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Deficiency for the ER-stress transducer OASIS
causes severe recessive osteogenesis imperfecta
in humans
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Abstract

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous brittle bone disorder. Whereas dominant
OI is mostly due to heterozygous mutations in either COL1A1 or COL1A2, encoding type I procollagen, recessive
OI is caused by biallelic mutations in genes encoding proteins involved in type I procollagen processing or
chaperoning. Hitherto, some OI cases remain molecularly unexplained. We detected a homozygous genomic
deletion of CREB3L1 in a family with severe OI. CREB3L1 encodes OASIS, an endoplasmic reticulum-stress transducer
that regulates type I procollagen expression during murine bone formation. This is the first report linking CREB3L1
to human recessive OI, thereby expanding the OI gene spectrum.
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Background
Osteogenesis imperfecta (OI) is a genetically heteroge-
neous brittle bone disorder with varying degrees of clinical
severity, ranging from perinatal lethality to generalized
osteopenia [1]. The predominant autosomal dominant
forms display mutations in either COL1A1 or COL1A2,
encoding the α1- and α2-chains of type I procollagen,
while rarer autosomal recessive forms mostly result from
defective endoplasmic reticulum (ER)-resident proteins
involved in post-translational processing or chaperon-
ing of these α(I)-chains [1,2]. Processing defects prevent
normal collagen fibrillogenesis and on biochemical ana-
lysis often show perturbed modification of the collagen
α-chain. Known defects include biallelic mutations in
LEPRE1 [3-5], CRTAP [5,6], PPIB [7,8], BMP1 [9,10],
and PLOD2 [11]. Mutations in chaperones (including
Hsp47 (SERPINH1) and FKBP10) impair intracellular
collagen trafficking with intracellular retention or ag-
gregation of collagen molecules and show dilation of the
ER on electron microscopy, resulting in OI or related
phenotypes [12-14]. Finally, rare other defects linked
* Correspondence: Paul.Coucke@UGent.be
1Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
Full list of author information is available at the end of the article

© 2013 Symoens et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
to distinct mechanisms involve the transcription fac-
tor osterix (SP7) [15], pigment epithelium derived fac-
tor (SERPINF1) [16] and transmembrane protein 38B
(TMEM38B) [17,18]. A recurrent mutation in a gene en-
coding the Interferon-inducible transmembrane protein 5
(IFITM5), which is involved in bone growth during pre-
natal murine development, was recently shown to cause
autosomal (AD) dominant OI [19-21]. Recently, heterozy-
gous and homozygous mutations in WNT1 (WNT1),
which is a key signalling molecule in osteoblast function
and bone development, were shown to underlie certain
forms of AD early-onset osteoporosis and AR OI, which
was in some patients associated with severe intellectual
disability [22-26]. However, a small proportion of OI pa-
tients remain molecularly unexplained.

Findings
We describe a Turkish family (Figure 1A) with three
sibs, two of whom were affected by severe OI (written
informed consent of the family was obtained and the
study was approved by the Ethics Committee of the
Ghent University Hospital (Ghent, Belgium)). Consan-
guinity was not reported, but the parents originated
from neighbouring villages. The first affected child (III:3)
developed several fractures in utero and was small for
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Figure 1 Pedigree and clinical findings. A. Pedigree of the Turkish family. B. Post-mortem examination of foetus III:4 at 19 weeks of gestation
showed bowed extremities and pes equinovarus. C. X-rays of foetus III:4 revealed beaded ribs and multiple fractures of tubular bones.
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gestational age. His birth length was 40 cm (<P3).
At the first day of life he was hospitalized for
hyperbilirubinemia and O-bain-like deformities, soft
calvarial bones and widely open fontanelles were no-
ticed. He developed several fractures after birth and
multiple fractures healed with extremity deformities.
He also had a right inguinal hernia. X-rays showed
beaded ribs, callus formation and multiple fractured tubu-
lar bones with an accordion-like broadened appearance.
He was hospitalized several times due to recurrent consti-
pation and pulmonary infections (bronchopneumonia).
During this period, he developed abdominal distention
and hepatomegaly, the latter due to cardiac insufficiency.
No signs of T-cell dysfunction or other immune deficien-
cies have been noted. He died at 9 months of age. The sec-
ond affected sib (III:4, Figure 1A) was a male foetus from
a pregnancy that was medically terminated at 19 weeks of
gestation. Post-mortem examination showed thin ribs and
fractures at bowed humerus and femora (Figure 1B-C).
The parents have a healthy daughter (III:1) and have

had one miscarriage (III:2, cause unknown). The adoles-
cent daughter has blue sclerae but had not experienced
any fractures. The mother (II:5) at 38 years of age and
the father (II:6) at 47 years have blue sclerae, a soft and
velvety skin and normal teeth. While the mother has
small joint hypermobility, the father has conductive
hearing loss.
Biochemical (pro)collagen SDS-PAGE analysis was

performed on the medium and cellular fractions of cul-
tured skin fibroblasts of foetus III:4. No obvious quanti-
tative or qualitative abnormalities of 14C-labelled type I
procollagen (data not shown) and mature secreted and
intracellular type I collagen (Figure 2A) were detected.
Subsequently, all known OI genes (COL1A1, COL1A2,

BMP1, LEPRE1, CRTAP, PPIB, PLOD2, SERPINH1,
FKBP10, SP7, SERPINF1, TMEM38B, IFITM5and WNT1)
were sequenced by direct Sanger sequencing (ABI3730XL
automated sequencer, Applied Biosystems), but no causal
mutation(s) were detected.
We selected the CREB3L1 gene [GenBank:NM_052854.2],

encoding the ER-stress transducer OASIS (Old Astrocyte
Specifically Induced Substance), as an excellent candidate
gene based on the observation that OASIS−/− mice were
born with severe osteopenia and spontaneous fractures



Figure 2 (See legend on next page.)
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Figure 2 Biochemical and molecular results. A. Biochemical collagen analysis was performed on collagens produced by the patients dermal
fibroblasts, which were grown for 16 hrs in the presence of 14C-Proline. Radioactively labelled intracellular and secreted fibrillar collagen proteins
were isolated and mature collagens were obtained by pepsin digestion. Foetal secreted (left panel) as well as intracellular (right panel) mature
type I collagen revealed a normal electrophoretic pattern when compared to a control (C) sample. Also for the unprocessed, secreted type I
procollagen a normal electrophoretic migration pattern was observed (data not shown). B. ArrayCGH analysis on a 1M SurePrint G3 Human CGH
Microarray revealed a homozygous deletion of the entire CREB3L1 gene in the affected foetus III:4. C. Expression level analysis by RT-qPCR was
performed in duplicate on total RNA extracted from three biological replicates of the fibroblast cell lines from foetus III:4 and three controls
(C1, C2 and C3) (LightCycler480 and RealTime ready DNA Probe Master Mix, Roche). The expression level of each investigated gene was
quantified using qbasePLUS (Biogazelle)[27]. HPRT1, RLP13a and YWHAZ were applied as reference targets. RT-qPCR for foetus III:4 confirmed the
total absence of CREB3L1 expression when compared to control samples (C1, C2 and C3). DGKZ has two alternative (tissue-specific) isoforms [28].
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[29], reminiscent of severe human OI. In those mice,
OASIS was shown to be crucial for bone formation
through activating col1a1 transcription and facilitating the
secretion of matrix proteins. Treatment of murine osteo-
blasts with BMP-2 (bone morphogenic protein 2) causes
mild ER-stress and is associated with accelerated RIP
(regulated intramembrane proteolysis) of OASIS. The
N-terminal part of OASIS is subsequently translocated to
the nucleus, where it binds to the osteoblast-specific
UPRE (unfolded protein response element) regulatory re-
gion in the murine Col1a1 promoter thereby causing high
levels of type I procollagen expression [29]. While the
amount of type I procollagen is normal in the murine
OASIS−/− skin, reduced amounts of type I procollagen
were detected in OASIS−/− calvaria and tibia, which sug-
gested tissue-specific decrease of type I procollagen in the
bone matrix but also failure of the OASIS−/− osteoblasts
to produce high levels of type I procollagen [29]. OASIS
further functions as a tissue-specific ER-stress trans-
ducer that alters transcription of target genes in-
volved in developmental processes, differentiation, or
maturation upon mild ER-stress. PCR amplification
of all exons and flanking introns of CREB3L1 failed
in foetus III:4, suggesting a homozygous whole gene
deletion. ArrayCGH analysis (1M SurePrint G3 Human
CGH Microarray, Agilent Technologies) and copy number
profiling (arrayCGHbase) confirmed this genomic dele-
tion, which encompasses CREB3L1 and the first exon of
DGKZ (arr11p11.2(46268141–46359490)×0, Figure 2B)
[30,31]. Whereas the arr11p11.2(46268141–46359490)×0
homozygous deletion was not reported before, heterozy-
gous deletions or gains of this genomic region are de-
scribed in the Decipher database [32] and the Database of
Genomic Variants [33] but encompassing large genomic
regions comprising multiple genes (6 to 86 genes and/
or multiple chromosomal abnormalities) which, in some
cases, are associated with intellectual disability. Both
parents and the healthy sister were heterozygous for
the deletion (data not shown). DGKZ encodes diac-
ylglycerol kinase zeta, an ubiquitously expressed en-
zyme that is most abundantly present in the brain,
thymus and skeletal muscle [34] and which has a
regulatory role in T-cell receptor signalling and T-cell
activation [35]. Two different isoforms (DGKζ1 in im-
mune cells and DGKζ2 in other cells) are known, in which
exon 1 is either present or absent and which have a
tissue- and developmental stage-specific expression
[28]. Hitherto, no known function in bone formation
has been ascribed to DGKζ and thus a possible con-
tributing role to (the severity of ) the bone phenotype
of patient III:3 and foetus III:4 cannot completely be
excluded. Expression analysis by real time-quantitative
PCR (RT-qPCR) on total RNA isolated from dermal
fibroblasts of foetus III:4 confirmed complete absence
of the CREB3L1 transcript. In order to investigate the
expression of the two DGKZ isoforms (DGKζ1 and
DGKζ2), two different primer pairs were designed, of
which one was specific for exon 1 that is only present
in the DGKζ1 isoform. RT-qPCR experiments revealed
no amplification for the primer pair specific for exon
1 in cultured dermal fibroblasts, suggesting that the
DGKζ1 isoform is not expressed in these cells. For
the second primer pair normal DGKZ expression was
observed, which implies normal expression of the
DGKζ2 isoform in cultured human dermal fibroblasts
(Figure 2C). RT-qPCR analysis of the ER-stress markers
BiP, CHOP and the spliced form of XBP1 showed levels
comparable to controls, even after stimulation of con-
fluent fibroblasts for 4 hours with the ER-stress in-
ducers Tunicamycin (Tu, 10 μg/ml, Sigma-Aldrich) and
Thapsigargin (Th, 1 μM, Sigma-Aldrich) (Figure 2C). This
is in accordance to the observations in OASIS−/− mice.
The expression level of CREB3L1 was unchanged in con-
trol fibroblasts after treatment withTu and Th (Figure 2C),
suggesting that OASIS does not play a major role in
the ER-stress pathways previously linked to disease
pathogenesis [1]. Additionally, our finding that type I
(pro)collagen production is normal in human dermal
fibroblasts (Figure 2A) confirms that OASIS has a
tissue-specific effect on type I (pro)collagen produc-
tion [29].
In conclusion, the identification of CREB3L1 (encod-

ing the ER-stress transducer OASIS) as a novel gene for
autosomal recessive OI expands the spectrum of genes
linked to OI and reinforces the role of ER-stress in the
pathophysiology of OI.
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