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Abstract

treatment of HD.

Background: Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal
expansion of a CAG repeat in the huntingtin HTT (HD) gene. The primary genetic determinant of the age at onset
(AQ) is the length of the HTT CAG repeat; however, the remaining genetic contribution to the AO of HD has
largely not been elucidated. Recent studies showed that impaired functioning of the peroxisome proliferator-
activated receptor gamma coactivator 1a (PGC-1alpha) contributes to mitochondrial dysfunction and appears to
play an important role in HD pathogenesis. Further genetic evidence for involvement of PGC-1alpha in HD
pathogenesis was generated by the findings that sequence variations in the PPARGCTA gene encoding PGC-1alpha
exert modifying effects on the AO in HD. In this study, we hypothesised that polymorphisms in PGC-1alpha
downstream targets might also contribute to the variation in the AO.

Results: In over 400 German HD patients, polymorphisms in the nuclear respiratory factor 1 gene, NRF-1, and the
mitochondrial transcription factor A, encoded by TFAM showed nominally significant association with AO of HD.
When combining these results with the previously described modifiers rs7665116 in PPARGCIA and C7028T in the
cytochrome c oxidase subunit | (CO1, mt haplogroup H) in a multivariable model, a substantial proportion of the
variation in AO can be explained by the joint effect of significant modifiers and their interactions, respectively.

Conclusions: These results underscore that impairment of mitochondrial function plays a critical role in the
pathogenesis of HD and that upstream transcriptional activators of PGC-Talpha may be useful targets in the

Background

Huntington disease (HD) is an autosomal dominantly
transmitted, progressive neurodegenerative disease asso-
ciated with a polymorphic CAG trinucleotide repeat in
the 5 part of the HTT (HD) gene, which is expanded
and translated into an elongated polyglutamine tract in
the huntingtin protein [1].

The length of the expanded CAG tract is inversely
related to the age at clinical onset of HD, accounting for
more than half of the overall variance in age at onset
(AO) [2-4]. Yet, despite this strong correlation, there
remains considerable variation in AO (of more than 40
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years) in individuals with identical repeat lengths. Evi-
dence has been provided for genetic as well as for envir-
onmental factors that affect the AO [5]. Identifying
these modifiers in human HD and defining their precise
role in the causal pathogenesis of HD could help to
develop more effective treatment regimen for HD. To
date, several candidate modifier genes of HD have been
described in independent studies, all of them implicating
a variety of processes apparently contributing to HD
pathogenesis [6-10]. Recently, mitochondrial DNA
(mtDNA) haplogroup H (7028C) and variations in the
peroxisome proliferator-activated receptor gamma coac-
tivator la (PPARGCIA) gene encoding PGC-1lalpha
were shown to exert modifying effects on the AO in
HD, thus providing genetic evidence that complex inter-
relations of mitochondrial dysfunction have effects on
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the pathogenic process in HD [11-14]. A number of stu-
dies suggested that PGC-1lalpha dysfunction may be
central to HD pathogenesis [15]. PGC-1lalpha-deficient
mice show hyperkinetic movement disorder and striatal
degeneration [16,17]. Gene expression analyses in cell
lines, transgenic mouse models of HD and in different
tissues from HD patients revealed a disruption of the
PGC-1lalpha regulatory pathway [18-20]. Recently,
investigations on the ability of AMP-activated protein
kinase (AMPK) to activate PGC-lalpha in brain, liver,
brown adipose tissue (BAT) and muscle of HD trans-
genic mice strengthened the theory that impaired activa-
tion of PGC-lalpha plays an important role in the
metabolic disturbances involved in the pathology of HD
[20,21]. Accordingly, modulation of PGC-1lalpha levels
and activity has been proposed as a therapeutic option
for HD pathology [15]. Indeed, activation of the PGC-
lalpha signaling pathway via resveratrol-induced activa-
tion of the silent information regulator T1 (SIRT1), a
mammalian sirtuin, in transgenic mice achieved positive
effects in BAT [22]. Yet, PGC-lalpha as a coactivator
protein responds to environmental influences and subse-
quently regulates various pathways in a tissue-specific
and highly coordinated manner. Therefore, such phar-
macological interventions aimed at PGC-lalpha may
suffer from lack of specificity. Targeting key factors of
the wide PGC-1lalpha transcriptional network could,
therefore, represent another approach for a specific
modulation of PGC-lalpha activity. PGC-lalpha con-
trols many aspects of oxidative metabolism, including
respiration and mitochondrial biogenesis through coacti-
vation and enhancing the expression and activity of sev-
eral transcription factors including the nuclear
respiratory factors (NRF)-1 and NRF-2 (GABP) and the
estrogen related receptor alpha (ERRalpha) [23,24].
PGC-1lalpha is also indirectly involved in regulating the
expression of mtDNA transcription via increased
expression of mitochondrial transcription factor A
(TFAM) which is coactivated by NRF-1 [23,25]. In the
present study, we addressed the question of the role of a
diverse set of PGC-1lalpha related factors in modifying
the AO of HD. We investigated polymorphisms in the
genes encoding ERRalpha (ESRRA), Mitofusin 2
(MFN2), NRF-1 and NRF-2 (NRF-1, GABPA and
GABPBI), PGC-1beta (PPARGCIB), peroxisome prolif-
erator-activated receptor-gamma (PPARG), SIRT1
(SIRTI1) and TFAM (TFAM, see Table 1). A more com-
prehensive understanding of the pleiotropic effects of
the PGC-1alpha family regulatory network in mitochon-
drial biogenesis and HD pathogensis could help to iden-
tify and fine tune pharmacological interventions
targeting PGC-1lalpha or alternatively its transcriptional
complexes.
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Results

In our cohort of 401 HD patients, the expanded HTT
allele accounts for nearly 73% of the variance in motor
AO (R = 0.729) and shows a highly significant influence
on the AO (p < 0.0001). Multiple regression models
were used to test all SNPs for association with the AO.
Of these, four showed a nominal p-value < 0.05 (Table
2). For NRF-1, addition of the intronic variations
rs7781972 and rs6949152 showed an association with
the motor AO. Inclusion of the rs7781972 genotypes in
the model increased the R” statistic from 0.729 to 0.733
in both the dominant and the additive model (p = 0.017
and p = 0.011, Table 2). Inclusion of the rs6949152 gen-
otypes increased the R? from 0.729 to 0.734 (p = 0.004)
according to the dominant model and to 0.733 (p =
0.013) in the additive model (Table 2). Examining link-
age disequilibrium (LD) among the 15 NRF-1 variations
revealed, that the variations rs10275661, rs10225103,
rs7781972, rs10268267, rs6962005 and rs6949152 in
IVS1 were in high LD in the cohort (D’ = 1.0, = 0.87-
0.92). In 3’ direction the LD breaks down, and a second
block of very strong LD (D’ = 1.0, * > 0.98) is observed
for rs10231985, rs11487138 and rs11761434. The
remaining SNPs covering exon 2 to IVS10 (rs1882094,
rs3735006, rs1962039, rs2402970, rs6948697 and
rs10500120) showed lower LD coefficients (D’) and r?
values (Figure 1).

In TFAM two SNPs showed association with motor
AO among which, rs11006132 in the 3’ region of the
gene was most strongly associated (0.729 to 0.733; p =
0.015, Table 2). Including the genotypes of the coding
Ser12Thr polymorphism (rs1937) in the model for AO
did not increase the R* statistic. The TFAM variations
were in moderate LD with one another (D’ < 1.0, #* =
0.34-0.47), only the associated variations rs1049432 and
rs11006132 in the 3’ region are highly correlated with
each other (pairwise r* values >0.97). All other selected
polymorphisms in NRF2, SIRT1, PGClbeta, MFN2 and
PPARgamma showed no significant influence on the
AO.

After consideration of SNP genotypes individually, a
multivariable model was built in order to determine if a
significant proportion of the variation in AO could be
explained by the joint effect of mitochondrion-related
modifier variations and their interactions. NRF-1 and
TFAM SNPs showing significant main effects (nominal
P < 0.05) together with the previously analysed modifier
variations in PPARGCIA (rs7665116) and COI
(C7028T, defining mt haplogroup H) were included in a
multivariable model (Table 2). Here, the main effects
together with all possible pairwise interactions of the
SNPs were included in a forward selection process. The
final multivariable model increased the R* statistic from
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Table 1 Candidate gene and SNP characteristics
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Gene Chromosome SNPs Selection Criteria
ESRRA 11g13.1 rs3217060 23 bp microsatellite repeat
located in promoter region
MFN2 1p36.22 rs3753579 located in promoter region
NRF-1 7932.2 157781972, rs6949152 previously reported association
[29]
151882094, rs3735006, non-synonymous SNPs
rs10275661, rs10225103, rs10268267, rs6962005, rs10231985, rs11487138, tag SNPs using public databases
1s11761434, rs1962039, 152402970, rs6948697, rs10500120 (dbSNP)
NRF- GABPA 219213 rs2829897 (A291V), rs2829898 (W323X), rs2829900 (E345K) non-synonymous SNPs
2
GABPBI1 15g21.2 1512594956, rs8031031 previously reported association
[39]
PPARGCI1B 50331 157732671 (A164P), rs11959820 (R2539) non-synonymous SNPs
PPARG 3p25.2 rs1801282 (P12A) non-synonymous SNP
152938392, 153856806 tag SNPs using public databases
(dbSNP)
SIRT1 10g21.3 153758391, rs7069102 previously reported association
(40]
rs10997860, rs2273773, 1535461348 tag SNPs using public databases
(dbSNP)
TFAM 10g21.1 rs1937 (S12T) non-synonymous SNP

154390300, rs10826178, rs1049432, rs11006132

tag SNPs using public databases
(dbSNP)

0.729 to 0.747 and explained 4.8% additional residual
variance in the motor AO of HD (Table 3).

When correlating the ATP concentrations with the
NRF-1 and TFAM genotypes, HD patients carrying at
least one rare NRF-1 rs7781972 allele showed signifi-
cantly lower ATP concentrations (487.1 + 179 ng, n = §;
436.7 + 135.1 ng, n = 4) than homozygous individuals
carrying the frequent allele (600.6 + 48.7 ng, n =9, p =

Table 2 Details of SNPs included in the multivariable model

0.03; Figure 2). Considering an additive allele effect the
ATP levels were negatively correlated with the rare
NRF-1 rs7781972 allele (Pearson coefficient -0.478, p <
0.029). Yet, this effect was not obvious in a group of 38
healthy controls (529 + 175.5 ng, n = 14; 487.4 + 148
ng, n = 22 vs. 492 + 120.5 ng, n = 2, Pearson coefficient
-0.130, p < 0.437). In both groups the ATP levels were
not significantly correlated with the mtDNA:nDNA

Gene SNP Chromosome Allele Type Biological Processes AR? Standardized beta
Freq.
Coefficients t P *
NRF-1 157781972 7932.2 189/ IVS1 control of nuclear genes required for respiration, 004 -066 -256 011
170/42 heme biosynthesis, and mtDNA transcription and
replication
16949152 289/ IVS1 005 -076 -294 004
101/11
TFAM rs1049432 10921.1 239/ 3’ near gene mtDNA transcription and maintenance factor 002 -053 -204 042
145/17
rs11006132 208/ 3' near gene 004 -063 -245 015
170/23
PPARGCIA 157665116 4p15.2 309/ IVS2 transcriptional coactivator, regulation of key 004 -065 -252 012
82/10 mitochondrial genes
corn C7028T mt7028 207/ mitochondrial ~ component of the respiratory chain, catalyses the .003 -057 -2.22 027
194 reduction of oxygen to

The variability in motoric AO attributable to the CAG repeat length was assessed by linear regression using the logarithmically transformed onset age as the
dependent variable and genotypes as independent variables. Delta (A) R? quantifies the relative improvement of the regression model when the genotypes are
considered in addition to the CAG repeats. * nominal P-values (not adjusted for multiple testing)
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Figure 1 Graphical representation of single-nucleotide polymorphisms (SNPs) in relation to the exon-intron structure (top) and the
Haploview pairwise linkage disequilibrium (LD) structure of part of NRF-1 (bottom). Exons are indicated by solid black boxes, and the
numbered vertical lines indicate positions of the SNPs analysed in NRF-1. Haploview plot showing pairwise LD (D' values) for all 15 SNPs based
on genotypes of 401 HD patients of the study. Fach square plots the level of LD between a pair of SNPs, comparisons between neighboring
SNPs are arranged along the first line under the names of the SNPs. Dark grey coloring indicates strong LD, medium grey shading indicates less
strong LD, light grey indicates intermediate LD, and white indicates weak LD. LD blocks are framed in black and were classified according to

ratios (HD: Spearman coefficient -0.383, p < 0.095, con-
trols: 0.134, p < 0.417). Regarding the entire patient
cohort (n = 401), the mtDNA content was also not asso-
ciated with age, sex, AO, disease duration, CAG repeat
lengths or any other genotype.

Discussion

Here, we performed an association study for AO modi-
fiers of HD, based on a candidate gene approach includ-
ing variations in PGC-lalpha target genes involved in
the regulatory network that controls mitochondrial

Table 3 SNP-SNP interaction included in final multivariable model

Interaction R? Adjusted R? AR? Standardized beta
Coefficients t P
CAG 730 729 -.864 -34.23 <0.0001
NRF-1 rs6949152 * CO1 C7028T 739 738 009 -090 -3.55 <0.0001
NRF-1 rs7781972 * TFAM rs11006132 745 743 014 -077 -3.03 <0.003
PPARGCIA rs7665116 749 747 018 -069 -2.72 <0.007

A multivariable model including a total of four interactions was built in the total HD cohort using forward selection. With the addition of each SNP-SNP
interaction, along with each SNP's respective main effect, the variability in adjusted log motor AO increased (assessed by adjusted R?). The final multivariable

model explains 4.8% additional residual variance in HD motor AO.



Taherzadeh-Fard et al. Molecular Neurodegeneration 2011, 6:32
http://www.molecularneurodegeneration.com/content/6/1/32

800,00

700,00

600,00

ATP

500,00

400,00

300,00

T T T
TTheg TAn=8 Al =4
NRF-1rs7781972

Figure 2 ATP concentration in HD patients. Box plot shows
medians, quartiles and extreme values. The mean ATP levels of HD
patients with the TT genotype (600.6 + 48.7 ng, n = 9) and those
carrying at least one rare NRF-1 rs7781972 allele (TA and AA, 487.1 +
179 ng, n = 8;436.7 + 135.1 ng, n = 4) were significantly different
(p = 0.03 two-sample t test).

function. We found that SNPs in NRF-1 and TFAM
showed nominally significant association with AO of
HD.

The NRFs and - most importantly NRF-1 - are potent
stimulators of the expression of nuclear genes required
for mitochondrial respiratory function [23-25]. NRF-1
directly regulates the expression of several nuclear
encoded genes involved in the expression, assembly and
functions of the respiratory chain or indirectly regulates
the mitochondrion-encoded cytochrome c oxidase
(COX) subunit genes by activating TFAM [23-25].
Beyond the transcriptional expression of the respiratory
chain NRF-1 is also supposed to control the key compo-
nents of the protein import and assembly machinery,
thus suggesting a broader meaning for NRF-1 in orches-
trating events in the mitochondrial biogenesis [26]. Yet,
a direct functional effect of the associated polymorph-
isms remains to be determined. Comparing the mtDNA
content with various clinical and genetic parameters of
the HD patients did not yield statistically significant
results. Yet, the interpretation of these results has to be
considered with caution, since expressing the mitochon-
drial DNA concentration as a ratio to nuclear DNA var-
ies dependent on blood-processing protocols [27].

Given the relatively small sample sizes, the additive
allele effect of NRF-1 rs7781972 on the ATP levels in
HD patients should be regarded as preliminary. Never-
theless, these data could be indicative of genotype-
dependent variation in the response to chronic energy
stress conditions. Since high-intensity exercise also
causes metabolic stress, physical activity on a very high
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level for prolonged time implies, amongst other effects,
increased oxidative stress and the consequences of cellu-
lar dysfunction due to insufficient supply of ATP [28].
In this context, it is interesting to note that NFR-1 gen-
otypes - particularly regarding rs6949152 - significantly
influence phenotype traits indicative of endurance capa-
city in humans and their trainability [29].

Deviation in the response of certain NRF-1 genotypes
on chronic energy stress conditions (endurance exercise
training, but also neurodegeneration) could therefore
explain the association with the variation in the onset
age of HD. The same could apply to the other geno-
types, since TFAM, PPARGCIA and mt haplogroups
have also been described to be associated with differ-
ences in physical capabilities and training-induced
effects [30-34]. Recently, Chaturvedi et al. [21] demon-
strated that chronic energy deprivation in mice by
administering the catabolic stressor B-guanidinopropio-
nic acid increased expression of PGC-lalpha, NRF-1
and TFAM. Yet, this pathway, leading to mitochondrial
biogenesis, increased mtDNA and numbers of mito-
chondria in response to energetic stress, was blocked in
HD transgenic mice [21]. Furthermore, when combining
the newly detected modifier variations in NRF-1 and
TFAM with the previously described modifier variations
in PPARGCIA and mt haplogroup H, in our study
much more variability in AO can be explained than in
seperate analyses. The combination of the polymorph-
isms defines nearly 5% of the unexplained variance in
residual AO in our sample, thus highlighting their coor-
dinately regulated metabolic interplay and the possible
involvement in pathogenic HD conditions.

The important role of PGC-lalpha in the regulation of
mitochondrial function together with the association
between mitochondrial dysfunction and HD pathogenesis
implies that activation of PGC-lalpha could have critical
potential in the treatment of HD. Yet, pharmacological
interventions directly aimed at PGC-1alpha have to over-
come inherent limitations of targeting a coactivator pro-
tein [35]. Therefore, targeting the regulators of PGC-
lalpha, as already demonstrated for its down-stream tar-
get ERRalpha and the NAD"-dependent deacetylase
SIRT1, may represent an alternative approach [36].

Conclusions

Polymorphisms in NRF-1 and TFAM influence the AO
of HD. Furthermore, we have demonstrated evidence for
gene-gene (SNP-SNP) interactions among these SNPs
and the modifier variations in PPARGCIA and COl,
thus providing further genetic evidence that impaired
mitochondrial biogenesis in response to energetic stress
plays a critical role in the pathogenesis of HD. These
data also support the idea that upstream transcriptional
activators of PGC-lalpha may be useful in the
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treatment of HD. However, since no multiple testing
correction was applied, caution is necessary in interpret-
ing. Further studies will be necessary to replicate these
associations and to elucidate the pathways through
which the modifier variations exert their effects on
metabolic deficits underlying HD pathogenesis and
potentially other late-onset diseases.

Methods

Study population

The study population has been described before [12]
and consisted of 401 unrelated German patients (208
men and 193 women) with the clinical and genetic diag-
nosis of HD, recruited from the Huntington Center
NRW, Bochum (Germany). AO was defined as the age
at which, according to the experienced neurologists of the
Center, the first motor signs of HD appeared (motor AQ).
The expanded trinucleotide repeats ranged from 40 to 66
with a mean (+SD) of 44.48 + 3.8 CAGs, motor AO ran-
ged from 16 to 76 years, with an onset (mean = SD) of
44.9 + 11.6 years. The normal CAG blocks ranged from
from 10 to 32 with a mean (+SD) of 18.24 + 2.8 CAGs.
HD CAG repeat sizes were determined by polymerase
chain reaction using an assay counting the perfectly
repeated (CAG), units. The study was performed in a
manner that fully complies with the Code of Ethics of
the World Medical Association (Declaration of Helsinki)
and was approved by the ethics review board of the
Ruhr-University Bochum (Germany).

Candiate gene and SNP selection strategy

In order to estimate a possible modifier effect conferred
by individual SNPs, as well SNP-SNP interactions, we
studied SNPs from 9 candidate genes contributing to
the PGC-1alpha family regulatory network in mitochon-
drial biogenesis (Table 1). The candidate genes and
SNPs were selected using the available published evi-
dence at the beginning of the project. SNPs were chosen
based on a number of different criteria including the
published data, non-synonymous SNPs and tag SNPs
from public databases such as dbSNP [http://www.ncbi.
nlm.nih.gov/SNP].

Genotyping

We studied a total of 15 SNPs in NRF-1 (rs10275661,
rs10225103, rs7781972, 1rs10268267, rs6962005,
rs6949152, rs10231985, rs11487138, rs11761434,

rs1882094, rs3735006, rs1962039, rs2402970, rs10500120,
rs6948697), three in GABPA (NRF-2a, rs2829897,
rs2829898, rs2829900), two in GABPBI1 (NRF-2b,
rs12594956, rs8031031), five in TFAM (rs4390300,
rs1937, rs10826178, rs1049432, rs11006132), five SNPs in
SIRTI (rs3758391, rs10997860, rs7069102, rs2273773,
rs35461348), two in PPARGCIB (rs11959820, rs7732671),
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one in MFN2 (rs3753579), three in PPARY (rs1801282,
rs2938392, rs2938392) and one in ESRRA (rs3217060).
Genotyping was performed by PCR-RFLP techniques and
commercially available TaqMan genotyping assay
(Applied Biosystems). For fragment analysis of the 23 bp
microsatellite repeat (ESRRA23, rs3217060) in the pro-
moter of ESRRA and the insertion-deletion (INDEL) poly-
morphism (rs35461348) in SIRT1 we used fluorescence
5’FAM labelled, tailed oligonucleotide added to the
5’-part of the sequence specific primer as described
before [37]. All primers were designed with the Primer
Express 2.0 Software (Applied Biosystems, Foster City,
USA). All other details of the methodology and primer
sequences are available upon request.

mtDNA Quantification

Quantitative real-time PCR (qPCR) was used for mito-
chondrial DNA content measurement using an Applied
Biosystem StepOne cycler (Applied Biosystems, Foster
City, CA). Correction for mtDNA quantity was per-
formed by simultaneous measurement of a single copy
nuclear RNAseP gene. Quantification of nuclear (n) DNA
was done with a commercial kit (RNAseP, Control
Reagents, Applied Biosystems P/N 4316844) together
with nDNA-specific fluorescent probe which was labelled
internally using VIC fluorescent dye. Two primers and
one probe used for mtDNA 12S ribosomal RNA quantifi-
cation which were as here: mtF805 (5’CCACGGGAAA-
CAGCAGTGATT3), mtR927 (5CTATTGACTTGGG
TTAATCGTGTGA3’) and TagMan probe (Applied
Biosystems) (6FAM-5TGCCAGCCACCGCG3’-MGB)
(labelled at the 5 end with a fluorescent reporter,
6FAM). The 10-uL PCR reaction contains 1 x TaqgMan
Universal PCR Master Mix (Applied Biosystems P/N
4304437), 0.5 pL of PDARs RNAseP and 112 nM of each
mtDNA primer, 125 nM of mtDNA TaqMan probe, and
25 ng of total genomic DNA extract. PCR conditions
were 2 min at 50°C and 10 min at 95°C, followed by
40 cycles of 15 sec of denaturation at 95°C and 60 sec of
annealing/extension at 60°C.

In order to determine the quantities of mtDNA and
nDNA, the average threshold cycle number (Ct) values
of the nDNA and mtDNA were obtained from each
case. Measurements were performed in triplicates and
presented as means. The level of mtDNA was calculated
using the delta Ct (ACt) of average Ct of mtDNA and
nDNA (ACt = CtmtDNA-CtnDNA) in the same well as
an exponent of 2 (2ACt). To test reproducibility a con-
stant reference sample was analysed in each run.

Assessment of intracellular ATP concentrations in
peripheral leukocytes

Sodium heparin blood was obtained from 21 HD
patients and 38 age-/sex matched healthy controls
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devoid of acute infections (clinical aspect, white blood
cell count, C-reactive protein). Assessment of intracellu-
lar ATP concentrations was performed as described
before [13].

Statistical analysis

Variability in AO attributable to the CAG repeat num-
ber was controlled by linear regression using the loga-
rithmically transformed AO as the dependent variable
SNP genotypes as independent variables. All analyses
were performed assuming a dominant or an additive
effect for each polymorphism. In the dominant model,
both, the heterozygous and the rarely observed homozy-
gous variation were combined. In the additive model,
both, rare homozygous and heterozygous variation
effects were estimated using two dummy variables. We
used a two-stage approach in order to identify both
main and interactive genetic effects associated with the
motor AO. In the first stage we conducted association
analyses for SNP main effects. After this, we performed
multivariable SNP modelling with associations passing
the first stage of analysis as well as two previously pub-
lished modifier SNPs in PPARGCI1A (rs7665116) and
CO1 (C7028T) [12,13]. The results were not adjusted
for multiple testing as a Bonferroni adjustment would
have been very conservative when taking into account
that the SNPs were not independent, rather they were
in tight LD. Hardy-Weinberg equilibrium (HWE) was
tested for each SNP. Relationships between variables
were determined by Pearson’s correlation coefficient.
The strength of LD between pairs of SNPs was mea-
sured as D’ by using HAPLOVIEW [http://www.broad.
mit.edu/mpg/haploview/]. LD blocks were inferred from
the definition proposed by Gabriel et al. [38] as imple-
mented in HAPLOVIEW with D’ confidence bounds of
0.7-0.92. Comparison of dependent variables was per-
formed using unpaired t tests with nominal significance
assigned when p < 0.05. SPSS Ver.18.0 (SPSS Inc.) was
used for all statistical analyses.
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