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Abstract

Background: Transcriptional dysregulation is an early, key pathogenic mechanism in Huntington's
disease (HD). Therefore, gene expression analyses have biomarker potential for measuring
therapeutic efficacy in pre-clinical trials, particularly those aimed at correcting gene expression
abnormalities. Housekeeping genes are commonly used as endogenous references in gene
expression studies. However, a systematic study comparing the suitability of candidate reference
genes for use in HD mouse models has not been performed. To remedy this situation, 12
housekeeping genes were examined to identify suitable reference genes for use in expression
assays.

Results: We found that commonly used reference genes are dysregulated at later time points in
the R6/2 mouse model of HD. Therefore, in order to reliably measure gene expression changes
for use as pre-clinical trial biomarkers, we set out to identify suitable reference genes for use in R6/
2 mice. The expression of potential reference genes was examined in striatum, cortex and
cerebellum from |5 week old R6/2 and matched wild-type littermates. Expression levels of
candidate reference genes varied according to genotype and brain region. GeNorm software was
used to identify the three most stably expressed genes for each brain region. Relative quantification
methods using the geometric mean of three reference genes for normalisation enables accurate
determination of gene expression levels in wild-type and R6/2 mouse brain regions.

Conclusion: Our study has identified a reproducible, reliable method by which we able to
accurately determine the relative expression level of target genes in specific brain regions, thus
increasing the potential of gene expression analysis as a biomarker in HD pre-clinical trials.

Background lates into a polyglutamine (polyQ) tract in the huntingtin
Huntington's disease (HD) is an autosomal dominant,  (Htt) protein [1]. HD thus belongs to a group of neurode-
late-onset neurodegenerative disorder caused by a CAG  generative disorders caused by polyQ expansion, which
repeat expansion in exon 1 of the HD gene which trans-  include spinal and bulbar muscular atrophy (SBMA), den-
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tatorubral pallidoluysian atrophy (DRPLA) and the
spinocerebellar ataxias (SCA) types 1, 2, 3, 6, 7, and 17
[2]. The polyQ motif occurs in many transcription factors
and can function as a transcriptional activation domain.
Interestingly, polyQ repeat expansions in TATA binding
protein (TBP) and the androgen receptor (AR) cause the
disorders SCA17 and SBMA, respectively. Indeed, polyQ
repeat containing disease proteins are increasingly impli-
cated as mediators of gene expression, with deranged tran-
scription profiles observed as a result of polyQ repeat
expansion [3-10].

Transcriptional dysregulation is a central pathogenic
mechanism in HD [11,12]. Gene expression profiling of
in vitro and in vivo models of HD such as the R6/2 mouse
model reveals the identities of specifically altered mRNAs
that recapitulates those altered in human HD patient
brains [13,14]. Indeed, comparison of gene expression
studies shows remarkable concordance between mouse
models and human HD brain [15]. Furthermore, expres-
sion profiling studies suggest that more accessible tissues
such as muscle may be suitable for gene expression analy-
ses [16], although the use of blood is more controversial
[17,18].

Reverse transcriptase quantitative polymerase chain reac-
tion (qRT-PCR) is a powerful tool to obtain data about
gene expression. Normalisation enables one to determine
the change in mRNA levels of a gene of interest from mul-
tiple samples versus one or more reference gene(s), often
a housekeeping gene [19-21]. Reference genes are selected
on the basis of constitutive expression across samples to
allow the reliable quantification of changes in gene
expression [21]. At present, a universally optimal refer-
ence gene has not been identified for any organism that
can be used across different tissue types or disorders.

Clearly, in a disease such as HD where transcriptional dys-
regulation is a prominent pathological feature, identifica-
tion of suitable reference genes throughout the disease
time-course is critical. This is amply demonstrated by data
showing that beta-actin (Actb), a commonly-used refer-
ence, is dysregulated at late time points in R6/2 mouse
brain [22]. However, a systematic study comparing the
suitability of different candidate reference genes in HD
has not been performed. To remedy this situation, 12
housekeeping genes were examined to determine their
utility as references in three distinct dissected brain
regions from 15 week old R6/2 mice and littermate con-
trols. We found that the expression levels of candidate ref-
erence genes varied according to genotype and brain
region, highlighting the necessity of identifying suitable
references in the tissue or cell line under study. GeNorm
software was used to identify the three most stably
expressed genes for each brain region, from which the
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geometric mean was derived as a reliable normalisation
value for relative gene expression level analyses. Taken
together, we propose that the method outlined in this
study can be applied in different tissue samples in order to
reliably generate gene expression changes as a biomarker
in genetic and pharmacological approaches to modifying
HD related phenotypes.

Results

Mice

Hemizygous R6/2 transgenic mice were bred and reared in
our colony by backcrossing R6/2 males to (CBA x C57Bl/
6) F1 females (B6CBAF1/OlaHsd, Harlan Olac, Bicester,
UK) [23]. The R6/2 mouse model of HD ubiquitously
expresses exon 1 of the human HD gene with over 150
CAG repeats, and develops neuropathology, cognitive and
motor symptoms. R6/2 mice were always housed with
wild type mice and were subject to a 12-h light: 12-h dark
cycle. All animals had unlimited access to water and
breeding chow and housing conditions and environmen-
tal enrichment were as previously described [24]. R6/2
transgenic mice and wild-type littermate controls were
sacrificed by cervical dislocation and brains rapidly
removed. Striatum, cortex and cerebellum were dissected
and flash-frozen in liquid nitrogen and stored at -80°C
until use. The guidelines for animal care and use were in
accordance with Home Office regulations.

RNA extraction and reverse transcription

Quantitative RT-PCR (qRT-PCR) represents a powerful
tool for detection and quantification of mRNA with high
sensitivity, good reproducibility and a wide dynamic
range. The principles of qRT-PCR: RNA extraction, reverse
transcription (RT), quantitative PCR, fluorescent chemis-
try and appropriate real-time platforms are all extensively
described in the literature [20,25], and through internet
forums http://www.gene-quantification.de/. Each step
can directly impact the reliability of the assay and quality
assessment is essential to minimise variability (see Addi-
tional File 1).

To optimise RNA extraction from dissected brain regions,
we use QIAZOL together with RNeasy Mini kits according
to the manufacturers protocol (Qiagen), eluting into
either 50 pl of RNase-free water for striatal RNA or 100 pl
for cerebellar or cortical RNA. We routinely incorporate
DNase treatment as part of the RNeasy procedure (Qia-
gen) to remove any residual DNA, and perform "minus-
RT" controls as well as no-template controls in the PCR
analyses. In order to improve signal-to-noise ratio, we use
dissected brain regions such as striatum, cortex or cerebel-
lum. RNA quality encompasses both purity and integrity,
and we use the Agilent Bioanalyser 2100 RNA Nano assay
to assess this via the 28S/18S rRNA ratio, and to determine
the RNA concentration (see Additional File 1). Valid alter-
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natives include the nanodrop procedure or the use of 3":5'
assays [25].

The RT step is the source of most of the variability and is
critically dependent on both enzyme choice and priming
method. Target gene-specific primers can be used success-
fully to eliminate spurious transcripts but then separate
RT reactions are needed for each gene of interest, which is
inefficient when surveying several genes, and further-
more, different reactions do not have the same cDNA syn-
thesis efficiency. We therefore use MMLV RT-ase
(Invitrogen) together with random hexamers to synthe-
sise a cDNA pool which is used for a number of different
target-specific qPCR assays (see Additional File 1). In
order to minimise variability, we prepare all experimental
samples intended for comparison by qRT-PCR in parallel,
adding the same amount of RNA template to each RT reac-
tion. Reverse transcription of total RNA (either 5 pg of
RNA from cerebellum and cortex or 1 pg of striatal RNA)
was performed with MMLV RTase (Invitrogen). The cDNA
samples were then cooled to 4°C and diluted 1:10 before
storing at -20°C.

Real-time quantitative PCR (qRT-PCR)

QPCR uses fluorescent reporter dyes to combine the
amplification and detection steps of the PCR reaction. The
qPCR assay relies on measuring the increase in fluorescent
signal, which is proportional to the amount of DNA pro-
duced during the logarithmic phase of the PCR cycle. Indi-
vidual reactions are characterised by the PCR cycle at
which fluorescence first rises above a defined or threshold
background fluorescence, a parameter known as the
threshold cycle (C,). The more target there is in the start-
ing material, the lower the C,. This correlation between
fluorescence and amount of amplified product permits
accurate quantification over a wide dynamic range, while
retaining the sensitivity and specificity inherent in a con-
ventional PCR. An additional benefit is conferred by
reducing variability which can be introduced post-RT-PCR
(such as ethidium bromide gel staining and densitometric
analysis). We use two methods for the quantitative detec-
tion of the amplicon: (a) gene-specific fluorescent Taqg-
man probes, or (b) SYBR green, a non-sequence specific
fluorescent intercalating double-stranded DNA binding
dye. Both types of reaction can work extremely well, with
comparable dynamic range and sensitivity. An additional
advantage conferred by the Tagman system is the use of
probes labelled with different reporter dyes, allowing the
detection and quantification of multiple target genes in a
single (multiplex) reaction.

qPCR reactions are performed in triplicate with 5 pl of
diluted cDNA template in a 25 pl reaction containing Pre-
cision Mastermix (PrimerDesign), 300 nM primers and
200 nM probe using the Opticon 2 and Chromo4 real-
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time PCR machines (Biorad). We preferentially use the
Tagman system and therefore, primers and probes were
designed using Primer Express software (Table 1). Probes
were tagged with a FAM fluophore and a TAMRA
quencher. Crossing threshold data were obtained during
the logarithmic phase of amplification where efficiency
was close to 100%.

Quantification strategy

Finally, the quantification strategy must be considered.
Absolute quantification correlates the PCR signal to input
copy number using a calibration curve, and is dependent
on equivalent amplification efficiencies for both the
native target and the calibration curve. Absolute quantifi-
cation should be performed in situations where it is nec-
essary to determine the transcript copy number, such as
determining the titre of virus particles in blood. In con-
trast, relative quantification measures the relative change
in mRNA expression levels and is easier to perform than
absolute quantification because a calibration curve is not
necessary. Relative quantification is based on the expres-
sion levels of target gene(s) versus reference gene(s) and
the relative quantities can be compared across multiple
experiments. We use relative quantification when consid-
ering genetic and/or pharmacological modulation of HD
related phenotypes. With respect to understanding the
effect of a manipulation in a pathogenic pathway, it is
more informative to state that a given treatment increases
the expression of gene A by 5 fold, than if we state that the
treatment increases the expression of gene A from 1000
copies to 5000 copies per cell [19]. Various mathematical
models have been established to calculate the expression
of a target gene in relation to an adequate reference, based
on the comparison of the distinct cycle threshold values
(C,)) ata constant level of fluorescent with, or without PCR
efficiency correction. We use a well-characterised 2-4ACt
equation, as our target and reference PCR amplicons are
generated with equivalent efficiencies [20].

Data analysis using the 2-44¢t method

The C, values provided from real-time PCR instrumenta-
tion are easily imported into a spreadsheet programme
such as Microsoft Excel. When designing the experiment,
we aim for an n > 6 per group and whenever possible,
reactions are performed in triplicate for both samples and
controls. During 2-2ACt gnalysis, each sample is treated
separately (see Additional File 2). We first ensure that the
data from each triplicate fall within 1 C,and remove clear
outliers (> 2 standard deviations) from the analysis. We
determine the mean C, and standard deviation (SD) from
the triplicates and use the means of each sample for anal-
ysis. The first step of analysis (AC,) is to normalise all the
samples with respect to the least expressed sample, thus
subtracting the highest C, value from the C, value of each
sample. In this step, the least expressed sample will have
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Table I: Primer and probe lists.

GENE FORWARD PRIMER REVERSE PRIMER PROBE (5' FAM, 3' TAMRA)

Arléip2 TTTGGAATGAAGTGTTTGTGATTGA GGCACCCTGGGTATCCATTA AGACCTAATGGAACAAAAGTGGCTGTGCTG
Actb GCTTCTTTGCAGCTCCTTCGT CCAGCGCAGCGATATCG CGGTCCACACCCGCCACCAG

Bdnf | GCAAAGCCGAACTTCTCACAT GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf lla ACAGAGCCAGCGGATTTGTC GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf b AGTTGGCTTCCTAGCGGTGTAG GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf llc TGCAACTCTTTATCACCAGGATCTA GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf Il GGGCCGGATGCTTCCTT GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf IV CTGCCTTGATGTTTACTTTGACAAG GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf V GGGATCCGAGAGCTTTGTG GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf VI TCCTGAGGAAGTGAAAGTTTTGACT GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf VII GATTGCTGAAAATGGTGTCGTAAA GCAACCGAAGTATGAAATAACCATAG TTCCACCAGGTGAGAAGAGTGATGACCAT
Bdnf VIl CTGGATGCCGCAAACATGTC CTGCCGCTGTGACCCACTC TCACACACGCTCAGCTCCCCACGG

Cnrl CACAAGCACGCCAATAACACA ACAGTGCTCTTGATGCAGCTTTC CCAGCATGCACAGGGCCGC

Darpp32 CCCGACAGGTGGAGATGATC GCTGCACAGCTTTCAGTGATG CTGCCATGCTTTTCCGGGTCTCAGA

Drd2 ACACCACTCAAGGGCAACTGT GGCGGGCAGCATCCA CCCTGAGGACATGAAACTCTGCACCG

Grinl TCAGTGTGTGAGGACCTCATCTCT GAGTGAAGTGGTCGTTGGGAGTA CAGGTCTACGCTATCCTAGTTAGTCACCCGCC
Hdh CTCAGAAGTGCAGGCCTTACCT GATTCCTCCGGTCTTTTGCTT TGAATCTTCTTCCATGCCTGACCCGA

HD (transgenic) GCTGCACCGACCGTGAGT CGCAGGCTGCAGGGTTAC CAGCTCCCTGTCCCGGCGG

Igfbp5 AAGGATTCTACAAGAGAAAGCAGTGTAA ACTTGTCCACACACCAGCAGAT TCCCGTGGCCGCAAACGTG
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Table I: Primer and probe lists. (Continued)

Kenk2 GACTACGTGGCAGGTGGATCA GCCAGCCCAACGAGGAT AATATCTGGACTTCTACAAGCCTGTGGTGTGGT
Nab2 GGGAGGGCAAACAGCTTAGC AGTGTTGTCCCTCATGCAGAACT ACCATCAACGAGGCTGCTGCC

Nr4a2 ATTTCCTCGAAAACTCCAATAACTCT TGAGGCGAGGACCCATACTG CTGAAGCCATGCCTTGTGTTCAGGC
Pcp4 CTGAGCTGTTCTGTGGGACCTA CGCTCCGGCACTTTGTCT CTGCGGAGTCAGGCCAACATGA

Penk| ATGCAGCTACCGCCTGGTT GCAGCTGTCCTTCACATTCCA AGGCGACATCAATTTCCTGGCGTG
Polr2a GGTGCTGAGTGAGAAGGATGTAGA ATGCCCAGTACCGTGAAGATCT TGCGCACCACGTCCAATGATATTGTG
Psmel TGATGACCAACCTTCACACCAA TCACCCCTCTCGGAGAAGTACT' CTGGAAGGCTTCCACACGCAGATCTCC
Sez6 TGTGCCAGTGGGACCTAAGC TCACAGACATATTGCACAGTTGCT CATGCCAGAGAGTGACATCTTGCCA
Tbr2 CAAAGGCTTCCGGGACAAC GGGAGATGGAGTTAACCTGTCATTT CGATTCCATGTACACGGCTTCAG

UchLl GGTACCATCGGGTTGATCCA AACTGTTTCAGGACGGATCCA AACCAAGACAAGCTGGAATTTGAGGA
Wdré GAACAAGCACAAGATGATCAAGGT GCCTATCGTTGTCAAGCTCACA TGAGACCAGGTACATGTCTCTTGCTATT

The forward and reverse primer sequences, together with the Tagman probe sequences for each gene routinely used in our laboratory are listed.
KEY: Arl6ip2 (ADP-ribosylation factor-like 6 interacting protein 2); Actb (beta-actin); Bdnf (Brain-derived neurotrophic factor; Roman numerals refer to promoter-specific amplification);

Cnrl (Cannabinoid receptor |); Darpp32 (Dopamine and cAMP regulated neuronal phosphoprotein, also known as PppIrlb, protein phosphatase |, regulatory subunit |1B); Drd2 (Dopamine
D2 receptor); Grinl (glutamate receptor, ionotropic, NMDAI {zeta 1}); Hdh (Murine huntington's disease gene homologue); Htt (Human Huntington's disease gene, used to detect human

exon | transgene); Igfbp5 (insulin-like growth factor binding protein 5 precursor); Kenk2 (potassium channel, subfamily K, member 2); Nab2 (Ngfi-A binding protein 2); Nr4a2 (nuclear
receptor subfamily 4, group A, member 2); Pcp4 (Purkinje cell protein 4); Penkl (Preproenkephalin); Polr2a (RNA polymerase Il {DNA directed} polypeptide A); Psmel (proteasome
activator 28-a. subunit); Sezé (seizure related gene 6); Tbr2 (eomesodermin homolog), Uchll (ubiquitin carboxyl-terminal hydrolase L1), Wdré (WD repeat domain 6).
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a AC, value of 0 and all the other samples will have nega-
tive values (see Additional File 2). The second step is to
perform the function (AC, g,mple - AC reference) Which gives
a AAC, value. The third step is to calculate 2-2ACt, which
yields the expression ratio (as a positive integer) for each
individual sample. After performing the 2-2ACt calculation
for each sample, we calculate the means for each group in
addition to determining the standard deviation and
standard error of the mean (SEM) thus providing a rela-
tive expression ratio (in arbitrary units) and variation
between ratios (see Additional File 2). The expression
ratio data are amenable to statistical tests.

Dysregulation of commonly-used normalisation genes in
aged R6/2 mice

Modulation of the R6/2 phenotype by genetic or pharma-
cological methods involves a comprehensive battery of
behavioural tests which are performed up to 14 or 15
weeks of age [24]. At the end of the trial, mice are sacri-
ficed and tissues are taken for further biochemical analy-
ses such as aggregate quantification [26], or gene
expression analyses. However, a systematic study to iden-
tify the most suitable reference genes for use in HD mouse
models has not been performed. The majority of research-
ers in the HD field appear to use beta-actin (Actb) and the
NMDA receptor subunit 1 (Grinl) as reference genes. It
was recently reported that both Actb and Grinl were
down-regulated at 14 weeks of age in R6/2 brain regions
[22]. We therefore set out to determine the suitability of
Actb and Grinl, together with ubiquitin C (Ubc) at 12 and
15 weeks of age in striatum and cerebellum of transgenic
R6/2 mice and matched controls. We found down-regula-
tion of both Actb and Grinl mRNA levels in both striatum
(Figure 1A, p < 0.05) and cerebellum (Figure 1B, p < 0.05)
of 15 week R6/2 mice despite equivalent expression levels
in transgenic and control mice at 12 weeks of age. There-
fore, the suitability of Actb and Grin1 as references became
questionable.

Identification of suitable reference genes in dissected brain
regions

Given the progressive nature of the transcriptional dysreg-
ulation phenotype in the R6/2 mice, with down-regula-
tion of commonly used reference genes such as Actb, it was
critical to determine which genes were most suitable for
normalisation at later time points. However, to validate
the stable expression of a given control gene, prior knowl-
edge of a reliable measure to normalise this gene is
required. In order to circumvent this circular problem, we
took advantage of the principle that the expression ratio of
two ideal internal control genes will be near-identical in
all samples tested, regardless of the experimental condi-
tion [21]. We therefore utilized the geNorm Housekeep-
ing Gene Selection Kit (PrimerDesign) to evaluate 12
commonly used housekeeping genes [21] in 3 different
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dissected brain regions from 15 week old wild-type and
R6/2 mice. Reference genes tested were 18S (18S ribos-
omal RNA subunit), Actb (beta-actin), Atp5b (ATP syn-
thase subunit 5b), B2m (beta-2 microglobulin), Canx
(calnexin), Cycl (cyclin D1), Eif4a2 (eukaryotic initiation
factor 4a2), Gapdh (glyceraldehyde-3-phosphate dehydro-
genase), Rpl13a (ribosomal protein L13a), Sdha (succi-
nate dehydrogenase complex, subunit A), Ubc (ubiquitin
C) and Yhwaz (phospholipase A2).

Equal amounts of RNA extracted from striatum dissected
from 9 R6/2 mice and 9 wild-type controls were reverse-
transcribed and used as a template for real-time PCR using
the primer/probe sets provided according to the manufac-
turers protocol (PrimerDesign). Each reaction was per-
formed in triplicate and the C, values for each sample were
averaged to obtain raw C, values (Figure 2a). The raw C,
values were transformed into relative quantification data
using the 2-44Ct method and used to prepare an input file
for geNorm analysis. The geNorm output ranks the candi-
date reference genes according to their expression stability
(Figure 2b) and determines the number of reference genes
required for optimal normalisation, expressed as pairwise
variation (V) (Figure 2c). We identified Ubc (ubiquitin C),
Eif4a2 (eukaryotic initiation factor 4a2) and Atp5b (ATP
synthase subunit 5b) as being the most stably expressed
genes in 15 week wild-type and R6/2 mouse striatum
(Table 2). To increase confidence in our data, we con-
firmed our findings in a separate cohort of samples (data
not shown).

Brain tissue is not homogenous and is composed of
widely differing cell types. Consistent with this, microar-
ray analysis of distinct brain regions and cell types shows
highly specific transcriptional profiles [27-31]. We there-
fore set out to determine whether the optimal reference
genes identified for use in striatum were also suitable for
use as references in two other brain regions, the cerebel-
lum and the cerebral cortex. GeNorm analysis was per-
formed using RNA prepared from dissected cerebellum
(see Additional File 3) and cortex (see Additional File 4)
in precisely the same manner as for the striatum. We
found that the tissue source determined the choice of
genes for normalisation, with Canx (calnexin), Atp5b and
Eif4a2 identified for normalisation in the cerebellum; and
Atp5b, Rpl13a (ribosomal protein L13a) and Canx being
suitable choices for the cortex. The cortex showed more
expression stability variation than either the striatum or
cerebellum, which may reflect a greater heterogeneity in
cell types and function.

Validation of reference genes identified through geNorm
analyses

The geNorm analyses identified the most stably expressed
tissue-specific reference genes from our initial panel of
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Figure 2 (see previous page)

GeNorm analyses to identify optimal reference genes in the striatum. (A) Raw crossing threshold (C,) data for a
panel of 12 potential references from the geNorm kit in wild-type (open bars) and R6/2 (filled bars) mice. (B) Raw C, data was
subjected to analysis with the geNorm applet which automatically calculates the gene-stability measure M, which is an average
pairwise variation of a particular gene with all other control genes. Therefore, genes with the lowest M value have the most
stable expression, in this case across genotypes (i.e. comparing wild-type and R6/2 mice). Expression stability is plotted for
each of the potential reference genes, progressing from the least stable genes with a higher M value to the most stable genes
with a lower M value. (C) In order to measure expression levels accurately, normalization by multiple housekeeping genes is
optimal. The graph illustrates the levels of variation in average reference gene stability with the sequential addition of each ref-
erence gene to the equation, starting with the three most stably expressed genes on the left with the inclusion of a 4t gene and
so on, moving to the right. This measure is known as pairwise variation (V), the values of which are indicated above each bar,

with a score of <0.15 as a target.

twelve candidates. We concluded that in order to measure
expression levels of our genes of interest accurately by rel-
ative quantification, normalization by multiple house-
keeping genes would be more robust. We therefore chose
to use the geometric mean of at least the best three refer-
ence genes identified for each tissue in our analyses as it
indicates the central tendency, or typical value of a set of
numbers [21]. Furthermore, the geometric mean is more
appropriate than the arithmetic mean as we would expect
that changes in the gene expression would occur in a rela-
tive fashion and hence we can control better for possible
outlying values and abundance differences between the
different genes. In order to establish relative expression
analyses for dysregulated genes in the striatum of R6/2
mice, we first confirmed that the dynamic C, range of the
reference genes was equivalent to the majority of our
genes of interest and that the amplification efficiencies of
the reference genes and genes of interest were equivalent.

In order to test the validity of using the geometric mean of
three reference genes, we focused on expression of Bdnf in
the cortex as this is a target gene of interest in HD [32-36].

Table 2: Control genes ranked in order of their expression
stability.

Striatum Cerebellum Cortex
UbC Canx Atp5b
Eif4a2 Atp5b Rpll3a
Atp5b Eif4a2 Canx
Yhwaz 18S UbC
Actb Rpll3a 18S
Gapdh Cycl Eif4a2
Sdha UbC Yhwaz
Cycl Sdha Cycl
Rpll3a Actb Sdha
18S B2M Gapdh
B2M Gapdh B2M
Canx Yhwaz Actb

Housekeeping genes are ranked in order of their expression stability,
and therefore their suitability for use as a reference for the striatum,
cerebellum and cortex. The most suitable genes are listed first.

We compared the relative expression analysis output for
the coding exon of Bdnf from 12 week R6/2 and matched
littermate controls with either a single reference gene
(with low or high stability between the two genotypes) or
with the geometric mean of three reference genes in wild-
type and R6/2 cortex. In the first instance, we found that
using a single reference gene with a high stability value
between the two genotypes (such as Canx in the cortex; p
=0.0016) is superior to using a single reference gene with
a poor stability profile between the two genotypes (such
as Actb, p = 0.0926) (Figure 3). Furthermore, it was clear
that using the geometric mean of three reference genes

o
u
|

=

T

- 1

2 - —+—  mre

= i I

L 204 | }

=

< T i

A=t i | T |

ja 1 ] i

015 — i

@ i i i

g - i i

= i R

= | ——

AP | 0.0016 —

v 1.0 | —

2 [— EE—

_ N I

o — ——

- N I

&£ 05 4 1 ——

= 1 ——
N I
N I
N I

Single, high stability Geometric mean

Figure 3

Comparison of normalisation strategy. Relative expres-
sion analyses using either a single reference gene with low
stability between wild-type (WT, open bars) and R6/2 (filled
bars) cortex such as Actb, a single reference gene with high
stability between the two genotypes such as calnexin or the
geometric mean of three highly stable reference genes. P-val-
ues above the R6/2 bars show that while a single, stably
expressed gene (p = 0.0016) is a better calibrator than a gene
with low expression stability between the two genotypes (p
= 0.0926), calculating the geometric mean of three stably
expressed genes is a far superior normalisation strategy (p =
0.0006). Error bars are S.E.M (n = 6).
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further decreased the p-value and therefore increased the
sensitivity and reliability of detecting the difference in
Bdnf expression compared to using a single reference gene
(p = 0.0006) (Figure 3). Therefore, using the geometric
mean of three reference genes markedly improves our
ability to detect subtle effects on Bdnf expression by an
experimental modulation.

BDNF expression analyses

Brain-derived neurotrophic factor (BDNF) is an impor-
tant neurotrophic factor involved in regulating neuronal
transmission, striatal neuronal survival, and has previ-
ously been implicated in HD pathogenesis [37,38]. BDNF
mRNA and protein levels are severely decreased in the cor-
tices of numerous HD murine models, including R6/2
mice, and in human HD patients. Assaying BDNF levels
therefore holds promise as a useful pre-clinical trial
biomarker. Rodent Bdnf gene structure and regulation is
complicated, with six upstream transcription start sites
spliced (either bipartite or tripartite) to a major coding
exon [39]. We therefore established Tagman assays utilis-
ing a common reverse primer and probe in the coding
exon in order to determine the extent of exon-specific Bdnf
mRNA down-regulation over time in R6/2 mice. We addi-
tionally surveyed coding exon-specific Bdnf expression.
RNA was extracted from cortices of 4, 8, 12 and 15 week
old R6/2 transgenic mice and littermate controls and used
to synthesize cDNA as a template for qRT-PCR. The geo-
metric mean of C, data from three housekeeping genes
was used to normalise levels of Bdnf transcript using the
28ACt formula. We observed expression of all Bdnf tran-
scripts with the exception of 6a and 6b in R6/2 cortex at
all times tested (Figure 4). At 4 weeks of age, there was no
difference in Bdnf expression level between R6/2 and con-
trols, with the exception of a decrease in promoter Ila-spe-
cific transcript in R6/2 mice. However, we saw a
significant decline in Bdnf expression levels at sympto-
matic time points from promoters I, Ila, IIb, IV, V, and
also in the coding exon VIII. We subjected the data to
power calculations as previously described [40] (Figure
5), which can be used in several ways: (1) to determine
how many animals would be required to have a reasona-
ble (e.g. > 80%, Figure 5B-E and data not shown) chance
of detecting an improvement of a given magnitude at a
given P value (p < 0.05); (2) to determine the size of an
effect one could expect to detect using a given number of
animals; (3) to assess the probability of detecting an effect
of given magnitude using a given number of animals.
Power calculations suggested that transcript-specific anal-
yses from Bdnf promoters could be informative when
determining the effect of a pre-clinical modulation. For
example, 10 samples would be sufficient to observe a 23%
and 30% improvement in Bdnf promoter V expression at
12 and 15 weeks of age respectively with 80% power at p
< 0.05 (Figure 5D). However, we obtained less powered to

http://www.molecularneurodegeneration.com/content/3/1/17

detect improvements in transcription from Bdnf promot-
ers I, ITa and VIII in this dataset with statistical confidence
(Figures 5B, C and 5E respectively). In order to illustrate
this, the dotted lines plotted on Figure 5B-E show the
number of mice required to detect 30% improvement in
Bdnf transcript expression. We would need 14 mice for
Bdnf promoter Ila at 15 weeks, 36 mice at 8 weeks, but
over 50 mice at 12 weeks; 14 mice for Bdnf promoter IIb
at 15 weeks but over 50 mice at 12 weeks; 11 mice for Bdnf
promoter V at 15 weeks but 8 mice at 12 weeks and 34
mice at 8 weeks; 9 mice for Bdnf promoter VIII at 12 weeks
but over 50 mice at 15 weeks. Therefore, the age at which
the levels of a particular transcript are analysed could be
important and needs to be surveyed. Obviously, the larger
the change in R6/2 Bdnf transcript levels with respect to
wild type, the smaller the number of samples required to
obtain statistical significance.

Discussion

Recent advances in gene quantification strategies enable
the rapid and precise quantification of RNA transcripts.
Normalisation is required to remove sampling differences
(such as RNA quantity and quality) in order to identify
real gene-specific variation. Accurate normalisation of
gene expression levels is therefore a prerequisite, espe-
cially when studying the biological significance of subtle
gene expression differences. The majority of laboratories
use a single control gene for normalisation purposes in
RT-PCR (both "classical" and real-time RT-PCR), with
Actb, Gapdh and ribosomal RNA being used in over 90%
of cases [41]. However, housekeeping gene expression can
vary considerably, with obvious impact on meaningful
data interpretation. For example, it has been reported that
B2m (beta-2-microglobulin, a commonly used reference
gene) is variably expressed in neuroblastoma cells,
depending on the differentiation state of the tumour cells
[42], warranting the validation of a reference gene in each
experimental system. Additionally, a study showed that a
set of genes, including Actb varied in expression by 7 to
23-fold across a panel of 60 cell lines [43,44]. In this
regard, identifying suitable control genes for normalisa-
tion is even more important when working with complex
tissues such as brain regions, or with tissues of different
histological origins. Consistent with previously published
data [22], we found that a commonly used reference gene,
Actb is specifically dysregulated at later time-points in R6/
2 mouse brain regions. Therefore, the use of Actb as an
appropriate single control normalisation factor is inap-
propriate, particularly at later time points. This is trou-
bling, as Actb appears to be one of the most commonly
used normalisation genes in expression analyses in HD.

Clearly, in a disease such as HD, where transcriptional
dysregulation is a central pathogenic mechanism [12], itis
critical to identify suitable reference genes throughout the
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Figure 4

housekeeping genes for Bdnf promoter-specific transcripts in R6/2 (filled bars) and littermate wild-type controls (open bars).
Data from 4, 8, 12 and 15 weeks (4 w, 8 w, 12 w and |5 w) represents the pathogenic time course from pre-symptomatic

stages through to late symptomatic stages for Bdnf promoter-specific transcripts (A) |, (B) lla, (C) lIb, (D) llc, (E) Ill, (F) IV, (G)
=8), * p <0.05, ¥ p <0.0l,**p<0.00I.

V and (H) coding exon VIII, according to Liu et al., 2006 [39]. Error bars are S.E.M (n
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Figure 5 (see previous page)

Power calculations determine the optimal Bdnf assays for use as preclnical assessment tools. (A) Shows the rela-
tive expression level of each Bdnf promoter-specific transcript expressed as a ratio of R6/2: wild-type from a pre-symptomatic
time point (4 weeks, 4 w) to early symptomatic (8 w) and late symptomatic time points (12 and |5 w). Therefore, each bar
represents the relative amount of down-regulation of each transcript in R6/2 mouse cortex compared to wild-type. Significant
differences between R6/2 and wild-type mice for a specific transcript at the ages indicated are represented with asterisks below
the relevant bar. * p < 0.05, ** p < 0.01, *** p < 0.001. Promoter-specific transcript nomenclature is according to Liu et al.,
2006 [39]. We performed power calculations (shown is 80% power of detection of improvement at p > 0.05) as previously
described [40] for BDNF promoters, with promoters | (B), lla (C), V (D) and VIII (E) being the best powered to detect poten-
tial modulation of Bdnf expression levels by genetic or pharmacological approaches (data not shown for remaining promoters).
The dotted line illustrates the number of mice needed in order to be able to detect a 30% improvement with 80% confidence.

disease time-course. However to date, there has been no
systematic study comparing the suitability of different
candidate reference genes in HD. We therefore chose to
survey a panel of 12 housekeeping genes in an unbiased
fashion. We found that the expression levels of candidate
reference genes varied according to genotype and brain
region, highlighting the necessity of identifying suitable
references in the tissue under study. Specifically, the three
most stable genes for each brain region tested as identified
by geNorm analysis (striatum, cerebellum and cortex) are
distinct, with only one gene being common to all three
(Atp5b). This is consistent with the notion that there are
highly specific transcriptional profiles in distinct brain
regions and cell types.

It has been shown that a conventional normalisation
strategy based on a single reference gene can lead to erro-
neous normalisation up to 6-fold [21]. We therefore pro-
pose that a more stringent normalisation strategy should
be incorporated, particularly when studying potentially
subtle effects upon gene expression levels of a pharmaceu-
tical agent or a genetic modulation strategy. It has been
demonstrated that calculating the geometric mean of
three reference genes yields a reliable normalisation value,
which can then be used to determine relative expression
ratios for genes of interest [21]. We therefore surveyed the
effect of three different normalisation strategies. We
found a stable reference gene to use as a single normaliser
is superior to a gene whose expression is unstable between
the experimental conditions. However, calculating the
geometric mean of three stably expressed reference genes
and subsequently using this normalisation factor in sub-
sequent analyses is preferable. Thus, it is critical not only
to identify the most suitable reference genes for expres-
sion analyses by an unbiased method in the tissue/cell
line of interest, but also to utilise a precise normalising
strategy in order to derive meaningful results. This is par-
ticularly applicable to studies interrogating the molecular
mechanism underlying HD pathogenesis and mecha-
nisms by which a particular intervention may exert a ben-
eficial effect.

Bdnf gene transcription is induced by wild-type, but not
mutant Htt through interactions with NRSF [32]. In addi-
tion, Bdnf mRNA and protein levels are severely decreased
in the cortices of numerous HD murine models as well as
in post-mortem human HD cortex [37]. Interestingly,
gene expression profiling of multiple HD mouse models
and comparison to human HD brain suggests that Bdnf
depletion plays a major role in striatal degeneration [15].
Remarkably, of all HD mouse models, transcriptional
profiles of Bdnf knock-out mice are the most similar to
gene expression changes identified in HD human brain,
suggesting that decreased Bdnf expression is a key patho-
genic feature in HD, possibly through reduced corticostri-
atal BDNF transport [33,38]. Furthermore, BDNF levels
influence HD onset and progression and up-regulating
Bdnf expression in HD mouse models through exercise,
environmental enrichment, treatment with compounds
or by adenoviral injection have all shown promise in
ameliorating HD-related symptoms [33,34,36,45,46].
Therefore, there is precedence for Bdnf modulation as a
therapeutic approach in HD. Taken together, it is critical
that we can reliably measure Bdnf levels, either when
directly attempting to modulate Bdnf expression; or for
use as a biomarker in the context of other disease-modify-
ing therapies, particularly those aimed at correcting gene
expression deficits, such as histone deacetylase inhibitors
[22,47-51]. We have therefore developed and validated
Tagman-based real-time assays for promoter-specific Bdnf
gene expression in the cortex of R6/2 mice. Indeed, in this
context, we have expanded the scope of interrogating Bdnf
expression with respect to HD. Bdnf gene structure and
regulation is complex, with upstream transcription start
sites spliced to a coding exon, yielding distinct pro-Bdnf
molecules which are cleaved to yield a mature BDNF pro-
tein. The complexity of the Bdnf gene facilitates precise
regulation of BDNF with respect to the diversity of its
functions. Previously reported investigations into Bdnf
gene expression dysregulation were based on the four
originally described distinctive promoters in the Bdnf gene
[32-38]. However, the previous work on Bdnf's gene struc-
ture was incomplete, and it has recently been extended
with the identification of six upstream transcription start
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sites spliced (either bipartite or tripartite) to a major cod-
ing exon [39] (see Additional File 5). We have capitalised
on the more detailed knowledge of Bdnf gene structure by
designing promoter-specific Tagman assays. We have
therefore not only confirmed previously published pro-
moter-specific dysregulation in the R6/2 mouse model of
HD, but expanded this knowledge. Of particular interest,
we have designed specific assays from each of the variants
arising from alternative splicing events through the intra-
exonic splice sites in promoter II, which has previously
been shown to be down-regulated in the R6/2 striatum.
Specifically, we have shown that while all three splice var-
iants from Bdnf promoter II are dysregulated, Bdnf tran-
script Ila is progressively dysregulated to a further extent
and is more statistically significant. Furthermore, power
calculations suggest that we can effectively use Bdnf
expression analyses as an output measure in a pre-clinical
trial. Finally, recently published data has suggested that
Bdnf expression dysregulation occurs in a cell-autono-
mous property in HD [52]. Consistent with this, it appears
that gene expression dysregulation may be an intrinsic
function of mutant Htt protein, although the precise
molecular mechanism remains to be determined [53,54].

Conclusion

Transcriptional dysregulation is a central pathogenic
molecular mechanism in HD, with robust, reproducible
and early changes in the expression of specific mRNA
moieties. Therefore, analysis of gene expression could be
valuable as a biomarker to monitor disease progression
and the efficacy of therapeutic agents in clinical trials.
However, commonly used reference genes and current
methods in the HD field are unsuitable for gene expres-
sion analysis. We suggest an improvement on previous
methods by demonstrating the identification of suitable
and reliable reference genes for dissected brain regions of
R6/2 mice, which can be applied to other brain regions,
tissues or cell lines. In addition, we illustrate a more
robust method for analysis, namely using the geometric
mean of three reference genes for relative quantification
analyses. These improvements are not novel in that they
have been previously described and extensively used in
other disease fields. However, they are not routinely used
within the HD field. We therefore propose that the meth-
ods outlined in this study can be applied in different tis-
sues (including biopsies) and cell lines in order to reliably
and accurately determine the relative expression level of
target genes in these brain regions, thus increasing the
potential of gene expression analysis as a biomarker in
HD.

Methods
Detailed methods and statistical analyses are available as
a supplementary section (see Additional File 6).

http://www.molecularneurodegeneration.com/content/3/1/17
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Additional material

Additional file 1

Gene expression analyses work flow. Flow diagram to illustrate the work
flow involved in gene expression analysis, from data generation (including
sample preparation and experimental process) through to data analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-S1.ppt]
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Additional file 2

Example worksheet illustrating 2-44Ct gnalysis process. Shown is an
Excel worksheet illustrating the process of relative expression analysis. In
the worksheet are numbers in blue which illustrate each step. (A) Crossing
threshold data can be imported into Excel from real-time PCR platforms
(shown are the Bdnf data only for simplicity). (B) Each sample has been
run in triplicate and the means of each sample is calculated. Standard
deviations should be checked at this point and should be within 1 C,. C)
The raw crossing threshold (C,) data can be used to plot a graph of the
means for each genotype. Shown are means (Avg), standard deviations
(SD) and standard error of the mean (SEM) for WT (wild-type) and TG
(R6/2) mice (n = 7/genotype). The means are used to generate the graphs,
and error bars are SEM. (D) The geometric mean (Geo, or GEOMEAN)
is calculated using the raw C,data for all three reference genes (Atp5b,
Canx, Rpl13a) for each sample. (E) The geometric mean is transformed
into a AC,value, thus expressing each sample with respect to the least
expressed sample. To do this, the C, of the least expressed sample is sub-
tracted from the current sample C,, giving a negative value for each sam-
ple. The least expressed sample will have a value of zero. (F) The AC,is
calculated for the Bdnf data. (G) The AAC, is calculated, by performing
the function (C,sample - C,reference), which will give both positive and
negative values. (H) To transform the AACt values into positive integers
that represent the expression levels, use the Excel POWER function, enter-
ing 2 as the number and -AAC, as the power. The negative sign is neces-
sary in this context. (J) The relative expression levels for each sample can
then be used to calculate the means (Avg), standard deviation (SD) and
standard error of the mean (SEM) for each genotype. These data are used
to generate graphs showing expression ratios for target genes. (K) In addi-
tion, the expression ratios can be used as a substrate for statistical analyses
such as a Student's t-test.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-S2.ppt]

Additional file 3

GeNorm analyses to identify optimal reference genes in the cerebel-
lum. (A) Raw crossing threshold (C,) data for a panel of 12 potential ref-
erences from the geNorm kit in wild-type (open bars) and R6/2 (filled
bars) mice. Reference genes tested were 18S (18S ribosomal RNA subu-
nit), Actb (beta-actin), Atp5b (ATP synthase subunit 5b), B2m (beta-2
microglobulin), Canx (calnexin), Cycl (cyclin D1), Eif4a2 (eukaryotic
initiation factor 4a2), Gapdh (glyceraldehyde-3-phosphate dehydroge-
nase), Rpl13a (ribosomal protein L13a), Sdha (succinate dehydrogenase
complex, subunit A), Ubc (ubiquitin C) and Yhwaz (phospholipaase
A2). (B) Raw C, data was subjected to analysis with the geNorm applet
which automatically calculates the gene-stability measure M, which is an
average pairwise variation of a particular gene with all other control
genes. Therefore, genes with the lowest M value have the most stable
expression, in this case across genotypes (ie comparing wild-type and R6/
2 mice). Expression stability is plotted for each of the potential reference
genes, progressing from the least stable genes with a higher M value to the
most stable genes with a lower M value. (C) In order to measure expres-
sion levels accurately, normalization by multiple housekeeping genes is
optimal. The graph illustrates the levels of variation in average reference
gene stability with the sequential addition of each reference gene to the
equation, starting with the most stably expressed genes on the left with the
inclusion of a 4th gene etc, moving to the right. This measure is known as
pairwise variation (V), the values of which are indicated above each bar.
A V score of below 0.15 is the target.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-S3.ppt]

Additional file 4

GeNorm analyses to identify optimal reference genes in the cortex. (A)
Raw crossing threshold data (C,) for a panel of 12 potential references
from the geNorm kit in wild-type (open bars) and R6/2 (filled bars) mice.
Reference genes tested were 18S (18S ribosomal RNA subunit), Actb
(beta-actin), Atp5b (ATP synthase subunit 5b), B2m (beta-2 microglob-
ulin), Canx (calnexin), Cycl (cyclin D1), Eif4a2 (eukaryotic initiation
factor 4a2), Gapdh (glyceraldehyde-3-phosphate dehydrogenase),
Rpl13a (ribosomal protein L13a), Sdha (succinate dehydrogenase com-
plex, subunit A), Ubc (ubiquitin C) and Yhwaz (phospholipaase A2).
(B) Raw C, data was subjected to analysis with the geNorm applet which
automatically calculates the gene-stability measure M, which is an aver-
age pairwise variation of a particular gene with all other control genes.
Therefore, genes with the lowest M value have the most stable expression,
in this case across genotypes (ie comparing wild-type and R6/2 mice).
Expression stability is plotted for each of the potential reference genes, pro-
gressing from the least stable genes with a higher M value to the most sta-
ble genes with a lower M value. (C) In order to measure expression levels
accurately, normalization by multiple housekeeping genes is optimal. The
graph illustrates the levels of variation in average reference gene stability
with the sequential addition of each reference gene to the equation, start-
ing with the most stably expressed genes on the left with the inclusion of a
4th gene etc, moving to the right. This measure is known as pairwise vari-
ation (V), the values of which are indicated above each bar. A V score of
below 0.15 is the target.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-S4.ppt]

Additional file 5

Bdnf gene structure. This schematic of Mus musculus Bdnf gene struc-
ture (top panel, accession number AY057907) indicates the "classical"
four promoters (blue boxes) and coding exon (white box) and the recently
described additional promoters (yellow boxes) [39]. Only the coding exon
is translated, giving rise to a protein of 289 amino acids. The NRSE site
and intra-exonic splice sites on promoter 11 are also indicated. The bottom
panel shows the splice variants arising from the Bdnf gene, including the
splice variants arising from intra-exonic splice sites A, B and C in pro-
moter II.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-S5.ppt]

Additional file 6

Methods. Detailed methods

Click here for file
|http://www.biomedcentral.com/content/supplementary/1750-
1326-3-17-86.doc]
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