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Abstract

The amyloid precursor protein (APP) plays a central role in the pathophysiology of Alzheimer’s disease in large part
due to the sequential proteolytic cleavages that result in the generation of b-amyloid peptides (Ab). Not
surprisingly, the biological properties of APP have also been the subject of great interest and intense investigations.
Since our 2006 review, the body of literature on APP continues to expand, thereby offering further insights into the
biochemical, cellular and functional properties of this interesting molecule. Sophisticated mouse models have been
created to allow in vivo examination of cell type-specific functions of APP together with the many functional
domains. This review provides an overview and update on our current understanding of the pathobiology of APP.

Introduction
Alzheimer’s disease (AD) is the most common cause of
dementia and neurodegenerative disorder in the elderly.
It is characterized by two pathological hallmarks: senile
plaques and neurofibrillary tangles, as well as loss of neu-
rons and synapses in selected areas of the brain. Senile
plaques are extracellular deposits composed primarily of
amyloid b-protein (Ab), which is a 40-42 amino acid long
peptide derived by proteolytic cleavages of the amyloid
precursor protein (APP), with surrounding neuritic
alterations and reactive glial cells. Ab has taken a central
role in Alzheimer’s disease research for the past two dec-
ades in large part because of the amyloid cascade hypoth-
esis which posits that Ab is the common initiating factor
in AD pathogenesis. Because of this, the processing of
APP and generation of Ab from APP have been areas of
substantial research focus by a large number of labora-
tories. By comparison, whether full-length APP or other
non-Ab APP processing products play a significant role
in AD or contribute to other neurological disorders has
received somewhat less consideration. For example, it is
unclear if the mutations in the APP gene found in the
hereditary form of familial AD and the related hereditary
amyloid angiopathy with cerebral hemorrhage (http://
www.molgen.ua.ac.be/ADMutations/) are pathogenic
solely because of perturbed Ab properties. However,

increasing evidence supports a role of APP in various
aspects of nervous system function and, in view of the
recent negative outcome of clinical trials targeting Ab
production or clearance, there is renewed interest in
investigating the physiological roles of APP in the central
nervous system (CNS) and whether perturbation of these
activities can contribute to AD pathogenesis.
This review will update some of the recent findings on

the physiological properties of APP. We start with a gen-
eral overview of APP. Because APP consists of multiple
structural and function domains, we will focus our review
by addressing the properties of the full-length APP as
well as APP extracellular and intracellular domains.
Finally, we provide an update on the current knowledge
concerning the APP function in vivo, especially recent
findings from the APP conditional knockout mice and
knock-in alleles expressing various APP domains. For
discussions on the pathophysiology of Ab, there are
many excellent reviews that summarize this area in detail
but is otherwise beyond the scope of this article.

A. APP Overview
a) The APP Family
APP is a member of a family of conserved type I mem-
brane proteins. The APP orthologs have been identified
in, among others, C. elegans [1], Drosophila [2,3], Zebra-
fish [4] and Xenopus Laevis [5,6]. Three APP homologs,
namely APP [7,8], APP like protein 1 (APLP1) [9] and 2
(APLP2) [10,11], have been identified in mammals
(Figure 1). These proteins share a conserved structure
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Figure 1 Comparison of protein sequences of C. elegans APL-1, Drosophila APPL, Zebrafish APPa, Xenopus APP-A and the human APP,
APLP1 and APLP2. Purple sequences indicate identical homology while green references similar amino acids. Homologous regions include the
E1 domain (light blue line), E2 domain (yellow line) and sequences within the C-terminus such as the conserved Thr site (arrow head) and
YENPTY motif (black box). The transmembrane domain and Ab sequence are noted by the blue and red boxes respectively.
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with a large extracellular domain and a short cytoplasmic
domain. There are several conserved motifs, including
the E1 and E2 domains in the extracellular region and
the intracellular domain, the latter exhibiting the highest
sequence identity between APP, APLP1 and APLP2. Of
interest, the Ab sequence is not conserved and is unique
to APP. Additionally, the APP and APLP2 genes, but not
APLP1, were identified in Xenopus Laevis, suggesting
that the first gene duplication resulted in APP and pre-
APLP in the evolution of the APP superfamily, prior to
the separation of mammals and amphibians [12]. Thus,
APLP1 diverged from the APLP2 gene such that APLP1
does not contain two additional exons present in both
APP and APLP2, one of which encodes a Kunitz-type
protease inhibitor domain. With this history, it is not sur-
prising that APLP1 is found only in mammals and, unlike
APP and APLP2, it is expressed only in brain. However,
given the sequence identity between the three genes, it is
also not unexpected that the mammalian APP homologs
play redundant activities in vivo (discussed in “The in
vivo Function of APP”). The functional conservation of
APP across species is also documented by the partial res-
cue of the Drosophila Appl null behavioral phenotype by
human APP [3]. These observations indicate that the
conserved motifs, rather than the non-conserved Ab
sequence, likely underline the physiological functions
among the APP species.
b) APP Expression
The mammalian APP family of proteins is abundantly
expressed in the brain. Similar to Drosophila Appl [13],
APLP1 expression is restricted to neurons. However,
although highly enriched in the brain, APP and APLP2
are ubiquitously expressed outside of the brain. The
human APP gene, located on the long arm of chromo-
some 21, contains at least 18 exons [14,15]. Alternative
splicing generates APP mRNAs encoding several iso-
forms that range from 365 to 770 amino acid residues.
The major Ab peptide encoding proteins are 695, 751,
and 770 amino acids (referred to as APP695, APP751
and APP770). APP751 and APP770 contain a domain
homologous to the Kunitz-type serine protease inhibi-
tors (KPI) in the extracellular sequences, and these iso-
forms are expressed in most tissues examined. The
APP695 isoform lacks the KPI domain and is predomi-
nately or even exclusively expressed in neurons and
accounts for the primary source of APP in brain [16].
For example, there is a burst of increased expression of
APP695 during neuronal differentiation. However, fol-
lowing brain injury, expression of the APP751/770 iso-
forms is substantially increased in astrocytes and
microglial cells [17,18]. The reason and functional sig-
nificance for this apparent tissue-specific alternative spli-
cing is poorly understood.

c) APP Processing
APP is processed in the constitutive secretory pathway and
is post-translationally modified by N- and O-glycosylation,
phosphorylation and tyrosine sulfation (reviewed in [19]).
Full-length APP is sequentially processed by at least three
proteases termed a-, b- and g-secretases (Figure 2). Clea-
vage by a-secretase or b-secretase within the luminal/
extracellular domain results in the shedding of nearly the
entire ectodomain to yield large soluble APP derivatives
(called APPsa and APPsb, respectively) and generation of
membrane-tethered a- or b-carboxyl-terminal fragments
(APP-CTFa and APP-CTFb). The APP-CTFs are subse-
quently cleaved by g-secretase to generate either a 3 kDa
product (p3, from APP-CTFa) or Ab (from APP-CTFb),
and the APP intracellular domain (AICD).
The major neuronal b-secretase is a transmembrane

aspartyl protease, termed BACE1 (b-site APP cleaving
enzyme; also called Asp-2 and memapsin-2) [20-24],
and cleavage by BACE1 generates the N-terminus of
Ab. There is an alternative BACE (b’) cleavage site fol-
lowing Glu at position +11 of the Ab peptide [25]. In
addition, there is a BACE2 homolog which is expressed
widely but does not appear to play a role in Ab genera-
tion as it appears to cleave near the a-secretase site
[26,27]. Of note, cathepsin B has also been proposed to
act as a b-secretase [28,29], but whether generation of
Ab in brain requires the coordinated action of both
BACE1 and cathepsin B is not known but unlikely given
the near total loss of Ab in BACE1 deficient mice
[23,24,30].
While cleavage at the b-site is specific to BACE1 and

possibly cathepsin B, it was initially believed that a
number of proteases, specifically members of the
ADAM (a disintegrin and metalloprotease) family of
proteases including ADAM9, ADAM10 and ADAM17
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Figure 2 Schematic diagram of APP processing pathways (not
drawn to scale). Ab domain is highlighted in red. For simplicity,
only one cleavage site is shown for each enzyme. EC: extracellular;
TM: transmembrane; IC: intracellular.
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are candidates for the a-secretase (reviewed in [31]). It
was reported that APP a-secretase cleavage can be sti-
mulated by a number of molecules, such as phorbol
ester or via protein kinase C activation, in which case,
this so-called regulated cleavage is mediated by ADAM
17, also called TACE (tumor necrosis factor a-convert-
ing enzyme) [32,33]. However, recent studies indicated
that constitutive a-secretase activity is likely to be
mediated by ADAM10 [34]. Interestingly, ADAM10 is
transcriptionally regulated by sirtuins [35], thus provid-
ing a mechanism where augmentation of a-secretase
activity competes for b-secretase cleavage to lower gen-
eration of full length Ab peptide. However, it should be
noted that cleavage of APP by a-secretase processing
only precludes the formation of an intact full length Ab
peptide. Although this latter event is commonly called
the non-amyloidogenic pathway, it is unfortunately a bit
of a misnomer because truncated Ab (p3 peptide) from
17-42 is also deposited in brains of AD and Down Syn-
drome patients [36-38], indicating that shorter Ab pep-
tides starting at the a-secretase site may contribute to
some aspects of AD-associated amyloid pathology
[39,40].
As regards to g-secretase cleavage that releases Ab

from the membrane, this activity is executed by a high
molecular weight complex consisting of presenilin (PS),
nicastrin, anterior pharynx defective (APH1) and prese-
nilin enhancer (PEN2) (reviewed in [41,42]). Although
these four proteins form the mature g-secretase com-
plex, it appears that the core g-secretase activity resides
within presenilin itself functioning as an aspartyl pro-
tease [43,44]. In addition to generating Ab peptides of
different lengths, g-secretase appears to cleave APP in
multiple sequential steps [45-47]. An initial cleavage,
termed ε-cleavage, taking place 3-4 residues from the
cytoplasmic membrane face begins this process [48,49].
Elegant studies by Ihara and colleagues [50-53] have led
to a model whereby sequential cleavages taking place
every three residues along the a-helical face of the
transmembrane domain of APP shortens the C-terminus
to ultimately result in the release of Ab.
It is worth mentioning that none of the secretases

have unique substrate specificity towards APP. Besides
APP, several transmembrane proteins such as growth
factors, cytokines and cell surface receptors and their
ligands, undergo ectodomain shedding by enzymes with
a-secretase activity (see [54] for an overview). The rela-
tively low affinity of BACE1 toward APP led to the sug-
gestion that APP is not its sole physiological substrate.
Indeed, neuregulin-1 (NRG1) now appears to be a bona
fide substrate of BACE1 such that the shedding of
NRG1 initiated by BACE1 cleavage would direct
Schwann cells to myelinate peripheral nerves during
development [55,56]. Similarly, g-secretase has been

reported to cleave more than 50 type I membrane pro-
teins in addition to APP (reviewed by [57]), an event
that requires an initial ectodomain shedding event,
usually by a-secretase-mediated cleavage. While this
cleavage in some cases has been demonstrated to initiate
intracellular cell signaling, as exemplified by the
g-secretase dependent Notch activation, whether this
also applies to APP and other g-secretase substrates
remains unconfirmed (see below and discussed in [58]).

B. The Full-length APP
a) Cell Surface Receptor
Ever since the cloning of APP cDNA, APP has been
proposed to function as a cell surface receptor. Further,
the analogy between the secondary structures and pro-
teolytic processing profiles between the Notch receptor
and APP also suggests that APP could function as a cell
surface receptor similar to Notch (reviewed in [59]). In
support of this hypothesis, Yankner and colleagues
reported that Ab could bind to APP and thus could be
a candidate ligand for APP [60], a finding that has been
replicated by others [61]. Another piece of evidence
came from Ho and Sudhof (2004) who showed that the
APP extracellular domain binds to F-spondin, a neuron-
ally secreted glycoprotein, and this interaction regulates
Ab production and downstream signaling [62]. Similarly,
the Nogo-66 receptor has been shown to interact with
the APP ectodomain and by which means affect Ab pro-
duction [63]. Another interacting protein recently
reported is Netrin-1, a soluble molecule with multiple
properties including axonal guidance through chemoat-
traction and tumorigenesis [64]. In this instance, addi-
tion of netrin-1 to neuronal cultures led to reduction in
Ab levels but also increased APP-Fe65 complex forma-
tion, thus suggesting a role in cell signaling (see below).
Recently, work from the D’Adamio group showed that
BRI2 could function as a putative ligand or co-receptor
for APP and modulates APP processing [65,66]. Finally,
the fact that the extracellular domains of the APP family
of protein could potentially interact in trans (discussed
below) suggest that APP molecules can interact in a
homophilic or heterophilic manner between two cells.
Overall, although a number of APP interacting proteins
have been identified, it is unclear whether any of the
candidates are bona fide ligands and definitive evidence
supporting a physiological role of APP to function as a
cell surface receptor is still lacking.
b) Cell and Synaptic Adhesion
The E1 and E2 regions in the extracellular domain of
APP have been shown to interact with extracellular
matrix proteins and heparin sulfate proteoglycans
(reviewed in [67]), supporting its role in cell-substratum
adhesion. The same sequences have also been implicated
in cell-cell interactions. Specifically, X-ray analysis
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revealed that the E2 domain of APP could form parallel
or antiparallel dimers [68], the latter structure would
imply that there is a potential to function in trans-
cellular adhesion. Indeed, cell culture studies support
the homo- or hetero-dimer formation of the APP family
members, and trans-dimerization was shown to promote
cell-cell adhesion [69]. It was further shown that heparin
binding to the E1 or E2 region would induce the forma-
tion of APP dimerization [70]. Besides the E1 and E2
regions, recent studies suggest that homodimerization
can be promoted by the GxxxG motif near the luminal
face of the membrane [71,72]. Interestingly, mutagenesis
of the glycine residues in this motif resulted in produc-
tion of truncated Ab peptides of 34, 35, and 38 amino
acids in length [71]. On the other hand, it is unclear
whether these changes in Ab generation are strictly
related to APP dimerization because forced dimerization
of APP with a bifunctional cross-linking agent did not
lead to the same changes in Ab profile [73]. In addition,
while trans-dimerization would be expected to play a
role in cell-cell interactions or adhesion, it is less clear
what the cellular consequences of cis-homodimerization
of APP are, aside from the alterations in Ab peptides
noted earlier. One possible role of dimerization is
through downstream activity of the AICD peptide that
is released after ε-cleavage, but support for this idea
remains controversial. Interestingly though, using var-
ious reporter constructs, the subcellular localization of
dimerized APP and APLP2 was reported to be different
to that of APLP1 [74], suggesting that there are subtle
functional roles in homo- or heterodimerization of the
APP gene family that remain to be elucidated. Lastly,
near the beginning of the Ab sequence (and near the
C-terminus of APPs) is a “RHDS” tetra-peptide motif
that also appears to promote cell adhesion. It is believed
that this region acts in an integrin-like manner by its
homology to the “RGD” sequence [75]. In this regard, it
is interesting that APP colocalizes with integrins on the
surface of axons and at sites of adhesion [76,77]. In sup-
port of these earlier observations, it was recently shown
that APP and integrin-b1 do interact [78] and that
siRNA mediated silencing of APP during development
led to defects in neuronal migration that may be related
to cell adhesion [79], potentially to extracellular matrix
proteins, with or without participation by integrins.
More compelling evidence of trans-APP dimerization

was recently obtained in a primary neuron/HEK293
mixed culture assay. In this culture system, it was
reported that trans-cellular APP/APP interaction induces
presynaptic specializations in co-cultured neurons [80].
These studies identified APP proteins as a novel class of
synaptic adhesion molecules (SAM) with shared bio-
chemical properties as neurexins (NX)/neuroligins (NL),
SynCAMs, and leucine-rich repeat transmembrane

neuronal proteins (LRRTM) [81-86]. Like NX/NL and
SynCAM-mediated synaptic adhesion in which extracel-
lular sequences engage in trans-synaptic interactions and
the intracellular domains recruit pre- or postsynaptic
complexes (reviewed in [87]), both the extracellular and
intracellular domains of APP are required to mediate the
synaptogenic activity. Interestingly, using an affinity
tagged APP molecule expressed in transgenic mice, the
identified “APP-interactome” consisted of many proteins,
such as Bassoon and neurexin, that are synaptic in locali-
zation [88]. Whether APP trans-synaptic interaction is
involved in the recruitment of these synaptic molecules
and whether APP coordinates with other synaptic adhe-
sion complexes such as neurexin are interesting ques-
tions that warrant further investigation.

C. The APP Ectodomain
Various subdomains can be assigned to the APP extra-
cellular sequences based on its primary sequences and
structural studies (Figure 1) (reviewed in [89,90]). These
include the E1 domain, which consists of the N-terminal
growth factor-like domain (GFLD) and the metal (cop-
per and zinc) binding motif, the KPI domain present in
APP751 and APP770 isoforms, and the E2 domain
which includes the RERMS sequence and the extracellu-
lar matrix components. We address below the functional
studies associated with the APP extracellular domain.
a) Synaptotrophic and Neuroprotective Functions
A number of publications have pointed to a neuro-
trophic role of the APP extracellular domain in both
physiological and pathological settings, and this function
may be linked to its adhesive properties described above
either in its full-length form or as a secreted molecule
(i.e. APPs) following ectodomain shredding. Thus, APP
may exert these activities in both autocrine and para-
crine fashions. Of note, APP undergoes rapid antero-
grade transport and is targeted to the synaptic sites
[16,91-93], where levels of secreted APP coincide with
synaptogenesis [94]. APP expression is upregulated dur-
ing neuronal maturation and differentiation [95,96]. Its
expression is also induced during traumatic brain injury
both in the mammalian system and in Drosophila
[18,97-99].
The crystal structure of the E1 domain shows similari-

ties to known cysteine-rich growth factors and thus this
domain in the N-terminus of APP has been linked to
growth factor-like domain (GFLD) that is seen in the
epidermal growth factor receptor [100]. One of the ear-
liest indications of APP function came from the obser-
vation that assessing fibroblasts treated with an
antisense APP construct grew slower and the growth
retardation can be restored by treatment with secreted
APPs [101]. The active domain was subsequently
mapped to a pentapeptide domain “RERMS” in the E2
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domain [102]. The activity is not limited to fibroblasts
as infusion of this pentapeptide or APPsa into the brain
resulted in increased synaptic density and better mem-
ory retention, while injection of APP antibodies directly
into the brain led to impairment in behavioral tasks in
adult rat [103]. Application of APPsa resulted in
reduced neuronal apoptosis and improved functional
recovery following traumatic brain injury (TBI)
[103-105]; it also antagonized dendritic degeneration
and neuronal death triggered by proteasomal stress
[106]. These findings are corroborated by additional
reports showing that reduction or loss of APP is asso-
ciated with impaired neurite outgrowth and neuronal
viability in vitro and synaptic activity in vivo [107-109].
Recent studies have further substantiated these early
findings, showing for example that APPs regulates
NMDA receptor function, synaptic plasticity and spatial
memory [110], and that the growth promoting property
may be mediated by the down-regulation of CDK5 and
inhibition of tau hyperphosphorylation by APPsa [111].
Finally, a number of studies have reported the effects of
APPsa on stem cells. Caille et al. first demonstrated the
presence of binding sites for APPs in epidermal growth
factor (EGF)-responsive neural stem cells in the subven-
tricular zone in the adult rodent brain [112]. In this
context, APPsa acts as a co-factor with EGF to stimu-
late the proliferation of these cells both in neurospheres
in culture and in vivo. Subsequently, it was reported
that APPs promoted neurite outgrowth in neural stem
cells where APLP2 but not APLP1 was redundant to
APP [113]. However and intriguingly, stem cells from
APP/APLP1/APLP2 triple knockout embryos did not
show any defects in neuronal differentiation in vitro
[114]. Furthermore, in APP transgenic mice, overexpres-
sion of wild type APP resulted in decreased neurogen-
esis but promoted survival of newly generated cells
[115]. At the moment, it is unclear how all these find-
ings can be reconciled in a parsimonious picture of APP
trophic functions.
Li et al. recently uncovered a novel role for APPs to

regulate gene expression likely through binding to an
unknown receptor [116]. In particular, they identified
transthyretin (TTR) and Klotho as downstream targets
of APP that are mediated by APPsb. These targets are
of direct relevance to AD as TTR has been shown to
bind and sequester Ab [117-119], and Klotho has been
extensively implicated in the aging process [120-122].
The regulation of TTR and Klotho expression by APPsb
offers the intriguing possibility for a self-protective
mechanism in the APP processing pathway to counter
the production and toxicity of Ab during aging. Because
APPs levels have been reported to be reduced in indivi-
duals with AD [123-126], the results support the view
that the loss of trophic activity or the defence

mechanism of APPs may contribute at least in part to
the neurodegeneration in AD.
Lastly and perhaps related to the growth promoting

property of APP, an area that has come to light con-
cerning APP function involves carcinogenesis, coinciding
with the recent observation of an inverse association
between cancer and AD [127]. Previous studies have
reported an up-regulation of APP in various solid
tumors. The reason for this is unclear but a recent
study demonstrated that APP plays a role in growth of
cancer cells [128]. Whether this potential tumorigenic
activity involves adhesion, trophic properties of APPs, or
cell signaling remain to be established.
b) Axonal Pruning and Degeneration
Whereas ample evidence support a role of APPsa in
synaptotrophic and neuroprotective activities, APPsb is
known to be much less active or even toxic (reviewed
in [129]). The differential activities between APPsa and
APPsb are difficult to comprehend considering that
there are only 17 amino acid differences between the
two isoforms and sequences implicated in trophic
activities are mapped outside this region and common
to both isoforms. The most striking finding related to
differences between APPsa and APPsb came from
Nikolaev et al. who reported that, under trophic with-
drawal conditions, APPsb but not APPsa undergoes
further cleavage to produce an N-terminal ~35 kDa
derivative (N-APP), which binds to DR6 death receptor
and mediates axon pruning and degeneration [130].
The authors attempted to link this pathway to both
axonal pruning during normal neurodevelopment and
neurodegeneration occurring in AD. However, by using
recombinant APPsb in vitro and by creating APPsb
knockin mice in vivo [116], Li et al. demonstrate that
APPsb is highly stable and that APPsb fails to correct
the nerve sprouting phenotype of the APP/APLP2 null
neuromuscular synapses (discussed in detail under
“APP knockin mice”). Therefore, the biological and
pathogenic relevance of the APPsb/DR6 pathway out-
side of the trophic withdrawal paradigm requires
further examination.

D. The APP Intracellular Domain
The high degree of sequence conservation between the
intracellular domains of APP proteins predicts that it is
a critical domain mediating APP function. Indeed, this
relatively short cytoplasmic domain of 47 amino acid
residues contains one well described phosphorylation
site as well as multiple functional motifs and multiple
binding partners that contribute to trafficking, metabo-
lism, and possibly cell signaling functions of APP.
a) Phosphorylation and Protein-Protein Interaction
APP can be phosphorylated at multiple sites in both
extracellular and intracellular domains (reviewed by
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[131]). Among these, the phosphorylation at the threo-
nine residue within the VT668PEER motif (Thr668) in the
APP intracellular domain (Figure 1) has received most
of the attention. Several kinases have been implicated in
this phosphorylation event, including cyclin-dependent
kinase 5 (CDK5), c-Jun N-terminal kinase 1 (JNK1) and
JNK3, CDK1/CDC2 kinase and GSK3b [132-135]. Phos-
phorylation at this residue has been reported to result in
several outcomes. First, it has been implicated to regu-
late APP localization to the growth cones and neurites
[134,136], a finding consistent with the preferential
transport of Thr668 phosphorylated APP to nerve term-
inals [137]. Second, phosphorylation at Thr668 has been
reported to contribute to Ab generation, a finding con-
sistent with an increase of Thr668 phosphorylated APP
fragments in brains of AD individuals [138]. Third,
Thr668 phosphorylation leads to resistance of APP to be
cleaved by caspases between Asp664 and Ala665 residues,
an event that has been proposed to result in increased
vulnerability to neuronal death (see below). Fourth,
phosphorylation at Thr668 leads to a conformational
change in the APP cytoplasmic domain such that inter-
action with the cytoplasmic adaptor Fe65 through the
distal YENPTY motif [139] is altered, thereby affecting
the proposed nuclear signaling activity of the APP-Fe65
complex [140]. As the YENPTY motif has been shown
to bind several other cytosolic adaptor proteins, it is not
surprising then that Thr668 phosphorylation has also
been reported to modulate APP interaction with Mint-
1/X11a [141]. Lastly, following phosphorylation, it has
been shown that the peptidyl-propyl cis/trans isomerase
Pin1 catalyzes the cis to trans isomerization of the
Thr668-Pro669 bond and this is predicted to alter APP
conformation [142], possibly related to the Fe65 or
Mint-1/X11a interaction with APP. In support of this
idea, it was shown that loss of Pin1 in mice resulted in
accumulation of hyperphosphorylated tau and increased
Ab levels [142,143], two features that should accelerate
AD pathology in the brain. Nevertheless, knockin mice
replacing the Thr668 with a non-phosphorylatable Ala
residue did not result in substantive changes in either
APP localization or in the levels of Ab in brain [144],
raising the question whether Thr668 phosphorylation
plays a significant role in regulating APP trafficking and
Ab generation in vivo.
In addition to Thr668 phosphorylation, the highly con-

served APP intracellular domain has been shown to
bind to numerous proteins (reviewed in [145,146]). Of
particular interest and relevance to this review, the
Y682ENPTY motif is required to interact with various
adaptor proteins, including Mint-1/X11a (and the family
members Mint-2 and Mint-3, so named for their ability
to interact with Munc18), Fe65 (as well as Fe65 like pro-
teins Fe65L1 and Fe65L2) and c-Jun N-terminal kinase

(JNK)-interacting protein (JIP), through the phosphotyr-
osine-binding (PTB) domain. The Y682 has been shown
to modulate APP processing in vivo [147]. Of interest is
the finding that Fe65 acts as a functional linker between
APP and LRP (another type I membrane protein con-
taining two NPXY endocytosis motifs) in modulating
endocytic APP trafficking and amyloidogenic processing
[148].
b) Apoptosis
In contrast to the trophic activities of the soluble APP
ectodomain, there are also a number of papers demon-
strating the cytotoxic properties of b-secretase cleaved
APP CTF (or C99), especially following overexpression
[149-151]. The mechanism by which APP CTF is cyto-
toxic is unclear but one pathway may be through AICD
released from APP CTF following ε-cleavage. Normally,
AICD exists in very low levels in vivo but can be stabi-
lized when Fe65 is overexpressed [152-154]. In cultured
cells, overexpression of AICD led to cell death [154-156].
In transgenic mice overexpressing an AICD construct,
there was activation of GSK-3b but no overt neuronal
death [157,158], findings not replicated in a subsequent
study however [159]. Interestingly, in mice expressing
both AICD and Fe65, neuronal degeneration was
observed in old mice together with tau hyperphosphory-
lation. Furthermore, behavioral abnormalities seen in
these animals can be rescued by treatment with lithium,
a GSK-3b inhibitor, in line with earlier evidence of acti-
vation of GSK-3b [160].
Another aspect of APP CTF mediated cytotoxicity

concerns a caspase cleavage site within the cytosolic tail
between position Asp664 and Ala665 [161]. In cell culture
systems, loss of this caspase site by mutating the Asp664

to Ala (D664A) resulted in an attenuation of APP C99
associated cytotoxicity. It has been proposed that release
of the smaller fragments (C31 and Jcasp) from AICD
after cleavage at position 664 results in the generation
of new cytotoxic APP related peptides [162]. Thus, over-
expression of either C31 or Jcasp, both derived from
AICD, have resulted in cytotoxicity. Consistent with
these in vitro findings, in an APP transgenic mouse line
in which the caspase site is mutated to render APP non-
cleavable, the predicted Ab-related phenotypes in brain
(synaptic, behavior, and electrophysiological abnormal-
ities) were absent in spite of abundant amyloid deposits
[163,164]. Therefore, these initial observations indicated
that the release of the smaller fragments (C31 or Jcasp)
after caspase cleavage of C99 may result in cell death in
a manner independent of g-secretase [165]. However,
analysis of another line of APP D664A transgenic mice
with substantially higher APP expression failed to repli-
cate the earlier findings [166], but the wide differences
in expression of the transgene and resultant Ab levels
between the two transgenic mouse lines is such that the
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comparisons may be invalid [167]. In sum, there are at
present several potential mechanisms whereby APP may
contribute to neurotoxicity: via g-secretase cleavage to
release AICD or via alternative cleavage of the APP
C-terminus to release other cytotoxic peptides. Whether
these APP fragments contribute to in vivo neuronal
death in AD pathogenesis remain to be established.
c) Cell Signaling
As mentioned previously, in addition to g-secretase clea-
vage that yields Ab40 and Ab42, presenilin-dependent
proteolysis appears to begin at the ε-site (Ab49) close to
the membrane-intracellular boundary [46,48,49]. Thus
the ε-cleavage of APP may represent the primary or
initial presenilin-dependent processing event. This is
important because this cleavage releases AICD in a
manner highly reminiscent of the release of the Notch
intracellular domain (NICD) after g-secretase processing,
the latter being an obligatory step in Notch mediated
signaling (reviewed in [59]). The predominant ε-cleavage
releases AICD of 50 amino acids in length (CTF50-99),
beginning with a Val residue. APP mutations that shift
Ab production in favor of Ab42 would lengthen the
AICD by one amino acid (CTF 49-99), now beginning
with a Leu residue. This is of some interest because it
has been pointed out that the N-end rule guiding pro-
tein stability through ubiquitination states that Val is a
stabilizing residue while Leu is destabilizing (Reviewed
in [168]). NICD, the intracellular domain derived from
the Notch receptor, appears to follow this principle
experimentally. If this situation applies to AICD, then
there could be a different regulatory mechanism at play
regarding AICD mediated cell signaling or in cell death.
Furthermore, recent studies have suggested that AICD
generation is in part dependent on whether APP was
previously cleaved by a- or b-secretase, indicating yet
another layer of regulation [169,170]. Nonetheless,
AICD is indeed very labile and, as mentioned previously,
can be stabilized by Fe65 [153], a finding seen both in
the in vitro and in vivo settings. A good deal of excite-
ment followed the first report in which by using a het-
erologous reporter system, AICD was shown to form a
transcriptionally active complex together with Fe65 and
Tip60 [157,171]. This finding appeared to validate the
notion that AICD is transcriptionally active, much like
NICD. Scheinfeld et al. proposed a JIP-1 dependent
transcriptional activity of AICD [172]. However, subse-
quent analyses have suggested that the earlier view may
be too simplistic and incomplete. First, follow up studies
by Cao et al. showed that AICD facilitates the recruit-
ment of Fe65 but its nuclear translocation per se is not
required [173]. Second, PS-dependent AICD production
is not a prerequisite for the APP signaling activity, as it
proceeds normally in PS null cells and by PS inhibitor
treatment [174]. Instead, the authors provide an

alternative pathway for this activity that involves Tip60
phosphorylation. Third, a later report documented that
the proposed signaling activity is actually executed by
Fe65 and that APP is not required altogether [175].
Lastly, Giliberto et al. reported that mice transgenic for
AICD in neuronal cells are more susceptible to apopto-
sis. However, analysis of the basal transcription showed
little changes in mice expressing AICD in the absence
of Fe65 overexpression, leaving open the possibility that
transcription may be influenced in a regulated fashion
[176].
Regardless of the mechanism by which AICD may

activate signaling pathways, a trans-activating role of the
APP/Fe65/Tip60 complex has been consistently docu-
mented, at least in overexpression systems. However,
these efforts have led to decidedly mixed results. A
number of genes have been proposed to date including
KAI [177], GSK3b [158,178], neprilysin [179], EGFR
[180], p53 [181], LRP [182], APP itself [183], and genes
involved in calcium regulation [184] and cytoskeletal
dynamics [185]. However, the validity of these proposed
targets have been either questioned or disputed
[175,176,186-190]. Thus, at present, a conservative view
is that these target genes are indirectly or only weakly
influenced by AICD mediated transcriptional regulation.

E. In vivo Function of APP
The in vivo gain- and loss-of-function phenotypes asso-
ciated with the APP family of proteins in model systems
(C. elegans, Drosophila and mice) are consistent with a
role of APP in neuronal and synaptic function in both
central and peripheral nervous systems. This may be
mediated by the APP ectodomain or requires the APP
intracellular domain. These findings will be discussed
next in the respective animal models.
a) C. elegans
The C. elegans homolog of APP, APL-1, resembles the
neuronal isoform APP695 as there are no known splice
variants detected. Similar to APLP1 and APLP2, APL-1
does not contain the Ab sequence. Nematode develop-
ment includes four larval stages (L1-L4) after each of
which is a molt where a new, larger exoskeleton is
formed to accommodate the growth of the larvae. Inac-
tivation of the single apl-1 gene leads to developmental
arrest and lethality at the L1 stage, likely due to a molt-
ing defect [191,192]. In addition, apl-1 knockdown leads
to hypersensitivity to the acetylcholinesterase inhibitor
aldicarb, signifying a defect in neurotransmission [192].
The aldicarb hypersensitivity phenotype and the molting
defect were found to be independent of one another,
suggesting apl-1 contributes to multiple functions
within the worm. Surprisingly, both phenotypes were
rescued by either a membrane-anchored C-terminal
truncation of APL-1 or by the soluble N-terminal
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fragments, showing that the highly conserved C-termi-
nus is not required to support the viability of the worm
[191,192]. This differs from the mammalian system in
which the APP C-terminus is essential for viability on a
non-redundant background (see discussion under “APP
knock-in mice”) [116,193]. Although the reason for the
distinct domain requirement for C. elegans and mouse
viability is not clear, it is worth reiterating that the leth-
ality of the apl-1 null worm is likely caused by a molting
defect not relevant to mammals. Consistent with this
interpretation, it is interesting that expression of mam-
malian APP or its homologs are not able to rescue the
apl-1 null lethality [191,192], indicating that this worm-
specific molting activity is lost during mammalian evolu-
tion and that extrapolation of APP function from apl-1
may not be very informative.
b) Drosophila
The Drosophila APP homolog, APPL, like the worm
homolog, does not contain the Ab sequence and does
not undergo alternative splicing. However, in contrast to
the apl-1 null worm, Appl-deficient flies are viable with
only subtle behavioral defects such as fast phototaxis
impairment [3]. While human APP is not able to rescue
the C. elegans apl-1 lethality, the behavioral phenotype
present in the Appl null fly can be partially rescued by
transgenic expression of either fly APPL or human APP
[3]. Subsequent loss and gain-of-function studies
revealed that APPL plays an important role in axonal
transport, since either Appl deletion or overexpression
caused axonal trafficking defects similar to kinesin and
dynein mutants [194,195]. Although a similar role for
APP in axonal transport of selected cargos has been
reported [196-198], the findings have since been chal-
lenged by several laboratories [199].
APPL is required for the development of neuromuscu-

lar junctions (NMJs), since Appl deletion leads to
decreased bouton number of NMJs, whereas Appl over-
expression dramatically increases the satellite bouton
number [200]. This activity can be explained by the for-
mation of a potential complex including APPL, the
APPL-binding protein dX11/Mint, and the cell adhesion
molecule FasII, which together regulate synapse forma-
tion [201]. Overexpression of human APP homologs in
Drosophila revealed a spectrum of other phenotypes,
ranging from 1) a blistered wing phenotype that may
involve cell adhesion [202], 2) a Notch gain-of-function
phenotype in mechano-sensory organs, which reveals a
possible genetic interaction of APP and Notch through
Numb [203], and 3) a neurite outgrowth phenotype that
is linked to the Abelson tyrosine kinase and JNK stress
kinase [99]. Although the pathways implicated in each
of the phenotypes are distinct, they all seem to require
the APP intracellular domain via protein-protein inter-
actions mediated through the conserved YENPTY

sequence. These ectopic overexpression studies should
be interpreted with caution because APP interacts with
numerous adaptor proteins and many of the APP bind-
ing partners also interact with other proteins. Therefore,
the phenotypes observed by overexpressing APP or
APPL could be caused by the disturbance of a global
protein-protein interaction network.
Interestingly, similar to the mammalian system, APPL

is found to be upregulated in traumatic brain injury and
Appl-deficient flies suffer a higher mortality rate com-
pared to controls [99], supporting an important activity
of APP family of proteins in nerve injury response and
repair.
c) Mice
i. APP single knockout mice Three mouse APP alleles,
one carrying a hypomorphic mutation and two with
complete deficiencies of APP have been generated
[204-206]. The APP null mice are viable and fertile but
exhibit reduced body weight and brain weight. Loss of
APP results in a wide spectrum of central and periph-
eral neuronal phenotypes including reduced locomotor
activity [204,205,207], reactive gliosis [205], strain-
dependent agenesis of the corpus callosum [205,208],
and hypersensitivity to kainate induced seizures [209].
Although these phenotypes indicate a functional role of
APP in the CNS, the molecular mechanisms mediating
these effects remain to be established. Unbiased stereol-
ogy analysis failed to reveal any loss of neurons or
synapses in the hippocampus of aged APP null mice
[210]. Attempts to examine spine density in APP KO
mice have yielded mixed results. Using hippocampal
autaptic cultures, Priller et al. reported an enhanced
excitatory synaptic response in the absence of APP, and
the authors attributed this effect to the lack of Ab pro-
duction [211]. Follow up studies by the same group
reported that APP deletion led to a two-fold higher den-
dritic spine density in layers III and V of the somatosen-
sory cortex of 4-6 month-old mice [212]. However, Lee
et al. found a significant reduction in spine density in
cortical layer II/III and hippocampal CA1 pyramidal
neurons of one-year old APP KO mice compared with
WT controls [213]. It is not clear whether differences in
age or brain region may contribute to the discrepancy.
The APP null mice show impaired performances in

Morris water maze and passive avoidance tasks, and the
behavioral deficits are associated with a defect in long
term potentiation (LTP) [207,210,214,215], the latter
may be attributed to an abnormal GABAergic paired
pulse depression [215]. Follow up work demonstrated
that APP modulates GABAergic synaptic strength by
regulating Cav1.2 L-type calcium channel (LTCC)
expression and function in stratial and hippocampal
GABAergic neurons [216]. APP deficiency leads to an
increase in the levels of a1C, the pore forming subunit
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of Cav1.2 LTCCs and an enhanced Ca2+ current, which
in turn results in reduced GABAergic mediated paired-
pulse inhibition and increased GABAergic post-tetanic
potentiation [216]. A role of APP in calcium regulation
is further documented by APP overexpression and
knockdown studies in hippocampal neurons which sup-
port an Ab independent role of APP in the regulation of
calcium oscillations [217].
Outside of the CNS, APP deficient mice display

reduced grip strength [205,207]. This is likely due to
impaired Ca2+ handling at the neuromuscular junction
(NMJ) as functional recordings revealed that APP null
mice show abnormal paired pulse response and
enhanced asynchronous release at NMJ resulting from
aberrant activation of voltage gated N- and L-type cal-
cium channels at motor neuron terminals [218]. Taken
together, the studies thus provide strong support for the
notion that APP plays an important role in Ca2+ home-
ostasis and calcium-mediated synaptic responses in a
variety of neurons, including GABAergic and cholinergic
neurons and possibly others, through which it may regu-
late the neuronal network and cognitive function.
ii. APP, APLP1, APLP2 compound knockout mice The
relatively subtle phenotypes of APP deficient mice are
likely due to genetic redundancies as evidenced by gene
knockout studies. While mice with individual deletion of
APP, APLP1 and APLP2 are viable, APP/APLP2 and
APLP1/APLP2 double knockout mice or mice deficient
in all three APP family members are lethal in the early
postnatal period [219,220]. Intriguingly and due to rea-
sons not well understood, the APP/APLP1 double null
mice are viable [220]. Although the NMJ of APP or
APLP2 single null mice do not show overt structural
abnormalities, the APP/APLP2 double knockout animals
exhibit poorly formed neuromuscular synapses with
reduced apposition of presynaptic proteins with postsy-
naptic acetylcholine receptors and excessive nerve term-
inal sprouting [221]. The number of synaptic vesicles at
the presynaptic terminals is reduced, a finding consis-
tent with defective neurotransmitter release. Examina-
tion of the parasympathetic submandibular ganglia of
the double deficient animals also showed a reduction in
active zone size, synaptic vesicle density, and number of
docked vesicles per active zone [222].
Interestingly, tissue-specific deletion of APP either in

neurons or in muscle on APLP2 knockout background
resulted in neuromuscular defects similar to those seen
in global APP/APLP2 double null mice, demonstrating
that APP is required in both motoneurons and muscle
cells for proper formation and function of neuromuscular
synapses [80]. The authors propose that this is mediated
by a trans-synaptic interaction of APP, a model that
gained support by hippocampal and HEK293 mixed cul-
ture assays described above [80]. Interestingly, muscle

APP expression is required for proper presynaptic locali-
zation of CHT and synaptic transmission, suggesting that
trans-synaptic APP interaction is necessary in recruiting
presynaptic APP/CHT complex [80,223].
Analysis of APP/APLP1/APLP2 triple knockout mice

revealed that the majority of the animals showed cortical
dysplasia suggestive of neuronal migration abnormalities
and partial loss of cortical Cajal Retzius cells [224].
Interestingly, this defect is phenocopied in mice doubly
deficient in APP binding proteins Fe65 and Fe65L1
[225]. It should be pointed out however, that morpholo-
gical similarity does not necessarily implicate functional
interaction. Indeed, cortical dysplasia with viable pene-
trance also exists in mice deficient in various other pro-
teins including PS1, b1 and a6 integrins, focal adhesion
kinase, a-dystroglycan and laminin a2 (reviewed in
[226]).
In sum, the loss-of-function studies present a convincing

picture that members of the APP gene family play essential
roles in the development of the peripheral and central ner-
vous systems relating to synapse structure and function, as
well as in neuronal migration or adhesion. These may be
mediated either by the full-length protein or by various
proteolytic processing products, and may be due to
mechanical properties or through activating signaling
pathways, or both. The creation of knockin alleles expres-
sing defined proteolytic fragments of APP offers a power-
ful system to delineate the APP functional domains
in vivo. These are discussed in the following section.
iii. APP Knock-in mice To date, four APP domain
knock-in alleles have been reported and these express a-
secretase (APPsa [227]) or b-secretase (APPsb [116])
processed soluble APP, the membrane anchored protein
with deletions of either the last 15 aa (APPΔCT15 [227])
or 39 aa (APP/hAb/mutC [193]) of the highly conserved
C-terminal sequences of APP, the latter also replaced
mouse Ab with the human sequence and introduced
three FAD mutations (Swedish, Arctic, and London) to
facilitate Ab production. The APPsa and APPΔCT15
knock-in mice appeared to rescue a variety of phenotypes
observed in APP KO mice [227]. For instance, the
reduced body and brain weight of APP null animals was
largely rescued. Behaviorally, the knock-in mice do not
exhibit any defects in grip strength or the Morris water
maze test. Field recordings of hippocampal slices showed
that the LTP deficits observed in 9-12 month-old APP
KO mice was also absent in both knock-in lines. These
findings are in agreement with the large body of literature
documenting the synaptotrophic activity of APPsa (refer
to “Synaptotrophic and Neuroprotective Functions”
above) and that perhaps the predominant function of
APP is mediated by APPsa.
Similar to APPsa and APPΔCT15 knock-in lines, the

APPsb and APP/hAb/mutC mice did not show any overt
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growth or anatomatical deficits. However and in stark
contrast to the aforementioned two knockin mouse lines,
crossing these two alleles (APPsb or anchored APP/hAb/
mutC) to APLP2-/- background failed to rescue the early
postnatal lethality and neuromuscular synapse defects of
the APP/APLP2 KO mice [116,193], suggesting a critical
and indispensable role of the conserved C-terminal
region of APP in early postnatal development. An essen-
tial role of the APP C-terminal domain, specifically the
YENPTY motif, in development was demonstrated by the
creation of APP knock-in mice in which the Tyr682 resi-
due of the Y682ENPTY sequence was changed to Gly
(APPYG). Crossing the homozygous knock-in mice to
APLP2 null background showed that the APPYG/YG/
APLP2-/- mice exhibit neuromuscular synapse deficits
and early lethality similar to APP/APLP2 double KO
mice [228]. The differences in outcomes in these experi-
ments are difficult to explain but may be related to a
more severe phenotype in the APLP2 deficient back-
ground. Nevertheless, the inability to rescue the NMJ
defects by the APP mutants lacking the intracellular
domain or expressing the Tyr682 to Gly mutation is com-
patible with the concept that APP functions as a synaptic
adhesion protein. Furthermore, the fact that amyloid
deposition can develop in the absence of the APP C-
terminal sequences indicates that APP developmental
function and amyloidogenesis are differentially regulated
and require distinct APP domains [193].

Concluding Remarks
We hope this review has provided a timely update on
what is known and what lies ahead in the field of APP
biology. Since the first identification of the APP gene in
1987, the scientific community has worked together to
obtain significant insights into the biochemical, cellular
and functional properties of APP. It is clear that APP
undergoes tightly regulated trafficking and processing
and, through either the full-length protein and/or its
cleavage products, it mediates synaptogenic and synapo-
trophic activities in development and during aging. As
such, it is reasonable to speculate that misregulation of
APP could contribute to the neuronal and synaptic
impairment occurring in AD. Many key questions remain
to be addressed. These include determining whether APP
is a receptor or a ligand and, accordingly, the identities of
its respective ligand or receptor. Does APP directly med-
iate cell signaling or only play a secondary role in gene
expression? How is APP function coordinated between
its full-length form and the various processing products,
and how is it facilitated through its binding partners?
Elucidating these questions will undoubtedly reveal novel
insights into disease pathogenesis.
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