyped using a TaqMan SNP Genotyping Assay (ID #
C_2688271_10; ABI, Carlsbad, CA).
Quantitative real-time PCR reactions contained ~20

ng of sample cDNA together with 10 μl of PerfeCTA
SYBR green SuperMix (Quanta Biosciences, Gaithers-
burg, MD), 10 μl of ddH2O and 20 pmol of forward
and reverse primers. Cycling conditions included a 3
minute denaturation step at 95°C followed by 40 cycles
of denaturation for 15 seconds at 95°C and annealing/
extension for 45 seconds at 60°C using an MJ Opticon 4
thermal cycler (Biorad, Hercules, CA). A melting curve
was generated following cycling to assess the purity of
amplification product. Fidelity of amplification was also
assessed via visual inspection of PCR products on 8%
TBE-PAGE gel stained with SYBR gold. Standard curves
were generated from purified PCR products that were
quantified by A260/280 spectrophotometric analysis.
Standard curves were then used to calculate the copy
number for each BACE2 isoform measured.
Hypoxanthine-guanine phosphoribosyltransferase

(HPRT) and ribosomal protein L32 (RPL32) were used
as housekeeping genes per the analysis of geNorm soft-
ware as described previously [63-65]. Expression levels
of each of these genes were measured by using quantita-
tive real-time PCR and gene specific primers under con-
ditions identical to cycling conditions for BACE2.

Standard curves were used to generate exact copy num-
bers, which in turn were used to calculate the sample-
specific geometric mean of HPRT and RPL32 expression.
The geometric mean was in turn used to normalize sub-
sequent BACE2 expression data. Analysis of the associa-
tion between BACE2 isoforms and rs2837960 genotype
was performed using non-parametric Jonckheere-Terp-
stra testing (PASW Statistics, v.18, IBM, Somers, NY).
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