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Abstract
Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders
such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-β-peptide (Aβ)-induced
neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently
Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/β-
catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling,
including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional
compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against
Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-
dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the
Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.

Introduction
Alzheimer's disease (AD) is a neurodegenerative disorder
associated with aging and characterized by fibrillar depos-
its of Aβ in subcortical brain regions. Typical features of
AD are extracellular neuritic amyloid plaques (senile
plaques) and intracellular neurofibrillary tangles. The
main proteinaceous component of the amyloid deposited
in AD is the Aβ peptide, a 40-to 42-residue peptide that
has been isolated from senile plaque cores. Studies in AD
mouse models and AD patients support the hypothesis
that Aβ causes "synaptic failure" before plaques develop
and neuronal cell death occurs; such effects are produced
by Aβ oligomers, which are soluble and toxic molecular
forms of Aβ [1].

The importance of Wnt (wingless-type murine-mammary-
tumour virus integration site) signaling in many adult and

developmental processes, such as gastrulation, axis forma-
tion, cell polarity, organ development and maintenance
of stem cell pluripotency, is widely acknowledged [2,3]. In
embryos, signaling by Wnt factors controls the organiza-
tion of the body plan during the early stages of develop-
ment as well as organogenesis at later developmental
stages. Postnatally, Wnt signaling is involved in normal
biological events such as tissue maturation and homeos-
tasis and in several neoplastic pathologies. In the mam-
malian central nervous system (CNS), Wnt signal
transduction is involved in neural induction and pattern-
ing in early embryogenesis; previous studies have also
linked Wnt signaling to neurodegenerative disorders such
as AD [4-6]. In fact, strong evidence suggests that a loss of
Wnt function is implicated in the pathophysiology of neu-
ronal degeneration of AD. Wnt signaling is complex; 19
mammalian Wnt genes have been cloned, and more than
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ten membrane receptors and a plethora of cofactors and
regulators are known. Different mechanisms of Wnt sign-
aling have also been identified. The best understood of
these is the "canonical" pathway, in which β-catenin
transduces the Wnt signal to the nucleus [7]. In this case,
the signaling cascade by Wnts involves an interaction with
a receptor complex comprising members of the Frizzled
(Fz) class of 7-transmembrane receptors and a member of
the low density lipoprotein receptor 5/6 (LRP 5/6) family
of single-pass membrane proteins. Wnt interaction with
its receptor results in an increase in the stability of β-cat-
enin, whose accumulation results in translocation to the
nucleus where it can interact with members of the TCF/
LEF class of transcription factors and therefore modulate
gene expression. The stability of β-catenin is controlled by
Wnt through the modulation of a large cytoplasmic pro-
tein complex comprised of the protein Axin (axis inhibi-
tion protein), APC (adenomatosis polyposis coli), CK1α
(casein kinase 1 alpha), GSK-3β(glycogen synthase kinase
3 beta) and GβP/frat [8]. GSK-3β directly controls the
level of β-catenin phosphorylation, which leads to its con-
sequent degradation by the proteasome pathway [9]. Wnt
signaling is regulated by a wide range of proteins, which
act either intracellularly by affecting signal transduction,
or extracellularly by interfering with the interaction
between Wnt ligands and their membrane co-receptors
[10]. Different families of extracellular antagonists of the
canonical Wnt pathway have been described, such as
Wise, the secreted frizzled-related protein (sFRP), the Wnt
inhibitory factor 1 (Wif1), Cerberus, and the Dickkopf
(Dkk) family of secreted proteins. Of the four known Dkk
family members, Dkk-1 is uniquely described as a nega-
tive modulator of the canonical Wnt signaling, whereas,
Dkk-2 for example may activate or inhibit the pathway
depending on the cellular context. Dkk-1 is expressed at
very low levels in the adult brain [11], and binds to LRP
5/6 and the transmembrane protein Kremen-2, promot-
ing the endocytosis and subsequent degradation of LRP 5/
6, which is no longer available as a co-receptor for Wnt
[12].

Little is known about the role of the heparan sulfate pro-
teoglycans (HSPGs) in vertebrate Wnt signaling [13]. A
comparable signaling system, however, may help to eluci-
date its involvement. Genetic evidence demonstrates that
two Drosophila genes involved in Wg signaling, dally (divi-
sion abnormally delayed) and dlp (dally-like), reveal a
predicted protein sequence that resembles the protein
cores of glypican (HSPG) [14-16]. Flies homozygous for
hypomorphic dally alleles exhibit some wing-margin
defects, a phenotype similar to partial loss of Wg activity
[14]. Dally's sensitivity to heparin lyase II and not to chon-
droitinase ABC treatments indicates that it contains
heparan sulfate chains [16]. With this understanding, for
studying the involvement of HSPG in Neuro2a cells and

hippocampal neuron signaling, we used heparin as a gly-
cosaminoglycan (GAG) model to investigate the modula-
tion of β-catenin. We found that heparin modulates the
levels of cytoplasmic β-catenin in a concentration-
dependent manner in Neuro2a cells. Mainly HS residues
are involved, since other GAGs, such as chondrotin (CS)
or dermatan sulfate (DS), had little effect. The effect of
heparin involves a decrease in the activity of GSK-3β and
phosphorylation of its Ser 9 residue complemented with
the increase of β-catenin. These results are consistent with
the idea that increases in β-catenin levels are the result of
an inhibition of GSK-3β activity, particularly through
phosphorylation of the Ser 9 residue. In addition, heparin
affects β-catenin and GSK-3β activity in rat hippocampal
neurons, and Wnt-3a modulates the effect of heparin on
β-catenin levels [17]. More importantly, the presence of
heparin enhances the protective effect of Wnt-3a against
β-amyloid neurotoxicity (Table 1).

Historically, Wnt proteins were classified as either canon-
ical, such as Wnt-1 and Wnt-3a, or non-canonical, includ-
ing Wnt-4, Wnt-5 and Wnt-11 [7,18,19]. The
characterization of Fz, LRPs and other receptor function
has challenged this classification of individual Wnt pro-
teins. Evidence suggests that Wnt-5a, for example, may
activate the canonical pathway or inhibit it, depending on
the receptor involved [20]. Accordingly, the terms "canon-
ical" and "non-canonical" are used to indicate molecular
mechanisms, not specific Wnt proteins. Two non-canoni-
cal Wnt pathways have been described to play a role in
development: (i) the planar cell polarity (PCP) pathway,
in which Fz acts through Jun N-terminal kinase (JNK) to
regulate the cytoskeleton, and (ii) the Wnt-Ca2+ signaling
pathway, in which Fz activation leads to increased intrac-
ellular Ca2+ and nuclear import of the transcription factor
NFAT [21]. These show that not only are alternative Wnt
pathways utilized to specify pattern formation during
development, but also different mechanisms. Although
the final output of the canonical and the non-canonical
Wnt-Ca2+ pathways are the regulation of gene expression,
the PCP pathway controls planar cell polarity by modulat-
ing the cytoskeleton [22,23].

At the beginning of this decade (Early in 2000), we found
a relationship between a loss of the Wnt signaling path-
way activity and AD. Early studies in our laboratory sug-
gested a relationship between Aβ-induced neurotoxicity
and an impairment of this signaling pathway, Figure
1[4,24-26]. Several independent studies are consistent
with the idea that Wnt signaling components are altered
in AD [27-33]. As a result, we have studied whether or not
the activation of the Wnt signaling pathway may be used
as a therapeutic strategy to treat AD.
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The activation of the Wnt Signaling Pathway Prevents Aβ-
induced Neurotoxicity
A considerable amount of data has led to a quest to under-
stand the role Wnt signaling may play in AD. β-catenin
levels are markedly reduced in AD patients carrying prese-
nilin-1 (PS-1) inherited mutations [29]. In fact, several
studies have shown that familial AD-linked PS-1 proteins
form multi-protein complexes with β-catenin and GSK-3β
[34-36]. Early studies in our laboratory suggested a rela-
tionship between Aβ-induced neurotoxicity and lower
cytoplasmic levels of β-catenin. Inhibition of GSK-3β by
lithium was shown to protect rat hippocampal neurons
from Aβ-induced damage [25,26,37]. These evidences led
us to propose that a sustained loss of Wnt signaling func-
tion could be involved in the Aβ dependent neurodegen-
eration observed in AD [24,37].

The enzyme GSK-3β, a key modulator in the Wnt canoni-
cal, has its activity related with the neuropathology
present in AD. GSK-3β is widely expressed throughout the
rat CNS [38], with particularly high levels of expression in
the hippocampus. In cultured hippocampal neurons, it is
expressed throughout the cell bodies, including dendritic
spines [39]. The presence of GSK-3β within dendrites and
dendritic spines suggests that it may have a role in synap-
tic function. Recently, Collingridge and coworkers
obtained evidence for a role of GSK-3β in NMDA recep-
tor-dependent long-term depression (LTD) at CA3-CA1
synapses of 2-week-old rats. They found that a variety of
inhibitors of GSK-3β were able to prevent the induction of
LTD when loaded into the recorded neuron using a patch
pipette. These structurally unrelated inhibitors,
SB415286, lithium and kenpaullone, prevented the
induction of LTD over the appropriate concentration
range at which they inhibited GSK-3β [40]. Previous stud-
ies have shown that following the induction of LTP there
is inhibition of GSK-3β activity [41]. In summary, GSK-3β
is required for LTP and provides a mechanism by which
LTP can inhibit LTD, therefore the regulation of GSK-3β

activity provides a mechanism to preserve information
encoded during LTP from erasure by subsequent LTD.
Whether or not these functions or the deregulation of
these functions are important early or late features in the
development of neurodegenerative diseases remains to be
determined [39].

In AD brain, active GSK-3β (also known as tau kinase I) is
mainly found in neuronal cell bodies and neurites [42],
where it is found co-localized with the neurofibrillary
changes observed in AD brains. The activation of the
enzyme GSK-3β, the hyperphosphorylation of tau pro-
tein, and the loss of the microtubular network have all
been observed in primary cultures of rat hippocampal and
human cortical neurons exposed to the Aβ peptide
[43,44]. Interestingly, it has been observed that blocking
GSK-3β activity prevents tau hyper-phosphorylation and
promotes its binding to the microtubular network [45].
Lithium, which has long been used to treat bipolar disor-
ders [46], has been shown to be a competitive inhibitor of
GSK-3 with respect to magnesium, a property not found
in other group I metal ions [47]. This may account for its
ability to act as a mood-stabilizing drug [48], though
other actions of lithium, such as its well-known ability to
inhibit inositol-1,4 bis-phosphate 1-phosphatase and
inositol-1(or 4)-mono-phosphatase, could also explain or
contribute to its therapeutic effects [49]. Studies from dif-
ferent laboratories indicated that lithium protects rat hip-
pocampal neurons from Aβ insults suggesting that a
sustained loss of the Wnt signaling function may be
involved in the Aβ dependent neurodegeneration
observed in AD [26,27]. Furthermore, recent evidence
suggests that lithium is neuro-protective against a variety
of neurodegenerative conditions [46,50], and it is note-
worthy that lithium reduces the prevalence of AD in eld-
erly patients with bipolar disorder [51]. Ongoing clinical
trials are evaluating the efficacy of this drug to lower tau
and β-amyloid levels in the cerebral spinal fluid of AD
patients http://clinicaltrials.gov/ct2/show/
NCT00088387. Recent studies in our laboratory, using
double transgenic mice (APPSWE + PSEN1ΔE9) indicated
that lithium injection prevents the behavioral distur-
bances of the animals, reducing the size of the amyloid
plaque, Figure 2A, B (Toledo & Inestrosa, unpublished
results).

The exposure of rat hippocampal neurons to Aβ result in
three hallmarks related with Wnt signaling: (a) destabili-
zation of endogenous levels of β-catenin, (b) an increase
in GSK-3β activity and (c) a decrease in Wnt target gene
transcription. In vitro studies have shown that the activa-
tion of the canonical Wnt signaling pathway by Wnt-3a
and Wnt-7a conditioned media were able to overcome the
neurotoxic consequences induced by Aβ [52,53]. Moreo-
ver the exposure of neurons in culture to Aβ induces apop-

Table 1: Heparin Modulation of the Wnt-3a ligand Effect on the 
Survival of Hippocampal Neurons Exposed to the Aβ peptide

Treatment Cell Survival (%)

Control 100.0 ± 6.1
Aβ 51.4 ± 2.9
Aβ + Wnt-3A 75.9 ± 4.3
Aβ + Wnt-3A + heparin 0.1 μg/ml 88.3 ± 6.0 *
Aβ + Wnt-3A + heparin 1.0 μg/ml 103.1 ± 8.5 *

Values represent means ± s.d. of three experiments carried out in 
triplicate. Hippocampal neurons were pretreated with Wnt-3a ligand 
with or without heparin for 1 h previous to the addition of 5 mM 
Aβ1–40. Neurons were then incubated for 24 h and MTT reduction 
was determined. * Indicates P < 0.05 compared with respect to Aβ + 
Wnt-3a in a "T" test analyzed by the Sigma plot 2.0 program.
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tosis and promotes tau hyperphosphorylation through
GSK-3β activity [54,55].

The Wnt/Ca2+ pathway signals through Dvl to induce cal-
cium influx and the activation of protein kinase C (PKC)
[56]. The inactivation of GSK-3β by PKC, leads to two
main consequences: reduced phosphorylation of tau pro-
tein and reduced degradation and subsequent accumula-
tion of cytoplasmic β-catenin [25,53]. PKC isoenzymes
are degraded in a differential manner upon Aβ exposure.
The modulation of PKC affects Aβ neurotoxicity, as the
activation of this enzyme by phorbol-12-myristate 13-ace-

tate increases cell viability of rat hippocampal neurons
and neuroprotection towards Aβ. PKC inhibits GSK-3β
through serine 9 phosphorylation preventing the cyto-
plasmic β-catenin degradation and thus, activating the
transcription of Wnt target genes such as engrailed and
cyclin-D1. Wnt-3a and lithium mimicked PKC activation
[25,53]. The regulation of some components of the Wnt
signaling pathway by Ca2+-dependent PKC iso-forms,
may be important in controlling the neurotoxic process
induced by Aβ. As a result, the activation of the Wnt sign-
aling pathway has been proposed [25,26,52,53,57] as a
therapeutic target for the treatment of AD.

The Wnt signaling pathway and its inhibition by Aβ aggregatesFigure 1
The Wnt signaling pathway and its inhibition by Aβ aggregates. First when the Wnt ligand is available, the Fz receptor 
together with LRP5/6 translates its signal through Dvl, which in turn inactivates GSK-3β in the cytoplasmic destruction com-
plex. This allows β-catenin to accumulate in the cytoplasm, and subsequently to move to the nucleus, where it binds to TCF/
LEF transcription factors activating Wnt target gene transcription (Left Panel). On the other hand, when the Aβ aggregates 
become available, the signaling through the Wnt pathway might be affected: GSK-3β activates, β-catenin destroyed, and the 
Wnt mediated gene transcription is stopped (Right Panel). Several potential mechanisms of how Aβ aggregates affect Wnt sign-
aling might be possible: (a) Aβ may bind to the Wnt ligand (scavenger effect), (b) Aβ may directly interact with the Fz receptor, 
(c) Dkk-1 may become available and block the transduction at the receptor level, or (d) Aβ may affect calcium flux by direct 
activation of the α7-nicotinic ACh and/or NMDA receptors. As a consequence, GSK-3β is activated and β-catenin function 
attenuated.
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The loss of Wnt signaling cannot be just attributed to a
loss of function. The reduction in the Wnt signaling can be
due to a gain of function of inhibitors of the Wnt signal-
ing. Studies by Caricasole et al (2004) [30] showed that
the exposure of cortical neurons to Aβ induced the expres-
sion of the secreted glycoprotein Dkk-1. Dkk-1 negatively
modulates the canonical Wnt signaling pathway, thus
activating the tau-phosphorylating enzyme GSK-3β [58].
Dkk-1 was induced at later times after Aβ exposure, and its
expression was dependent on the tumor suppressing pro-
tein p53. The antisense induced knockdown of Dkk-1
attenuates the reduction in the phosphorylated (inhib-
ited) form of GSK-3β, and a selective GSK-3β inhibitor
prevents tau hyperphosphorylation in neurons chal-
lenged with Aβ. The Dkk-1 knockdown also attenuates
neuronal apoptosis. These mechanisms may be relevant
to the AD pathology because Dkk-1, which is hardly

found in the healthy brain, is highly expressed in the AD
brain where it is found around the amyloid plaques and
co-localizes with neurofibrillary tangles and dystrophic
neurites. These studies indicate that induction of Dkk-1
contributes to the pathological cascade triggered by Aβ
and is critically involved in the process of tau-phosphor-
ylation. These results strengthen the hypothesis that an
impairment of the Wnt pathway contributes to the patho-
physiology of AD [4,5,24,58,59]

Another mechanism for the inhibition of the Wnt signal-
ing is by sFRPs, which are also capable to disrupt the Wnt
network signaling. Increased expression of sFRP 1, 2, 3
and 5 has been reported in Inherited Retinal Degenera-
tions such as Retinitis Pigmentosa, which is characterized
by progressive loss of photoreceptors due to apoptosis
[60,61]. sFRPs can regulate apoptosis in vitro, in fact,

Treatments with Lithium and Rosiglitazone reduce the amount of total Aβ in brains of APPswe+PSEN1ΔE9 miceFigure 2
Treatments with Lithium and Rosiglitazone reduce the amount of total Aβ in brains of APPswe+PSEN1ΔE9 
mice. (A) Hippocampal and cortical slices from transgenic mice APPswe+PSEN1ΔE9 (Tg) stained against Aβ. Photos are of Tg 
control and Tg treated animals with Lithium or Rosiglitazone. Figures B and C show the average Aβ plaque area (μm2) in the 
hippocampus and cortex after the treatments of lithium (B) and rosiglitazone (C) respectively, with bars representing the 
average plaque area for each specific treatment ± S.E (n = 5). Asterisks indicate significant differences, p < 0.05.
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sFRP2 a member of the family of secreted Frizzled-related
proteins [62], is also known as secreted apoptosis-related
protein-1 (SARP-1) [63]. They appear to interact with the
Wnt/β-catenin or Wnt/Frizzled signaling pathway, which
includes routes to apoptotic activation. As discussed by
Baranski et al (2000) [64] it is also possible that sFRPs
operate agonistically to Wnt signaling in some circum-
stances: for example, sFRP2 (SARP-1) increases resistance
of MCF7 breast adeno-carcinoma cells to apoptotic sig-
nals, whereas sFRP1 (SARP-2) sensitizes the same cell [63]
via opposing effects on intracellular β-catenin levels.
These results suggest that intercellular signals via the Wnt
pathways are substantially disrupted in the degenerative
state, and that targeting of sFRPs to key areas of the neuro-
retina may mediate mechanisms promoting or antagoniz-
ing cell death, similar mechanisms may also be true for
neurodegenerative diseases such as AD.

Genetic epidemiological data show a link between Wnt
signaling and AD. The analysis of single-nucleotide poly-
morphisms show an increased risk for AD in populations
with inheritance of the apo-lipoprotein E-ε4 (APOE-ε4)
allele, including both sporadic and late-onset familial
forms of the disease [65]. Recently, it was reported that
APOE-ε4 causes the inhibition of the canonical Wnt sign-
aling pathway in PC12 cells upon stimulation with Wnt-
7a as determined by luciferase activities and nuclear β-cat-
enin levels [66]. Epidemiological studies also estimates
that 42–48% of AD patients do not present the APOE-ε4
allele, suggesting that additional genetic or environmental
factors could play essential roles in the disease [67].
Genome-wide screens have identified several regions that
show significant linkage to AD. The reported linkage
peaks of chromosome 12 show significant association
with AD, particularly one region located in the vicinity of
the LRP 6 [32]. Since LRP5/6 encodes a co-receptor for the
Wnt pathway, its association with AD was studied. Results
unveil an association between a highly conserved coding
sequence LRP 6 polymorphism (Ile1062Val) and the risk
to develop late-onset AD in APOE-ε4 allele carriers. Inter-
estingly, the Val 1062 variant of LRP 6 causes a reduced
activation of a β-catenin-responsive reporter gene in
HEK293T/STF recombinant cells [32], suggesting that a
reduced efficiency of the canonical Wnt signaling pathway
may predispose people to AD.

Accumulation of cytoplasmic inclusion bodies in many
neurodegenerative diseases, including AD, might result
from dysfunction of the ubiquitin-proteasome system
[68,69]. This system degrades many cellular proteins,
including β-catenin. Wnt signaling activation causes the
dissociation of the multiprotein complex that contains,
among others, GSK-3β and β-catenin. This prevents GSK-
3β from phosphorylating β-catenin [70]. Un-phosphor-
ylated β-catenin becomes resistant to proteosomal degra-

dation [71] and moves to the nucleus, where it regulates
gene expression after interacting with members of the
TCF/LEF family of transcription factors. Genes that are
affected by the canonical Wnt pathway are involved in the
regulation of neuronal survival and homeostasis (such
Bcl-2, α7-nicotinic AChR, insulin degrading enzyme,
CaMKIV and neuroligin) [72-76]. Phosphorylation of β-
catenin labels it for ubiquitination and rapid proteasomal
degradation. Studies by Ghanevati and Miller (2005) [31]
indicated that phospho-β-catenin accumulated as deter-
gent-insoluble, punctuate cytoplasmic inclusions in hip-
pocampal pyramidal neurons more abundantly in AD
brain than in aged controls. Phospho-β-catenin is par-
tially sequestered within granulo-vacuolar degeneration
bodies but not lysosomes, indicating sequestration within
autophagosomes. Exposure of neuronal cultures to pro-
teasome inhibitors induced formation of detergent-insol-
uble, phospho-β-catenin-positive cytoplasmic inclusions
that coalesced into aggresomes and colocalized with γ-
tubulin and vimentin. These aggregates were associated
with apoptotic cell death and with activation of caspase-3,
c-Jun-N-terminal kinases, and c-Jun [31]. These findings
suggest that the accumulation of phospho-β-catenin in
AD result from impaired proteasomal function. Recently,
it was found that the up-regulation of β-catenin during
tau-hyperphosphorylation prevents neuronal cells from
going into apoptosis. Furthermore, increasing levels of
hyperphosphorylated tau was correlated with diminished
levels of phospho-β-catenin and increased levels of
nuclear β-catenin. Moreover, the knockdown of β-catenin
increases the number of apoptotic cells and antagonizes
the anti-apoptotic effects of tau [77]. These results support
the role of β-catenin and therefore the Wnt/β-catenin sig-
naling in neuronal survival following Aβ insult in AD.

In mammals, Fz genes have been implicated in a variety of
developmental processes, including axonal outgrowth
and guidance in the central nervous system [78,79], the
survival of cerebellar neurons [80], hippocampal and vis-
uospatial learning [81], and the control of the neural tube
closure [82]. Rat Fz1 and Fz2 have been studied in greatest
detail and provide the best discrimination of the Wnt
pathways, referred to as Wnt/β-catenin pathway [83,84],
versus the Wnt-Ca2+ pathway [23,85]. An exhaustive study
of the possible associations between the known 19 Wnt
ligands and the 10 Fz has not been carried out, although
some combinations seem to convey a meaningful intrac-
ellular signal [86,87], including human Fz1 and Wnt-3a
[88], and Fz5 and Wnt-7a [89]. Although Wnt signaling
pathway and Fz receptors have been shown to participate
in the development and maintenance of the nervous sys-
tem, little is known about the expression of Fz in the
mammalian brain. Through the analysis of in-situ hybrid-
ization of adult mice brains, it was found that numerous
Fz receptors and Wnt ligands are expressed across the
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brain [90]. Knowledge of the pattern of expression of Fz
receptors and Wnt ligands, may contribute to the under-
standing of the in vivo Wnt signaling in the adult brain.
More recently, a high-throughput methodology that
allows the analysis of expression of 20000 genes, revealed
that the adult brain of mice expresses different compo-
nents of the Wnt signaling pathway [91].

The activation of the canonical Wnt signaling pathway
protects hippocampal neurons against the toxicity of
Alzheimer's Aβ, however, the role played by the Wnt
receptors Fz has not been studied. Recently we found that
Fz1 mediates the activation of the canonical Wnt/β-cat-
enin pathway by Wnt-3a in PC12 cells. In addition, the
protective effect of Wnt-3a against the toxicity of Aβ oli-
gomers was modulated by Fz1 expression levels. Over-
expression of Fz1 significantly increased cell survival
induced by Wnt-3a and diminished caspase-3 activation
and β-catenin degradation, these Wnt-3a effects are poten-
tiated by over-expression of Fz1, but not Fz2, and are sig-
nificantly reduced when Fz1 is knocked down by
antisense oligonucleotides in PC12 cells [92]. Over-
expression of wild-type β-catenin, but not a transcription-
ally inactive mutated version, prevented the toxicity of Aβ
suggesting that the transcription of Wnt target genes may
be involved in these events. This was confirmed by co-
transfecting both Fz1 and the inactive form of β-catenin,
which did not elicit protection levels similar to those
shown with endogenous β-catenin. Fz1 is expressed in the
adult rat hippocampus and cortex, and in cultured hip-
pocampal neurons where Wnt-3a also protects against Aβ
toxicity, an effect that was decreased by knocking-down
Fz1 expression [92]. The neuro-protective effect of Wnt-3a
modulated by Fz1 expression suggests that the activation
of the canonical Wnt signaling pathway prevents the neu-
rotoxicity induced by the Aβ peptide and again suggest a
therapeutic potential for this signaling pathway in the
treatment of AD.

The signal transduction mechanisms involved in Aβ-
induced neuronal dysfunction remain to be fully under-
stood; the identity of the protein receptor(s) involved in
neuronal Aβ binding has not been identified. Studies by
Ferreira and coworkers in Brazil [93], have identified a
number of peptides that bind Aβ and are homologous to
neuronal receptors putatively involved in Aβ interactions,
using phage display of peptide libraries [33,94]. Through
this methodology they have found an heptapeptide called
IQ, which is common to nAChRs with the ability to bind
Aβ with a nanomolar affinity [94]. This binding is enough
to block the inhibition of nAChRs by Aβ when it was stud-
ied in PC12 cells. These results demonstrate that a region
found in nAChRs acts as a receptor to Aβ and allow us to
hypothesize the role of nAChRs as receptors of Aβ in the
CNS. More recently, Ferreira and coworkers reported a

cysteine-linked cyclic heptapeptide (denominated cSP)
that is highly homologous to the extracellular cysteine-
rich domain (CRD) of several members of the Fz family of
Wnt receptors. Based on this homology, they investigated
the interaction between Aβ and Fz, and found that Aβ
binds to the Fz CRD at or in close proximity to the Wnt
binding site and inhibits β-catenin accumulation, nuclear
translocation and Wnt-targeted gene transcription [33].
Interestingly, the cSP peptide completely blocks Aβ bind-
ing to Fz and prevents inhibition of the Wnt signaling cas-
cade. These results indicate that the Aβ binding site in Fz
is homologous to cSP and that this is a relevant target for
Aβ neurotoxicity. Furthermore, they suggest that blocking
the interaction of Aβ with Fz might lead to novel thera-
peutic approaches to prevent neuronal dysfunction in AD.

Cross-talk of different signaling pathways with the Wnt 
Pathway leads to neuroprotection against Aβ 
Neurotoxicity
The emerging role of Wnt signaling as a therapeutic target
for treatment of AD led us to evaluate potential pathways
that interact with the Wnt signaling:

(a) Cholinergic dysfunction has been observed in AD
patients, indicating its relationship with Aβ neurotoxicity.
Degenerated pre-synaptic cholinergic neurons that ascend
from the basal forebrain to cortical and hippocampal
areas have been observed [95]. In relation to AD, it is well
known that M1 agonists increase the non-amyloidogenic
processing of the amyloid precursor protein (APP), reduc-
ing Aβ production [96] and tau phosphorylation [97]. In
addition, M1 muscarinic receptor activation by the spe-
cific agonist AF267B induces the phosphorylation/inacti-
vation of GSK-3β in cortical neuronal cultures from
transgenic mice that overexpress GSK-3β. Aβ treatment, as
well as transgenic mice that over-express GSK-3β, shows
decreased levels of Ser-9 phosphorylation, thus GSK-3β is
activated. On the contrary, M1 agonist treatments
decrease GSK-3β activity. In this manner, Ser-9 phospho-
rylation/inactivation of GSK-3β by M1 mAChR stimula-
tion is probably mediated by a mechanism that involves
protein kinase C (PKC), since a PKC inhibitor blocked M1
muscarinic receptor activation-induced Ser-9 phosphor-
ylation. Interestingly, it has been shown that PKC protects
from apoptosis induced by Aβ [23,98]. Hippocampal neu-
rons exposed to Aβ toxicity induced the activation of GSK-
3β, which was prevented by the activation of M1 mus-
carinic receptor. The protection observed in vitro was later
found in vivo; chronic treatment with the specific M1 ago-
nist AF267B, improved the spatial memory and reduced
the Aβ load in the hippocampus of a triple transgenic
mouse [99]. Thus, the M1 muscarinic activation and the
Wnt signaling pathway interact, leading to potential neu-
roprotection against Aβ toxicity.
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(b) The use of non-steroidal anti-inflammatory drugs
(NSAIDs) has been observed to reduce the risk for AD
[100]. The NSAIDs have been proposed to act by inhibit-
ing the secretases that cleave the APP in the amyloidog-
enic pathway to render Aβ. Moreover, NSAIDs
dramatically reduce the secretion of Aβ1–42 in cells in vitro
[101-104]. A bi-functional compound that includes Ibu-
profen (an anti-inflammatory drug) and prostigmine (a
cholinesterase inhibitor), IBU-PO protects hippocampal
neurons from Aβ neurotoxicity, increases the viability of
Aβ-challenged hippocampal neurons, and enhances neu-
rite growth [105]. The protection observed is the result of
the Wnt signaling activation, since the increase in the
activity of GSK-3β induced by Aβ is down-regulated by co-
treatment with IBU-PO. In addition, this down-regulation
occurs through induction of Ser-9 phosphorylation.
Transgenic mice that over-express GSK-3β show low levels
of Ser-9 phosphorylation and the IBU-PO treatment
induces an increase in this phosphorylation [105]. Com-
pounds such as IBU-PO, which mimic the activation of
the Wnt signaling pathway, could eventually rescue neu-
rons from cytotoxicity through GSK-3β inhibition, which
may be of potential benefit for the treatment of AD
patients.

(c) Treatment with some antioxidants has been suggested
as an avenue for the treatment of AD [106]. We have stud-
ied whether or not some antioxidants are able to affect the
canonical Wnt signaling pathway. Treatments with Trolox
(an hydro-soluble analogue of vitamin E) and 17β-estra-
diol, but not vitamin C, increases the cytoplasmic levels of
β-catenin and inhibits the increase in GSK-3β activity
observed when neurons are exposed to Aβ [52]. In this
context, we ask whether or not the activation of the Wnt
signaling by anti-oxidant treatment increases the mRNA
levels of some of the components of the Wnt pathway.
Results indicated that both Wnt-7a and Wnt-5a ligands
were induced by the anti-oxidant treatment [52]. A similar
effect was observed for engrailed-1 mRNA. In this context,
it is interesting to mention that at least 4 Wnt ligands
(Wnts 4, 11, 5a and 7a) present in embryonic hippocam-
pal neurons are also expressed in the adult rat brain [107],
indicating that at least some of the Wnt ligands are present
throughout the entire lifespan of mammals.

(d) The relative importance of hydrogen peroxide and free
radicals in the neurodegenerative processes triggered by
Aβ had been previously addressed [106]. For example,
Schubert and coworkers [108], demonstrated that the
addition of catalase (an enzyme that inactivates hydrogen
peroxide) to neuronal cultures exposed to Aβ, results in
the prevention of neurodegenerative changes. More
recently, we found that proliferation of peroxisomes,
intracellular organelles that destroy the excess of cellular
hydrogen peroxide, also prevent the neurotoxic effects

generated by Aβ in rat hippocampal cells [109]. The drugs
used to trigger the peroxisomal proliferation normally
activate a member of a family of nuclear receptors known
as peroxisome proliferator activated receptors (PPAR),
particularly the PPARα. Such drugs increase β-catenin
content in hippocampal neurons, suggesting an interac-
tion with the Wnt signaling pathway [109].

Another PPAR, known as the PPARγ, plays an important
role in the regulation of lipid metabolism [110]. In addi-
tion, PPARγ is the target of the insulin-sensitizing thiazo-
lidinediones (TZDs) drugs, used to treat type II diabetes.
Recent studies suggest that treatment of insulin resistance
with a PPARγ agonist retards the development of AD
[111], and TZDs have been proposed as potential thera-
peutic agents for both diabetes and AD [112]. Most of the
neuroprotective effects of TZDs are ascribed to either
improved insulin sensitivity or to their anti-inflammatory
action through PPARγ activation in reactive astrocytes and
microglia [113,114]. Studies in our laboratory, demon-
strated that the activation of PPARγ by three different
TZDs was able to prevent the neurodegeneration induced
by the Aβ. The activation with the PPARγ agonists modu-
late Wnt signaling components, including the inhibition
of GSK-3β activity, the increase in both the cytoplasmic
and nuclear levels of β-catenin, as well as the transcription
of Wnt target genes en-1 and cyclin-D1 [115]. Previous
studies in our laboratory indicated that Bcl-2 may be a
Wnt target gene [72,116]. Recent studies with neurons
containing high and low PPARγ levels, suggest that Bcl-2
plays a key role in the neuroprotection to both hydrogen
peroxide and Aβ [72]. In fact, NGF-differentiated PC12
neuronal cells that over-express PPARγ are resistant to Aβ-
induced apoptosis and to ROS increase after exposure to
hydrogen peroxide. Conversely, cells expressing a domi-
nant negative mutant of PPARγ show increased Aβ-
induced apoptosis and alterations by oxidative stress.
Neurons over-expressing PPARγ show a 4.5-fold increase
in Bcl-2 content, whereas in dominant negative PPARγ-
expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown
by siRNA in neurons over-expressing PPARγ results in
increased sensitivity to Aβ and oxidative stress. Finally,
PPARγ pro-survival action is independent of the signal
regulated MAPK or the Akt pathways [72]. These results
suggest that PPARγ supports neuronal survival by a mech-
anism that involves an increased expression of Bcl-2. An
alternative mechanism that could protect neurons from
the Aβ toxicity has been proposed. In fact, TZD, an agonist
of PPARγ, induced an increase in the clearance mecha-
nism of the Aβ peptide [117]. Interestingly, the activation
of PPARγ by rosiglitazone improves learning and memory
in a mouse model of AD, together with a reduction in Aβ
in the brains of Tg mice [118]. Recent studies in our labo-
ratory, using the APPSWE + PSEN1ΔE9 double transgenic
mice, indicated that rosiglitazone administration prevents
Page 8 of 13
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the behavioral and the inflammatory-glial disturbances
observed in transgenic animals, thus reducing amyloid
plaque size, Figure 2A,C (Toledo & Inestrosa, unpub-
lished results).

(e) Recently, we reported that Wnt-7a induces dissocia-
tion of the APC protein from the α-catenin cytoplasmic
complex and the interaction of APC with the α7-nAChR
in hippocampal neurons. In the CNS, α7-nAChRs are
involved in several aspects of brain function, affecting
neuronal development [119], learning, and memory

[120]. Because of their high permeability to calcium ions,
α7-nAChRs influence synaptic efficacy and induction of
LTP [121]. In Parkinson's and AD, a decrease in the
amount of α7-nAChRs has been found [122,123]. Wnt-7a
is able to induce the re-localization of APC to membranes,
clustering of APC in neurites, and co-clustering of APC
with the presynaptic protein markers, including P-syn-
apsin, SV2, and synaptotagmin. Moreover, Wnt-7a also
increases the number and size of co-clusters of α7-
nAChRs and APC in pre-synaptic nerve terminals [73].
These short-term changes in α7-nAChRs take place within

Activation of α7nAChR with nicotine protects hippocampal neurons from Aβ fibersFigure 3
Activation of α7nAChR with nicotine protects hippocampal neurons from Aβ fibers. (A) Hippocampal neurons (10 
DIV) were expose to Aβ1–40 fibers 5 mM for 6 h in the absence or presence of nicotine 10 μM. The immunostainings of the 
protein neurofilament (NF) shows the loss of dendrites, and the presynaptic protein SV-2, show a significant reduction upon 
exposure to Aβ. Nicotine is able to overturn the damage cause by Aβ. This reversion is specific to the nicotinic receptor since 
this protective effect was blocked by α-bungarotoxin (100 nM). (B) These effects are observed by western-blot of the total 
levels of total β-catenin, in which the reduction of β-catenin is prevented by nicotine and blocked with α-BTX.
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a few minutes after ligand exposure and involve transloca-
tion to the plasma membrane without affecting total lev-
els of the receptor. Long-term exposure to Wnt-7a
increases both nAChR α7 subunit levels in an APC inde-
pendent manner and clusters of α7-nAChRs in neurites
via an APC dependent process [73]. These results suggest
that α7-nAChR could be a target of the Wnt pathway by
regulating the pre-synaptic localization of APC and α7-
nAChRs, with APC serving as an intermediary in the α7-
nAChR re-localization process. Activation of α7-nAChR
with nicotine protects culture of hippocampal neurons
from Aβ aggregates and this protective effect of nicotine
was blocked by α-bungarotoxin. These effects are
observed at the immunofluorescence level, as well as at
the level of β-catenin by western blot (Figure 3).

Modulation by Wnt signaling may be essential for α7-
nAChR expression and function in synapses. Perhaps ther-
apies aimed to activate Wnt signaling could be effective in
treatment of AD, especially if they prevent loss of α7-
nAChRs from synaptic regions, as well as of other impor-
tant synaptic proteins. These compounds and new ones
yet to be discovered, which inhibit the GSK-3β activity
and/or enhance Wnt signaling, could lead to the reduc-
tion of neuropathological factors involved in AD. The
crosstalk of the Wnt signaling pathway with other cellular
pathways is opening new possibilities for therapy.

Conclusion
Several lines of evidence indicate that deregulated Wnt
signaling may play a role in the pathogenesis of AD. The
potential use of GSK-3β as a clinical target in AD has been
discussed, including the activation of M1 muscarinic
receptor and PKC, the use of anti-inflammatory-ChE
bifunctional compounds, PPAR agonists, and some anti-
oxidants, all of which may play a role by regulating the
Wnt/β-catenin signaling. So far the mechanisms by which
extracellular Aβ causes its different intra-neuronal effects
have not been clarified. Wnt-7a signaling stimulates clus-
tering of pre-synaptic proteins and modulates the synaptic
vesicle cycle by inducing recycling and exocytosis of syn-
aptic vesicles. Aβ oligomers bind to the central synapse at
the postsynaptic region, and we have found that Wnt-5a
plays an attenuating role in Aβ neurotoxicity. In addition,
this ligand modulates the insertion of glutamate receptors
in the postsynaptic region of synapses. All of these data
opens a novel therapeutic window in AD treatment.
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