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Abstract
Background: Brain tissue from patients with Alzheimer's disease has shown an increase of
phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues,
both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of
these two residues is not yet known.

Results: Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668,
shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as
ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate
important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate
signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling,
such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or
abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of
Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins,
with Pin1 and X11 being the exclusions. We also found that there are some differences between
the interactions to AID and to ALID1 and ALID2, its two homologues.

Conclusion: Our data indicates that APP can regulate diverse cellular processes and that, vice
versa, a network of signaling events can impact APP processing. Our results also suggest that
phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and,
consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.

Background
APP is a ubiquitous, type I transmembrane protein that
undergoes a series of proteolytic events [1,2]. APP is
cleaved by β-secretase, [3] releasing the ectodomain
(sAPPβ), while the COOH-terminal fragment of 99 amino
acids (C99) remains membrane bound. This is followed
by an intramembranous proteolytic event, where C99 is
cleaved by the γ-secretase to produce Aβ peptides plus the

APP intracellular Domain (AID/AICD). Alternatively, α-
secretase cleaves APP in the Aβ sequence into sAPPα and
the membrane bound COOH-terminal fragment of 83
amino acids (C83), which is also cleaved by γ-secretase
into P3 (the COOH-terminal Aβ segment) and AID.

The intracellular region of APP is a target for caspases,
which cut APP between Asp-664 and Ser-665 [4-6] (all
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numbering is according to the APP695 neuronal isoform)
releasing the COOH-terminal 31 amino acids of APP
(C31) and the membrane bound APPΔC31. The APP
intracellular peptides derived by either γ-secretase or cas-
pase processing have biological functions. AID can mod-
ulate cell death [7-11], gene transcription [8,12-20] and
Ca++ homeostasis [21,22].

The cytosolic region of APP is relatively short and does not
contain motifs that may hint to an enzymatic function.
Therefore, it is reasonable to postulate that cytosolic pro-
teins that bind to the intracellular tail of APP may modu-
late APP/AID functions. These interactors may regulate
APP trafficking and sorting and, in turn, processing. Inter-
actions with adapters of signal transduction may link APP
to intracellular signaling pathways. It is also possible that
the AID released by γ-cleavage forms functional com-
plexes with bound molecules. The following in vitro stud-
ies support these models: X11 and Fe65 family of proteins
modulate cellular trafficking and processing of APP
[23,24]. JIP1, a c-Jun N-terminal kinase JNK-signaling
scaffold that binds APP [25,26], facilitates phosphoryla-
tion of APP on Thr-668 [27], functions as an adaptor pro-
tein in APP axonal trafficking [28-30] and cooperates with
AID in mediating transcription [19]. The peptidyl-prolyl
cis/trans isomerase Pin1, which binds APP only when
phosphorylated on Thr668, regulates APP processing and
Pin1-/- mice show Tau and Aβ-related pathologies [31,32].
The putative transcriptional role of AID has attracted most
of the attention because of the functional parallel with
Notch signaling, another γ-secretase substrate. In the case
of Notch, γ-processing releases NICD that, in the nucleus,
binds transcription factors and activates transcription of
specific gene targets [33,34]. For APP, a similar model has
been suggested, where AID travels to the nucleus bound to
Fe65, an APP-binding protein [35], Tip60, an histone
acetyltransferase, and SET, a nucleosome assembly factor
to activate transcription of target genes
[13,14,36,37,16,14-18,38-41].

Interestingly, and consistent with the original findings
implicating AID in programmed cell death [7], primary
neurons derived from AID transgenic mice show
increased sensitivity to certain apoptotic stimuli [11].
Therefore, there is intense interest in understanding cellu-
lar and molecular mechanisms of in vivo APP and AID
functions. Data point to an important functional role for
the phosphorylation sites Thr-668 and Tyr-682, which are
found in the cytoplasmic tail of APP. Tyr-682 is included
into a canonical endocytic signal motif (Y682ENPTY687)
for membrane-associated receptors [42] and is important
for interactions with cytosolic proteins that regulate APP
metabolism and signaling [23]. Phosphorylation of Tyr-
682 either promotes [43,44] or abolishes binding of some
APP interactors [45]. Notably, Tyr-682 is phosphorylated
in vivo[46,47] and this phosphorylation is abnormally

enhanced in AD brain, suggesting a pathogenic role
[48,49]. Thr-668 is followed by a Pro [50], which gener-
ates a consensus site for phosphorylation. Phosphoryla-
tion of Thr-668 generates a docking site for Pin1 and this
interaction may contribute to AD pathogenesis
[31,32,51]. Conversely, Thr-668 phosphorylation reduces
binding of Fe65 to APP[45]. Remarkably, the phosphor-
ylation of Thr668 is increased in AD brains [49].

APP belongs to a gene family that includes APLP1 and
APLP2. These three proteins are structurally similar and
share many functional similarities. They are similarly
processed by secretases and caspases; the YENPTY motif is
shared by all three APP family members, is evolutionally
conserved, and generates docking site for common inter-
actors; the TP phosphorylation site is conserved in APP
family members and in other species, except for APLP1
and Drosophila APP ortologue. In spite of all these simi-
larities however, APLP1 and APLP2 have not been
involved in neurodegeneration. It is hypothesized that β/
γ-cleavage of APLPs does not generate Aβ-like peptides,
prone to oligomerization and amyloid formation,
explaining why they have not been linked to AD or AD-
like dementias. The evidence that AID regulates apoptosis
prompted us to postulate that deregulations of AID pro-
duction may participate in AD pathogenesis [7]. In this
context, functions that are specific for AID and are not
shared by the corresponding ALID1 and ALID2 fragments
(which are generated by γ-cleavage of either APLP1 or
APLP2) may be involved in neurodegeneration.

The SH2 domain proteins that we studied were ShcA,
ShcB, Grb7, Grb2, Crk, Nck, p85, Abl, Lyn, Src, SHIP-2,
PLCγ. Shc and Grb2 have been found to interact with APP,
requiring phosphorylation of APP at Tyr-682
[20,43,44,52]. This could lead to the activation of the
MAPK pathway, since Shc and Grb2 are known to link
growth factor receptors to signaling pathways, such as Ras,
MAPK, and PI3K, and participate in oncogenic prolifera-
tion, neuronal development, cell differentiation, and
apoptosis [52-57]. Grb7, Crk, and Nck, along with Grb2,
are adaptors with SH2 domains. Crk is believed to be nec-
essary to complete cytokinesis, although the details are
not well known [58]. Crk also plays a role in a complex
with C3G, Rap1, and B-Raf that has EGF activating
MAPKs, whose cascade links cell surface receptors to cyto-
plasmic and nuclear effectors [59-61]. The SH2 domain of
Crk has been found to bind to a tyrosine in the EGF recep-
tor [61]. Nck, like Crk, contains both an SH2 and SH3
domain and plays a role in regulating tyrosine kinase sig-
naling. Nck is believed to have roles in actin cytoskeleton,
cell movement, and axonal guidance [62]. In sporadic AD,
human Nck associated protein 1's (Nap1) expression is
downregulated, leading to apoptosis in human neurob-
lastoma cells. Nap1, and its binding protein hNap1BP,
might have a role in regulating β-secretase activity;
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Human Nap1 and hNap1BP increased the level of sAPPα
[63,64].

Abl is one of the three tyrosine kinases that belong to the
Src family of protein kinases that we chose to test. Expres-
sion of the active form of Abl in cell lines triggers, either
directly or indirectly, phosphorylation of Tyr-682 of APP,
and Abl can form a stable complex with APP [47,65]. The
second kinase tested is Lyn, which is part of the Src family
and is a modulator of the molecular events initiated by
engagement of the high-affinity IgE receptor. It is also
believed that Lyn is linked to lipid kinases and have a role
in lipid second messengers that control mast cell function
and allergic responses [66]. Another kinase tested was Src,
whose exact roles are not well known, however it is
known to be a tyrosine kinase that is found in viruses and
cells. Src may have a role in mitosis, intracellular localiza-
tion, and has SH2 and SH3 domains that have important
roles, as there is a phenotype to cells who have those
domains mutated [67].

We chose to test SHIP-2, since it is a phosphoinositide
phosphatase recently implicated as a negative modulator
of insulin signaling [68]. SHIP-2 is a phosphatase that
negatively regulates the JAK/STAT signaling pathway by
downregulating JAK activity [69]. PLCγ is known to have
roles in cell signaling, responding to extracellular stimuli,
including hormones, neurotransmitters, antigens and
growth factors. PLCγ acts to catalyze the hydrolysis of
phosphatidylinositol (4,5)-bisphosphate [PtdIns
(4,5)P(2)], releasing two well-known second messengers
– inositol (1,4,5)-trisphosphate and diacylglycerol –
which have numerous roles as well [70].

The PTB domains that we have addressed include JIP1,
JIP2, AIDa, ARH, DAB1, DAB2, ShcC, ShcA, NUMB-p71,
NUMB-p72, NUMB-Like, X11α, X11β and X11γ. JIP1a,
JIP1b, and JIP2 are PTB domain containing scaffold pro-
teins that interact with the -YENPTY- motif of APP and the
binding is phosphorylation independent [25,26,28,71].
JIP1 and JIP2 are both able to bind parts of the JNK sign-
aling pathway [72-74]. JIP1b was found to bind APP, and
the binding is increased when Thr-668 is phosphorylated
by JNK and APP is associated with kinesin light chain 1
(KLC1) [28,30]. This may show that JIP1 links KLC1 to
APP [28]. DAB1-PTB domain binding to the cytoplasmic
tail of APP in vitro and in cells has been shown with high
affinity, but is inhibited by phosphorylation of APP [75].
DAB1 has also been shown to interact with APLP1, and
weakly interact with APLP2 [76]. APP and APLP1 are able
to increase the serine phosphorylation of DAB1, which
might function through a link with APLP1 in the brain
[76]. This is further proven by showing that APLP1 and
DAB1 are expressed in overlapping cell populations in
brain tissues [76].

The NUMB family was studied due to its effects on Notch.
APP has been found to bind NUMB through its PTB
domain in a phosphorylation independent manner [20].
We have previously shown that AID binds NUMB and
NUMB-L, and represses Notch activity when released by
APP [20]. Notch has been suggested to play a role in phys-
iological and pathological cell death, where its overex-
pression protects T-cells from apoptosis [77]. Some
isoforms of NUMB are able to sort APP to the recycling
and degradative pathways and has roles in APP metabo-
lism [78]. X11α, X11β and X11γ are all part of the X11
family and are adaptor proteins that are known to stabi-
lize APP, which prevents its cleavage by β and γ-secretases
[79]. X11α and β are expressed in neurons, while X11γ is
expressed ubiquitously. X11 has been found to bind the
YENPTY motif of AID and the binding is phosphorylation
independent [80]. X11α and X11β are both able to bind
to munc18, a synaptic vesicle docking protein, which is
vital for Ca++-mediated synaptic vesicle exocytosis, show-
ing that X11s have roles in synaptic vesicle docking and
exocytosis [81].

Here, we use a direct biochemical approach to elucidate
the following points: 1) characterize the AID, ALID1 and
ALID 2 interactome; 2) assess the role of Tyr-682 and Thr-
668 phosphorylation in shaping this interactome; 3)
identify interactions that are specific to AID. Our results
indicate that both Tyr-682 and Thr-668 impact the com-
plex APP-Intracellular Domain Interactome, however, the
effect of Tyr-682 phosphorylation is more dramatic. In
fact, phospho-Tyr-682 becomes a docking site for proteins
containing a Src-hmology2 domain (SH2) while it either
reduces or obliterates interaction of a subset of proteins
containing a Phospho-Tyrosine-Binding (PTB) domain.
This study is an obligatory starting point to understand
the biochemical mechanisms of AID functions, to eluci-
date the physiological role of APP phosphorylation, and
to identify signaling pathways that may go awry in AD.

Materials and methods
Plasmids and Cloning
For APP intracellular domain (AID) expression in mam-
malian cell lines, an Fc-fusion construct coding for the last
50 residues of APP was generated.

In Vitro Protein Pull-Down Assays
Equivalent molar amounts (3 nmol) of strep-tag AID pep-
tides were incubated with 30 μl of 50% Strep-Tactin
matrix (IBA) in a total volume of 400 μl of NET-N buffer
(150 mM NaCl, 1 mM EDTA, 50 mM Tris/HCl, 1% (v/v)
Nonidet P-40, pH 8.0) for 1 h at 4 °C. The beads were
washed two times with 400 μl of NET-N buffer and then
incubated with μg of each GST fusion protein in 400 μl of
NET-N buffer for 2–4 h at 4°C. The beads were then
washed with 1 ml of NET-N four times. The bound pro-
teins were eluted from the beads by boiling the samples at
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95 °C in SDS-PAGE loading buffer for 4 min. Proteins
were analyzed by NuPAGE® Novex Bis-Tris 4–12% gel
(Invitrogen) electrophoresis, and then each gel was
stained with Coomassie Blue.

In-Vitro Protein Interaction with Strep-tag AID peptides, 
GST-Pin1, GST-Grb2, GST-Crk, and Fc-AID, Pulldowns
The last 50 amino acids of APP were synthesized either as
non-phosphorylated (AID) or Thr-668-phosphorylated
(AIDpT) APP peptides with an N-terminal strep-tag (Tufts
University Core Facility Boston, MA), and have been
described previously [43]. The strep-tagged peptides were
immobilized on Strep-Tactin column (IBA, St. Louis, MO)
and incubated with Strep-Tactin precleared AD brain
homogenates. After washing, samples were eluted with 10
mM desthiobiotin as per manufacturer's recommenda-
tion [82]. For GST-pull-downs, recombinant GST-Pin1,
GST-Grb2, GST-Crk immobilized on Glutathione Sepha-
rose were incubated with Strep- Tactin bound strep-tagged
AID peptides, and processed as described [43]. The bound
proteins were washed, eluted by boiling in sample buffer,
and analyzed by Coommassie Blue staining. N2a cells
were transiently transfected with Fc-AID for 48 hours, and
prior to harvest were treated in the presence or absence of
10 mg/mL anisomycin (Sigma) for 30 min. Lysates were
incubated with Protein G Sepharose 4Fast Flow™ beads
Amersham), and following washes, bound proteins were
eluted in hot sample buffer. Precipitates were analyzed by
immunoblotting or Coommassie Blue staining. ImageJ
was used to quantitated the percentage of binding.

BIAcore Assays (surface plasmon resonance biosensor 
assay)
Binding of GST and GST-Grb2, NUMB p71, and X11β
domains to strep-tag AID peptide or different phosphor-
ylation forms was monitored by surface plasmon reso-
nance (SPR) on a BIAcore 3000 machine (BIAcore,
Neuchâtel, Switzerland). The strep-tag peptide and differ-
ent phosphorylation forms of AID peptides were cova-
lently amine coupled to a CM-5 sensor chip by use of the
amine covalent coupling. An immobilization level of
4500–7500 resonance units was obtained. A nonderiva-
tized flowcell serves as a reference surface. Interactions
between GST and GST-Grb2, NUMB p71, and X11β to
strep-tag peptides were determined by the change in sig-
nal measured in RU. Between each sample examined, the
surfaces were regenerated with a 1-minute pulse of 50-
mM glycine-NaOH buffer (pH 8.5) that resulted in com-
plete dissociation of non-covalently bound analyte (GST
and GST-Grb2, NUMB p71, and X11β).

Results
Phosphorylation of APP governs binding to proteins 
containing SH2 domains
The intracellular region of APP involved in binding the
vast majority of known interactors includes the YENPTY

motif and Thr-668. Most of the cytosolic interactors of
APP bind these sequences through a PTB or an SH2
domain. One notable exception is represented by Pin1,
which is not known to bind through a PTB or an SH2 [32].
To directly test how phosphorylation of Tyr-682 and Thr-
668 regulate the intracellular interactome of APP, we have
synthesized the AID peptide as well as phosphorylated
AID peptides on Thr-668 (AIDpT), Tyr-682 (AIDpY), and
both (AIDpTpY). These AIDpeptides were fused to the
strep-tag sequence. A control peptide, consisting of the
streptag sequence only, was also made. We produced a
series of known or potential APPbinding proteins in vitro,
using just the regions with the SH2 and/or PTB domains.
All these targets analyzed contain either an SH2 or a PTB
domain fused to GST for production and purification
from bacterial cultures. The AID peptides were immobi-
lized on Strep-Tactin resin and challenged with 6 μg of
recombinant GST-fusion proteins. The control was GST
on its own, and it did not bind any protein (data not
shown).

We show that the adaptor proteins, including ShcA, ShcB,
ShcC, Grb2, Grb7, Crk, and Nck, all bind in a similar fash-
ion. They bind to AID when Tyr-682 is phosphorylated,
and that binding is further increased when Thr-668 is also
phosphorylated (Figure 1b, c). When testing p-85, a regu-
latory subunit for class I phosphoinositide 3-kinase
(PI3K), both the N-terminus and C-terminal SH2
domains of p-85 showed no binding to AID, whether Thr-
668 and/or Tyr-682 were phosphorylated (Figure 1b).

The tyrosine kinases tested, Abl, Lyn, and Src, followed the
same trend as the adaptors, being unable to bind to
unphosphorylated AID or AID when only Thr-668 is
phosphorylated, showed binding when Tyr-682 is phos-
phorylated. This binding is more intense when both resi-
dues are phosphorylated (Figure 1b, c). When testing the
phosphatase SHIP-2, both its N-terminus and C-terminus
bound neither unphosphorylated AID nor any of its phos-
phorylated counterparts (figure 1b, c). PLCγ-N and PLCγ-
C were able to bind AID with the tyrosine phosphorylated
and could bind with higher affinity if both the tyrosine
and threonine were phosphorylated, following the trend
of the adaptors and kinases (Figure 1b). In summary, the
SH2 domain proteins that showed binding were depend-
ent on the phosphorylation of tyrosine and double phos-
phorylation increased binding.

Phosphorylation of APP governs binding to proteins 
containing PTB domains
The same peptides and strategy described above were used
to analyze proteins with PTB domains, including JIP1,
JIP2, AIDa, ARH, DAB1, DAB2, ShcC, ShcA, NUMBp71,
NUMB-p72, NUMB-L, X11α, and X11γ. The structural
domains of some of these proteins are seen in Figure 2a.
JIP1-PTB, ARH, NUMB, and X11α bound unphosphor-
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Effect of phosphorylation of Thr-668 and Tyr-682 on APP, APLP1, and APLP2 to SH2 domain containing proteinsFigure 1
Effect of phosphorylation of Thr-668 and Tyr-682 on APP, APLP1, and APLP2 to SH2 domain containing pro-
teins. (A) Schematic diagrams of the structural domains of the various SH2 domain peptides studied. (B) APP C-terminal 
(AID), APLP1 C-terminal (ALID1), and APLP2 C-terminal (ALID2) and strep-tag control peptides were synthesized. Pull down 
experiments with immobilized Strep-Tactin resin tested the binding of AID, ALID1, ALID2, and their phosphorylated counter-
parts to ShcA, ShcB, Grb7, Grb2, Crk, Nck, p85-N, p85-C, Abl, Lyn, Src, SHIP2-N, SHIP2-C, PLCγ-N, and PLCγ-C. The pull-
down samples were analyzed by SDS-PAGE and Comassie-blue staining. (C) Percent binding of the AID, ALID1, ALID2 and the 
phosphorylated ones to the SH2 domain-containing proteins listed above. The interaction that has the greatest binding affinity 
was designated 100% and the others were represented as a fraction of the maximum binding. All percentages were rounded to 
the nearest whole number.
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ylated AID strongly. They were still able to bind AID when
the threonine was phosphorylated (AIDpT), though the
binding was slightly weaker. However, the interaction was

visibly reduced when either both threonine and tyrosine
(AIDpTpY) or tyrosine (AIDpY) (figure 2b, c). DAB1-PTB
and F1-DAB1 both showed that binding to AID was not
decrease much when Thr-668 was phosphorylated, but as
with the other PTB-containing proteins, there is a sharp
decrease with the phosphorylated of Tyr-682 on its own
(figure 2b, c). JIP2, AIDA-1a, DAB2, and X11γ, however,
were unable to bind AID regardless of whether the threo-
nine or the tyrosine is phosphorylated (figure 2b).

Phosphorylation of APLP1 and APLP2 do not always show 
the same effects as the phosphorylation of APP
To extend our observations to the other members of the
APP gene family, we synthesized corresponding APLP1
and APLP2 peptides (ALID1, ALID1pY, ALID2, ALID2pT,
ALID2pY and ALID2pTpY). ALID1pT and ALID1pTpY were
not made because this threonine of APLP1 is not phos-
phorylated [27]. The peptides were immobilized on Strep-
Tactin resin and challenged with 6 μg of recombinant
GST-fusion proteins. The control was GST on its own, and
it did not bind any protein (data not shown).

From the SH2-containing proteins discussed above, ShcB,
Crk, Grb2, and Lyn have a higher affinity for AIDpY than
ALID1pY and ALID2pY. Grb7, c-Abl, Nck, PLCγ-C, and Src
show no difference between AIDpY than ALID1pY and
ALID2pY, while ShcA and PLCγ-N have a higher affinity
for ALID1pY (figure 1b, c). Like for AID, the SH2- domain
containing proteins only bind ALID1 and ALID2 when
the Tyr residue is phosphorylated. The binding to ALID2
is slightly increased when in addition to the tyrosine being
phosphorylated, the threonine is also phosphorylated
(figure 1b).

The PTB-containing domains show more variation in
preference between the three homologues. JIP1 binds to
AID much stronger than ALID1 and ALID2. ARH binds to
ALID1 more than AID and ALID2. DAB1 binds to AID and
ALID1 more than ALID2. The three forms of NUMB show
preference for the ALIDs over AID. ARH, NUMB-p71,
NUMB-p72 and NUMBL have a decrease in binding when
tyrosine is phosphorylated. X11α shows to be phosphor-
ylation independent. The PTB domains of ShcA and ShcC
bind in a similar fashion as the SH2 domains, with a
higher binding to phosphorylated AID than ALID1 and
ALID2. JIP2, AIDA-1a, DAB2, and X11γ do not bind AID,
ALID1, ALID2, or any of the phosphorylated peptides (fig-
ure 2b, c).

Quantitative assay showing the effect of phosphorylation 
of Tyr-682 and Thr-668 on binding affinity
We utilized a quantitative method (surface plasmon reso-
nance biosensor assay, Biacore) to precisely measure the
effect of Thr-668 and Tyr-682 phosphorylation on the
affinity of Grb2, NUMB-p71, and X11β for APP. These

Effect of phosphorylation of Threonine668 and Tyrosine682 on APP, APLP1, and APLP2 to PTB domain containing pro-teinsFigure 2
Effect of phosphorylation of Threonine668 and 
Tyrosine682 on APP, APLP1, and APLP2 to PTB 
domain containing proteins. (A) Schematic diagrams of 
the peptides containing PTB domains. (B) The same peptides 
as in Figure 1 were synthesized. Pull down experiments with 
immobilized Strep-Tactin resin showed the binding of the 
peptides to JIP1, JIP2, AIDA-1a, ARH, DAB1, DAB2, ShcC, 
ShcA, NUMB-p71, NUMB-p72, NUMB-L, X11α, and X11γ. 
The pull-down samples were analyzed by SDS-PAGE and 
Comassie-blue staining. (C) Percent binding of the AID, 
ALID1, ALID2 and the phosphorylated ones to the PTB 
domain-containing proteins listed above. The interaction that 
has the greatest binding affinity was designated 100% and the 
others were represented as a fraction of the maximum bind-
ing. All percentages were rounded to the nearest whole 
number.
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measurements allow a more accurate view of the binding
affinities than the pull-down experiments conducted. We
found that AIDpY and AIDpTpY bind to the GST-Grb2
domain with a KD of 2.57 × 10-9 (M-1) and 4.13 × 10-10

(M-1), respectively (Fig. 3A-B). There is not measurable
binding when AID is not phosphorylated on Tyr682 (not
shown). Repeating the experiment with NUMB p71, we
saw that AID, AIDpT and AIDpY bind to the GST-NUMB-
p71 with a KD of 1.05 × 10-7 (M-1), 1.58 × 10-6 (M-1), and
9.97 × 10-7 (M-1), respectively (Fig. 3C–E). And AID,
AIDpT and AIDpTpY bind to the GST-X11β with a KD of
8.48 × 10-9 (M-1), 3.35 × 10-8 (M-1), and 1.31 × 10-8 (M-1),
respectively (Fig. 3F–H).

These data show that Grb2 binds AID stronger when both
Tyr-682 and Thr-668 are phosphorylated than when just
the tyrosine phosphorylated, which supports the pull
down data above. Unlike to Grb2, in the case of NUMB-
p71, the binding affinity to unphosphorylated AID is
strongest, decreases when tyrosine or threonine is phos-

phorylated independent of the other. Binding of NUMB-
p71 being strongest to unphosphorylated AID is consist-
ent with the pull down data. As for X11β, binding to AID
is highest when it isn't phosphorylated, slightly lower
when both tyrosine and threonine is phosphorylated and
even lower when threonine alone is phosphorylated. The
decrease of affinity of a domain due to the phosphoryla-
tion of the threonine has been documented by our lab
before. We saw that the affinity of Fe65 to AID was
decreased by a factor of 3 [45]. These data show that phos-
phorylated versions of the two residues can both increase
and decrease the binding affinity of a domain to APP,
depending on what the domain is.

Confirming interactions with pull down experiments from 
brain homogenates
The interactions of Grb2 and Crk with phospho-tyrosine
of Strep-tag AID peptide were confirmed by pull-down
experiments from human brain lysates (figure 4). The
results confirmed those with the GST-SH2 recombinant

Quantitative analysis of protein-protein interactions using Biacore assay (surface plasmon resonance biosensor assay)Figure 3
Quantitative analysis of protein-protein interactions using Biacore assay (surface plasmon resonance biosen-
sor assay). Strep-tagged AID peptides and Strep-tag control peptide were immobilized on sensor chips CM5 (Biacore). Bind-
ing curves for GST-Grb2, Numb p71, and X11β proteins were expressed in resonance units (RU) as a function of time. (A) 
AIDpY and GST-Grb2 interaction, (B) AIDpTpY and GST-Grb2 interaction, (C) AID and GSTNUMB-p71 interaction, (D) 
AIDpY and GST-NUMB-p71 interaction, (E) AIDpTpY and GST-NUMB-p71 interaction, (F) AID and X11β interaction, (G) 
AIDpT and X11β interaction, and (H) AIDpTpY and X11β interaction. The kinetic parameters and concentrations of the ana-
lytes are indicated in A-H.
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protein, except that Crk and Grb2 were able to bind to
AID with just threonine phosphorylated and unphospho-
rylated ALID1 although the binding affinity was low.

Pin1 was shown to bind to phosphorylated Thr-668,
which is important since knockout of Pin1 causes tauop-
athy and neurodegeneration and Pin1 is downregulated
in AD neurons [32,83]. Pin1 knockout increases Aβ42
production, increasing amyloidogenic APP processing,
showing that Pin1 might lead to non-amyloidogenic APP
processing and reduce Aβ production [32]. Overexpres-
sion of Pin1 in cells causes a decrease in the amyloidog-
enic processing of APP [84]. Using brain homogenate, we
confirmed that Pin1 is able to bind AID when only Thr-
668 is phosphorylated. However, and surprisingly per-
haps, Pin1 also bound to AIDpY and double phosphoryla-
tion on both Tyr-682 and Thr-668 augmented the amount
of Pin1 interacting with APP (figure 4). As for ALID1 and
ALID2, the data are not conclusive. We found some bind-
ing of Pin1 that is not affected by phosphorylation. Thus,
it appears that Pin1 preferentially binds phosphorylated
forms of APP (figure 4).

Discussion
In this study we show that phosphorylation of Tyr-682
and Thr-668 dramatically changes the APP interactome
(Figure 5). These phosphorylations affect the ability of
proteins with Src-Homology 2 domains (SH2) and Phos-
pho-tyrosine Binding domains (PTB) bind to APP, APLP1,
and APLP2. Interactions between proteins, such as the
generation of docking sites, are affected by phosphoryla-
tion, so we studied various interactions that are enhanced/

reduced when these two residues are phosphorylated [85].
This makes the interactions important to study since
phosphorylation of these two residues is enhanced in AD
brains, suggesting a pathogenic role [48,49,86]. Tyr-682 is

Pull down experiment of brain homogenateFigure 4
Pull down experiment of brain homogenate. (A) Brain homogenates were prepared and pull-down experiments were 
done and studied by Western Blot. The results for Grb2 and Crk confirmed those found through in-vitro pull down. Pin1 
results show that binding is increased through the phosphorylation of Thr-668. (B) Percent binding of the AID, ALID1, ALID2 
and the phosphorylated ones to the brain homogenates protein: Grb2, Crk, Pin1. The interaction that has the greatest binding 
affinity was designated 100% and the others were represented as a fraction of the maximum binding. All percentages were 
rounded to the closest whole number.

Schematic showing the effect of phosphorylation of Tyr-682 and Thr-668 on the APP's interactomeFigure 5
Schematic showing the effect of phosphorylation of 
Tyr-682 and Thr-668 on the APP's interactome.
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included into a canonical endocytic signal motif
(Y682ENPTY687) for membraneassociated receptors
[42]. This motif is shared by all three APP family members
(APP, APLP1 and APLP2), is evolutionally conserved, and
is important for interactions with cytosolic proteins that
regulate APP metabolism and signaling [87]. Here we
show that phosphorylation of Tyr-682 dramatically
changes the APP-Intracellular Domain Interactome. In
fact, it creates a docking site for proteins containing an
SH2 domain and either reduces or obliterates interaction
of a subset of proteins containing a PTB domain.

The proteins with the SH2 domains tested were ShcA,
ShcB, Grb7, Grb2, Crk, Nck, p85-N, p85-C, Abl, Lyn, Src,
SHIP2-N, SHIP2-C, PLCγ-N, and PLCγ-C. Among these
domains are scaffolds, adaptors, kinases, phosphatases
and phospholipids second messengers. The structural
domains of the listed proteins are found in Figure 1a. The
proteins with the PTB domains tested were JIP1, JIP2,
AIDa, ARH, DAB1, DAB2, ShcC, ShcA, NUMB-p71,
NUMB-p72, NUMB-Like, X11α, X11β and X11γ. These
proteins, as the SH2 domain-containing proteins, have
various roles among them. Some of their structural
domains are seen in Figure 2a.

ShcA, ShcB, and ShcC are SH2 and PTB-containing
adapter proteins that signal to cellular differentiation and
survival pathways. Our previous studies have shown that
APP and ShcC were physically associated in adult mouse
brain homogenates. We have also seen interactions of APP
and the three in vitro, finding that they bind through the
PTB domain [44]. It is believed that phosphorylation of
APP might connect Shc and Grb2 to various cellular path-
ways, which are important to study to understand the role
of APP. From the Shc proteins, ShcA is found to be higher
in AD brains compared to normal brains [52]. ShcA and
ShcC bind APP through their PTB domain and are differ-
ent from the others PTB-domain containing proteins we
studied in that they only associate with APP when Tyr-682
is phosphorylated [44,53,85,88]. ShcA, along with ShcB,
also bind APP through their SH2 domain (the SH2
domain of ShcC and the PTB domain of ShcB have not
been analyzed in this study). This finding may be of
importance as it is possible that Shc proteins may mediate
formation of dimeric complex between two APP proteins
that is induced by Tyr-682 phosphorylation. A potential
model is shown in Figure 6. Another interesting observa-
tion was that the SH2 domain of ShcA binds stronger to
ALID1 while its PTB domain binds stronger to AID (fig-
ures 1b, c and 2b, c). Thus, it is also possible that Shc pro-
teins could generate hetero-dimers between APP family
members upon Tyr phosphorylation.

The adaptors, Grb7, Grb2, Crk, and Nck, are all seen to be
dependent on phosphorylation of Tyr-682. Grb2 and Crk,
unlike Grb7 and Nck, bound preferentially to AID rather

than ALID1 or ALID2. This is of relevance since AD
patients have the two residues phosphorylated, and APP is
the one believed to play a role in AD, not ALID1 or ALID2.
This leads us to the conclusion that Grb2, Crk, and also
the Shc family, but not Grb7 and Nck, play a role in AD.

p-85 is a regulator'y subunit for class I phosphoinositide
3-kinase (PI3K). PI3K has various roles in human cancer
[89]. Since p-85 is a dimeric enzyme that acts as a regula-
tor, we wanted to see if it had any role in regulating APP,
and so we tested its binding. Although no binding was
found, it may still have a role in regulating APP through a
mutual binding partner.

Abl has been shown to bind Fe65 and induce the phos-
phorylation of Fe65 leading to the APP/Fe65-mediated
gene transcription [65]. Abl has also been found to inter-
act with APP through its SH2 domain [47]. Unlike other
kinases, Abl has a long C-terminus and holds nuclear
localization, nuclear export signals, and domains that can
interact with DNA and F-actin [90,91]. Lyn has been
found to be recruited into a complex between APP and β1
integrin mediated adhesion of monocytes; this recruit-
ment came along with an increase in phosphorylation of
Tyr-682 of APP, which may lead to activation of cytoplas-

Model of how Shc could bind to APP using both its SH2 and PTB domain, making a dimeric APP complex induced by Tyr-682 phosphorylationFigure 6
Model of how Shc could bind to APP using both its 
SH2 and PTB domain, making a dimeric APP com-
plex induced by Tyr-682 phosphorylation.
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mic serine/threonine kinases and subsequent transcrip-
tional regulation. Binding of Lyn to APP only took place
when it was phosphorylated, leading to an increase in p38
MAP kinase activity [92-95]. Src kinase, along with Abl,
has been found to be involved in the phosphorylation of
Tyr-682, which is seen in the brain of patients with AD as
well as patients without the disease [43,47]. Src and Abl
bind fairly even to the three homologues, but Lyn prefer-
entially binds AID, so it may play a role in AD.

SHIP2 is able to activate Ras through Grb2 and SOS, lead-
ing to the phosphorylation and activation of Raf-1/MEK-
1/MAP kinases [96,97]. Howell et al found that DAB1-
PTB interacts with SHIP; the binding is inhibited if the
tyrosine residues of the ligands are phosphorylated [75].
Just as with p-85, there is no binding between SHIP2 and
the APP family but it may bind through an adaptor such
as Grb2.

PI-PLC plays a general role in removing GPI-anchored
proteins from the cell surface. There is some evidence that
GPI-anchored proteins play a part in β-secretase activity
and Aβ secretion, though no real role in α-secretase activ-
ity [98]. PI-PLC treated CHO cells have a reduction in the
processing of beta-secretase [98]. The same lab has also
shown that PI-PLC treated brain cultures show a reduction
in the secretion of Aβ but not sAPPα. PLC is important to
study too because it was seen that when PS1, PS2 or both
are missing in MEFs, the activation of PLC, PKCα, and
PKCγ activations were much lower after PLC was stimu-
lated [99]. The authors also point out that PKCα and PKCγ
protein levels were lower in the knockouts but PKCδ levels
were much higher [99]. We tested both the N- and C-ter-
mini and found that they both bound to the three homo-
logues and the binding was stronger to APLP1 and APLP2,
which means it may also play a role, possibly a larger role,
in the cleavage of the two homologues.

The JIP1 and 2 are scaffold proteins, which have been
studied extensively in our lab. We have seen JIP interact
with AID, and now we further tested the interaction with
phosphorylated AID and its two homologues [27]. JIP1b
stabilizes immature APP, preventing the release of AID
and sAPP and secretion of Aβ-40 and Aβ-42 [100]. JIP2
does not bind APP as strongly as JIP1 and does not have
an effect on APP processing [100]. JIP1 and APP were
found to be transported together in vesicles when APP is
phosphorylated at Thr-668, showing that the formation of
a complex between JIP1 and APP is formed only when
APP is phosphorylated [30]. JIP1 shows preference for
AID but JIP2 doesn't bind either one; thus JIP1 may have
a pathogenic role in AD.

AID-1a has been shown in previous studies in our lab to
possibly having a role as a modulator of APP processing.
It was shown to inhibit the function of γ-secretase, reduc-

ing the amount of Aβ secreted [101], but did not bind
either homologue in this study. It has been seen that
downregulating ARH expression using RNAi in vitro
increases cellular APP levels. The interaction of ARH with
AID has been seen prior both in vitro and in vivo, and gave
ARH a possible role in APP internalization, transport,
and/or processing [102]. It has also been shown to regu-
late cholesterol uptake and so might have a role on cho-
lesterol metabolism in APP processing [102,103]. ARH
binds much stronger to ALID1 and ALID2 than it does to
AID. This makes it an important protein to study, because
it may have a role in preventing oligomerization, since
APLP1 and APLP2 do not form plaques after they are
cleaved. DAB1 has been shown to be linked to APP
through JIP1b, and DAB1 is believed to play a role in neu-
ronal development [28,47,75,76]. DAB2 is able bind to
clathrin coated pits and cytoskeletal components, so it
might play roles in endocytic trafficking of lipoprotein
receptors and cell adhesion/spreading [76,104,105].
DAB1 seems to be phosphorylation independent and
DAB2 does not bind to any of the peptides. This means
that DAB1 probably has a constant role, unless regulated
by a third party, such as JIP1b.

NUMB isoforms that have the PTB domain were found to
increase PC12 cells' susceptibility to death by Aβ-42,
showing that NUMB may have roles in neural develop-
ment and neuro-degenerative disorders [106]. Mice with-
out a functional NUMB die in early development and
have defects in cranial neural tube closure and premature
neuron production, showing that NUMB has a role in cell
survival, especially since it binds Notch and Notch has
been found to promote cell survival [107]. Notch is
cleaved by γ-secretase releasing the Notch Intracellular
Domain (NICD), which translocates to the nucleus and
activates the transcription of genes that regulate the gener-
ation, differentiation, and survival of neuronal cells. APP
is able to bind to the NUMB family, which inhibits Notch,
by interacting with it [20,108]; thus it was important to
study the interaction of APP to NUMB. The three forms of
NUMB studied were bound more to ALID1 and ALID2. In
our studies, the Biacore data showed that NUMB binds
AID with higher affinity than AIDpT and AIDpY, consistent
with the in vitro data; however, the in vitro data showed
binding to AIDpT is larger than AIDpY, which is not the
case in the Biacore data.

X11 is able to bind APP, APLP1 and APLP2, and overex-
pression of X11α and X11β has been shown to decrease
Aβ production in vitro and decreased amyloid deposition
[80,109-112]. X11s also have roles in polarized trafficking
in neurons and synaptic vesicle exocytosis [113,114]. The
subcellular distribution of APP is changed when X11 is
overexpressed in co-transfected non-neuronal cells, and
its immunoreactivity was shown to be associated with AD
plaques [115]. X11α has been seen to impair APP traffick-
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ing in secretory as well as endocytic pathways, which
might lead to the prevention of Aβ secretion [116]. We
found that X11α is phosphorylation independent, X11β
shows higher binding to AID than its phosphorylated
counterparts, and X11γ does not bind any of the peptides.
This shows that most likely X11β may have a role in AD.

The general trend of the SH2 domains is that binding is
seen when Tyr-682 is phosphorylated, and further
increased when both the tyrosine and threonine are phos-
phorylated. The trend seen among the PTB domain pro-
teins is either no difference of binding to AID and its
homologues, regardless of phosphorylation, or a decrease
in binding due to phosphorylation, especially by the tyro-
sine. Given the many roles of all the proteins mentioned,
we felt there was a need to test the binding of a wide array
of different proteins from kinases to scaffolds to signaling
and regulatory proteins. This would allow us to see the
many roles that APP could have, most of which are still
unknown. Overall, our results indicate that phosphoryla-
tion of the cytoplasmic tail of APP on Tyr-682 and Thr-
668 plays a role in the molecular composition of APP pro-
tein complexes. APP phosphorylation represents a "bio-
chemical switch" that drastically changes the APP
"interactome," creating docking sites for many of the
domains discussed above (Figure 5). It also shows a sec-
ond mechanism, alternative to APP processing by secre-
tases, to regulate APP downstream signaling pathways.
Given that APP is highly phosphorylated in AD cases,
uncovering the mechanisms that regulate Tyr- 682 and
Thr-668 phosphorylation and identifying the kinases and
phosphatases that modify APP will lead to a better under-
standing of both biological and pathological brain proc-
esses. To this end, it is worth concluding that finding
kinases and signaling pathways, such as the NGF-TrkA sig-
naling pathway [117], that lead to APP phosphorylation is
bound to have important biological and pathological
consequences.
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