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Background: Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding
protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in
the deletion of one or several exons and cause Duchenne (DMD) and Becker (BMD) muscular dystrophies. The most
common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame
DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this
study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations.

Methods and results: \We developed a dedicated database for dystrophin, the eDystrophin database. It contains
209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies.
Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it
possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An
analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the
deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats,
which may be correlated with better function in muscle cells.

Conclusion: This new database focuses on the dystrophin protein and its modification due to in-frame deletions in
BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-
genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is
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Background

The Duchenne Muscular Dystrophy (DMD) gene,
located on the short arm of the X chromosome (at
Xp21.2), is the largest known gene in humans. It has an
open reading frame of ~11.055 kb, containing 79 exons
(Mendelian Inheritance in Man [MIM: 300377]) [1], and
transcription from seven tissue-specific promoters leads
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to the synthesis of 16 isoforms of the dystrophin pro-
tein. In humans, dystrophin diseases are caused by
mutations in the DMD gene and include the allelic phe-
notypes of Duchenne muscular dystrophy (DMD)
[OMIM:310200], Becker muscular dystrophy (BMD)
[OMIM:300376] and X-linked dilative cardiomyopathy
(XLDCM) [OMIM:302045] [1-3].

Dystrophin is present at the internal face of the plasma
membrane in many tissues, including skeletal, cardiac
and smooth muscle, and in various central nervous sys-
tem cells. Dystrophin is highly conserved in vertebrates,
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including mouse, chicken and dog, and in invertebrates,
such as Drosophila [4], and Caenorhabditis elegans [5].

The full-length 3685-residue isoform of dystrophin,
dp427m, has a molecular weight of 427kDa and is
expressed in skeletal and cardiac muscle, where it plays
a key role during muscle contraction-relaxation cycles.
Dystrophin has four main regions: (i) the N-terminal
actin-binding domain (ABD) comprises the first 246
residues; (ii) the central rod domain spans residues 247
to 3045 (accounting for about 76% of the molecule
[6,7]), is formed by 24 spectrin-like repeats and four
hinges and binds to various partners (filamentous actin,
membrane lipids and nitric oxide synthase); (iii) the
cysteine-rich domain, from residues 3080 to 3360, binds
to the intrinsic membrane protein B-dystroglycan and
(iv) the carboxy-terminal domain, comprising the last
325 residues, binds to dystrobrevin and syntrophins (for
reviews, see [8,9]). Dystrophin is associated with a large
number of proteins, to which it either binds directly or
with which it interacts indirectly through intracellular or
extracellular proteins. The binding of dystrophin to
B—dystroglycan brings it into contact with membrane
and extracellular proteins to form the dystrophin-
glycoprotein complex (DGC) [10,11]. Dystrophin there-
fore forms a link between the extracellular matrix and
cytoskeletal actin. The function of dystrophin is not
completely understood, but its main role is to protect
the sarcolemma from rupture during the stresses of
muscle contraction [12,13].

Patients with muscular dystrophy have little or no dys-
trophin, and it has been suggested that this results in the
disruption of muscle membranes, which alters calcium-
channel activity, thereby strongly increasing intracellular
calcium concentration. This ultimately leads to muscle-
cell necrosis [13,14], followed by regeneration. The con-
tinual cycles of regeneration and necrosis lead to the
skeletal muscles being gradually replaced by adipose tis-
sue and unable to sustain any mechanical activity.

The incidence of Duchenne muscular dystrophy
(DMD) is about 1 in 3,500 male births. Affected patients
have a massively reduced life expectancy and a poor
functional prognosis. In most cases, DMD is due to
frame-shift mutations in the DMD gene, leading to a
complete absence or low levels of dystrophin protein (no
more than 3% normal levels). This accounts for the se-
verity of the phenotype in all patients, although some
variation of disease expression is observed between
patients, in terms of motor, respiratory, cardiac and
mental functions [15,16]. The expression of the various
dystrophin isoforms may depend on the mutation site,
potentially accounting, at least in part, for the correl-
ation with the motor and mental status of patients [15].
Becker muscular dystrophy (BMD) is less frequent than
DMD, and is usually milder, with slower disease
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progression. BMD is caused by in-frame deletions or
duplications of one or several exons or by splice-site and
missense mutations. These mutations lead to the pro-
duction of various amounts of internally truncated,
lengthened, or slightly modified dystrophin molecules.
This results in a broad spectrum of clinical severity, ran-
ging from a complete absence of symptoms, through
mild disease, to severe clinical conditions similar to
DMD [15-25]. According to the reading-frame rule,
frame-shifting mutations lead to the severe DMD
phenotype, whereas in-frame mutations lead to the less
severe BMD phenotype [16,26]. However, there are
exceptions to this rule, with certain in-frame mutations
resulting in the severe DMD phenotype [27-31]. These
mutations are frequently located at the 5 end of the
gene encoding the N-terminus of dystrophin including
ABD1, or at the 3’ end of the gene encoding the C-
terminal domain, usually in the Cys-rich domain,
thereby disrupting the DGC.

The structure and function of dystrophin are poorly
resolved at the biological and physiological levels, and it
is therefore difficult to establish a detailed phenotype-
genotype correlation in BMD patients. Phenotypic differ-
ences between patients are thought to depend on the
site of the deletion or duplication and the conservation
of the reading frame, and such differences have recently
been shown to be correlated with the residual amount of
dystrophin [32]. Such knowledge is essential to antici-
pate the effects of current exon-skipping treatments on
phenotype restoration in treated DMD patients [33—36].

Two databases of DMD human mutations are already
freely available online: the Leiden Muscular Dystrophy
database [37,38] and the UMD-DMD French database
[39,40]. The Leiden Muscular Dystrophy database lists
the DMD mutations in patients reported in publications
or submitted by contributors from around the world and
includes some biochemical and phenotypic details. The
UMD-DMD database provides molecular and clinical
data for patients from France carrying a mutation of the
DMD gene. Both databases include in-frame and frame-
shifting mutations and focus on gene-level information.
However, as dystrophin acts at the protein level, a more
detailed and comprehensive characterization of the pro-
tein produced from genes with in-frame gene mutations
is required. Such a characterization is particularly im-
portant for comparisons of the structural features and
molecular interactions of the mutated protein with those
of the wild-type protein. For example, the total absence
of dystrophin, or its presence in very small amounts in
DMD patients, leads to the breakdown of the DGC com-
plex, a histological marker of the disease [41]. However,
the site of the mutation determines whether these inter-
actions are abolished in BMD patients, resulting in di-
verse phenotypes. For both basic research and clinical/
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therapeutic purposes, it is therefore of interest to estab-
lish a correlation between the genotype and the molecu-
lar and structural consequences of in-frame mutations
for the encoded protein.

To this end, we have developed a new database called
eDystrophin, specifically dedicated to providing informa-
tion about the in-frame mutations of the DMD gene and
their consequences for dystrophin molecules. The eDy-
strophin database includes both in-frame DMD muta-
tions identified at a routine diagnostic laboratory for
these mutations in France and published mutations. In
addition to the genetic and clinical details provided by
the other two available databases, the eDystrophin data-
base provides: (1) a synthetic view of the properties of
mutated dystrophin, (2) a map of modifications to bind-
ing sites for interacting protein partners; for deletions
involving the central rod domain, eDystrophin provides
(3) a structural model of the mutation site and (4) a spe-
cific comment indicating whether a correct filamentous
3D-structure is reconstituted around the mutation site.
Finally, this new database focuses on the protein rather
than the gene, providing a new vantage point regarding
in-frame mutations of the DMD gene, with the finding
that the gene exons and protein domains are “in phase”
for the specific central rod domain of dystrophin. This
phasing controls the ability of the internally truncated
dystrophin molecules to reconstitute a hybrid repeat
unit able to fold into a triple coiled-coil, resembling the
native repeats present in full-length dystrophin. This
database is freely available from http://edystrophin.gen-
ouest.org/, and all the information provided can be
downloaded.

Methods

eDystrophin is a relational database developed in MySQL
5.1.37 within the MAMP package [42]. The website was
constructed with XHTML, PHP 5 and JavaScript. The
database and the website are hosted by the BioGenouest
platform [43] and run with the Apache web server, version
2.2.3. MyDomains [44] was used to represent the mutated
proteins. The Jmol applet [45] is embedded for the
visualization of three-dimensional structure-homology
modeling.

Database construction

Gene data

The DMD cDNA sequences for the seven known tissue-
specific promoters and the positions of the 79 exons
were obtained from GenBank (RefSeq in Table 1).

Wild-type dystrophin data

Sequence data for the 16 isoforms of wild-type dys-
trophin were downloaded from GenBank. Several of
these isoforms are generated by alternative splicing in
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specific tissues (Table 1). The boundaries of the struc-
tural and functional domains were defined according to
the findings of 19 published papers and three domain-
search tools (Additional file 1, Table S1). This resulted in
the definition of 35 structural and 15 binding domains
in the eDystrophin database (Figure 1A). All of the var-
iants of each domain mentioned by the different authors
are indexed in the database (See the “Knowledge” sec-
tion), together with the original publication reference.

Two X-ray crystallographic structures of dystrophin
domains have been reported: one for actin-binding do-
main 1 at the N-terminal end [PDB: 1DXX] [51] and the
other for a WW domain and EF hand-region fragment
complexed with a p-dystroglycan peptide [PDB: 1EG3]
[52]. We recently used homology modeling to propose
the three-dimensional structure models of the 24 central
rod domain repeats [53]. The database gives models for
isolated repeats (Figure 1B) and for tandem repeats
(Figure 1C). Each repeat consists of three a-helices: A,
B, and C, and A B; and C for the following repeat.
These two structures and all the structure models can
be visualized and downloaded from the eDystrophin
database (from the Explore database section).

Data for mutated dystrophin

Our principal goal was to provide information about the
structure of the protein in cases of DMD in-frame muta-
tion, as a valuable tool for exon skipping therapy. We col-
laborated with one of the two existing databases — the
French UMD-DMD database [40] — resulting in the in-
clusion of all patients carrying in-frame mutations from
the largest French cohort, for whom detailed genetic and
molecular investigations had been carried out. Data from
published studies reporting well characterized exon dele-
tions/duplications were also included. The eDystrophin
database compiles 209 different in-frame mutations from
a total of 945 patients. One hundred of these mutations
were described in previous studies, 67 were provided by
the Laboratoire de Biochimie et Génétique Moléculaire
(LBGM, Cochin Hospital, APHP, Paris) and 42 were
present in both sources (Additional file 2, Table S2). The
mutations are named according to Human Genome Vari-
ation Society nomenclature recommendations [54]. For
each mutation, the cDNA sequence was predicted and is
available from eDystrophin (See the “Explore database”
section). As mRNA studies are rarely performed in cases
of exon deletion/duplication, we did not consider mRNA
levels in eDystrophin. For duplications, we cannot under-
stand events at the protein level unless we know how the
duplication is arranged at the gene level. We therefore
assumed that repeats were in tandem and not in opposing
directions, in which case a stop codon might occur, result-
ing in the absence of dystrophin and a DMD phenotype.
The eDystrophin database also provides some general
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Table 1 DMD transcript variants and their tissue expression

Promoters Publication Tissue specificity Alternative splicing mRNA RefSeq Protein RefSeq
dp427m (Koenig et al., 1989)[16]  Skeletal muscle, heart muscle, glial cells  Not referenced NM_004006.2 NP_003997.1
dp427¢ (Chelly et al.,, 1990)[46] Brain, retina Not referenced NM_000109.3 NP_000100.2
dp427p (Chelly et al., 1990)[46] Purkinje cells, muscle Not referenced NM_004009.3 NP_004000.1
dp260 (D'Souza et al, 1995)[47] Retina No but two alternative exon 1 1: NM_004011.3  1: NP_004002.2
2: NM_0040123  2: NP_004003.1
dp140 (Lidov et al., 1995)[48] Brain, kidney, retina No splicing - > dp140 NM_004013.2 NP_004004.1
Exons 71 & 78 - > dp140ab NM_004022.2 NP_004013.1
Exon 78 - > dp140b NM_004021.2 NP_004012.1
Exons 71 to 74 & 78 - > dp140bc  NM_004023.2 NP_004014.1
Exons 71 to 74 - > dp140c NM_004020.3 NP_004011.2
dp116 (Byers et al., 1993)[49] Schwann cells Not referenced NM_004014.2 NP_004005.1
dp71 (Hugnot et al, 1992)[50] Everywhere except skeletal muscle No splicing - > dp71 NM_004015.2 NP_004006.1
Exons 71 ->dp71a NM_004017.2 NP_004008.1
Exon 71 & 78 - > dp71ab NM_004018.2 NP_004009.1
Exon 78 ->dp71b NM_004016.2  NP_004007.1
Stop at Exon 70 - > dp40 NM_004019.2 NP_004010.1

clinical and protein information (see below) for each of domains of dystrophin was produced, including deletions
the in-frame DMD mutations. For each of the 209 protein  of exons at the 3’ end encoding actin-binding domain 1
sequences derived from these in-frame mutations, a map  (Figure 2A) and deletions of exons 13-44, 45-47 and 45—
of the conserved and altered structural and binding 48 (Figure 2B, C, D).
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Figure 1 The dystrophin molecule and its partners. (A) Schematic representation of the molecule with the structural domains CH1 and CH2,
constituting actin-binding domain 1, hinges 1 to 4 (H1 to H4), spectrin-like repeats 1 to 24 (R1 to R24); the WW domain and EF hand-region
constituting the Cys-rich domain; ZZ, the zinc finger domain; and the C-terminal domain (C term) and its partners. (B) Model of the three-
dimensional structure of repeat 7 folded into a triple coiled-coil, consisting of three helices, A, B, and C, joined by two loops, AB and BC. (C)
Model of the three-dimensional structure of tandem repeats R7-8 of the rod domain. Each repeat is composed of three alpha helices folded into
a triple coiled-coil: R7 (helices A, B, and C, joined by loops AB and BC) and R8 (helices A', B" and helix C/, joined by loops A'B" and B'C)). A long
common helical linker is formed between the two repeats by R7 helix C and R8 helix A'.
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Figure 2 Representation of the dystrophin proteins generated from genes with several types of deletions. (A) lllustration of the proteins
produced from genes with deletions of exons corresponding to the 3’ terminus encoding actin-binding domain 1. The red spot indicates the
deletion site. (B) Deletion of exons 35 to 44: representation of the entire molecule with a tag at the deletion site and a model of the three-
dimensional structure at the deletion site, showing that a hybrid repeat is reconstituted from parts of repeats 2 and 17. (C) Deletion of exons 45
to 47: representation of the entire molecule with a tag at the deletion site and the homology model of three-dimensional structure at the
deletion site, showing that the junction between the C-terminal part of repeat 17 and the N-terminal part of repeat 18 does not allow the
reconstitution of a hybrid repeat. (D) Deletion of exons 45 to 48: representation of the entire molecule with a tag at the deletion site and the
homology model of the three-dimensional structure at the deletion site, showing that a hybrid repeat is formed from parts of repeats 17 and 18.
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For each deletion of exons encoding part of the central
rod domain (exons 10-61), homology modeling was
used to determine the structure of the protein at the
junctions on either side of the deletion. Homology mod-
eling was performed on the automated server, I-TASSER
[55,56], as in our previous study on native repeats [53].
I-TASSER combines various techniques, including
threading, ab initio modeling and structure-refinement
approaches, for the prediction of protein structures. For
each submitted sequence, one to five models are pro-
duced based on homology to the spectrin repeats, the
crystallographic structures of which have been resolved.
Briefly, the C-score in I-TASSER estimates the quality of

the predicted model, based on the significance of the
threading alignments and the convergence of the simula-
tions. C-score values typically lie in the range of -5 to 2,
with higher scores indicative of a better model. Only the
model with the best C-score is retained in the eDystro-
phin database. Furthermore, three-dimensional structure
models of isolated hinges were submitted to I-TASSER
and were incorporated into models as necessary. These
new structures, made of separated blocks, were mini-
mized twice, in water and 50mM NaCl. The models
were further analyzed by graphical display with PyMOL
[57] and evaluated with PROCHECK (to check the
stereochemistry information supplied by ProSA-web
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[58,59]) and Verify3D [60,61] (for structure validation).
Ramachandran plots showing the amino-acid distribu-
tion are provided by eDystrophin, indicating the energet-
ically favorable regions for peptide bond torsion angles
for each amino-acid of the protein. The structural model
is considered of higher quality if the distribution of
amino-acid torsions is restricted to the regions allowed
in the plot.

The models can be visualized online with Jmol [45],
using a color code for each region of the protein. Com-
parison of the structure of the mutated protein with na-
tive repeat folding is provided by eDystrophin, through a
static view of a native three-repeat fragment of dys-
trophin in a parallel box. Static images and PDB files for
the wild-type and mutated models can be downloaded.

Clinical data

In total, 945 clinical records (531 provided by the LBGM
and 414 from published studies) were included in eDy-
strophin. The database provides a brief description of
the disease phenotype corresponding to the most com-
monly used clinical classification. The DMD and BMD
phenotypes are attributed to cases in which the patient
loses the ability to walk before the age of 13 years and
after the age of 16 years, respectively. The intermediate
muscular dystrophy (IMD) phenotype is used to describe
patients who stopped walking between the ages of 13
and 16 years. The DCM phenotype is attributed to the
subgroup of patients with isolated cardiomyopathy with-
out skeletal muscle involvement, whereas the “pending”
subgroup corresponds to patients with insufficient clin-
ical data for correct classification of their phenotype. Fi-
nally, the “asymptomatic” phenotype is assigned to
patients with no myopathic or cardiac symptoms at their
most recent check-up.

The results of dystrophin immunostaining and/or west-
ern blot studies with three specific antibodies against dif-
ferent domains of dystrophin were available for 360
patients. The Dys-1 antibody is specific to repeats 8-9 in
the central rod region; the Dys-2 antibody is specific to
the C-terminus (residues 3669-3685); and the Dys-3 anti-
body is specific to the N-terminus (residues 321-494). For
the LBGM patients, data from immunostaining studies
are presented according to staining regularity (normal,
regular, irregular, mosaic, no signal with revertant fibers,
and no signal) and intensity (high, medium, and low).
Western blots with the same three antibodies were used
to assess the quantity (high, medium or low) and size
(increased, normal, reduced or undetected) of the three
major regions of the mutated protein. Thus, for each of
the recorded in-frame mutations, the eDystrophin data-
base displays the percentage of patients carrying the muta-
tion with resulting in the production of low, normal or
high levels of dystrophin proteins of small, normal or large
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size. In addition, for cases in which clinical data are avail-
able, the presence of cardiomyopathy or mental retard-
ation at the last clinical examination is also displayed. The
aim of eDystrophin was not to provide detailed descrip-
tions of clinical symptoms, dystrophin immunofluores-
cence and western blot status for each patient, but a
global view for each subgroup of patients carrying the
same in-frame DMD mutation.

Results

Website organization

The eDystrophin website contains four distinct sections:
“Knowledge”, “Explore database”, “Statistics” and “Links”.
The “Knowledge” pages provide background information
about the dystrophin gene and protein, the diseases
associated with mutations of the gene and current cell-
and gene-therapy strategies. The “Explore database”
pages contain data that can be downloaded, and this sec-
tion is divided into two parts: ‘Wild-type dystrophin, and
‘Mutated dystrophin’. The “Statistics” section provides a
brief summary of statistics for eDystrophin content. Fi-
nally, the “Links” section provides some useful links and
a list of previous publications reporting well characterized
exon deletions/duplications implemented in eDystrophin.

The ‘Wild-type dystrophin’ pages provide all of the
wild-type sequences and the corresponding three-
dimensional structures of the domains. The cDNA and
protein sequences of the 16 isoforms can be obtained by
clicking on the “Isoform full-length sequences” tab. A
diagram of the organization of the ¢DNA can be
obtained by clicking on the “Exon sequences” tab, and
the sequences of the 79 exons can be obtained by click-
ing on the chosen exon. The sequences of the various
domains, with all of the versions reported in published
studies, can be obtained by clicking on the “Structural
domain sequences” tab, and a diagram of dystrophin
with the functional domains reported in published stud-
ies can be obtained by clicking on the “Binding domain
sequences” tab. By clicking on the domain, the user can
download the sequence. Similarly, the three-dimensional
structures found in PDB are available via the “3D-
structure models” tab, as are the homology-based mod-
els of all single and tandem repeats, which can be visua-
lized with the Jmol vizualization tool [45].

The “Mutated dystrophin” pages are dedicated to the
209 in-frame mutations of the human DMD gene
included in eDystrophin. It is possible to search for
mutations according to mutation type, phenotype or the
domain involved.

The “Search by mutation type” tool allows the user to
search for deletions, duplications or substitutions. If “Dele-
tions” or “Duplications” are selected, a diagram of the exons
of the DMD gene is displayed (as in Figure 3). This allows
the user to select an exon, for which a list of all deletions or
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Figure 3 Screenshot of “Search by mutation type/Deletions” tool. The user can select an exon and then a deletion involving this exon. On
the right side of the page, the user can select a mutation of interest from a list, to obtain data about this mutation. The user can also save this

duplications affecting this exon can then be obtained, or to
select a mutation of interest from the list at the bottom of
the page. If “Substitutions” is selected, a list of mutations is
provided. The “Search by phenotype” tool provides a list of
mutations “affecting at least one patient” or “affecting no
patient” with a specific phenotype. These phenotypes in-
clude pending or asymptomatic, BMD, IMD, DMD or
DCM. The “Search by involved domain” tool provides a
representation of the dystrophin protein, together with its
known partners. The names of the structural domains and
partners of dystrophin are active buttons. Clicking on these
buttons brings up a list of mutations affecting the chosen
domain or partner. All of these mutation lists are easy to
save down as a csv-formatted data file.

Regardless of the way in which the list of mutations
was obtained, clicking on the “see protein” button opens
a new page showing a summary table with a global view
of the effects of the mutations and four horizontal tabs
displaying details (Figure 4A). By clicking on the ‘Clinical
data’ tab, the user can obtain the number of patients
listed in the database carrying a given mutation, and in-
formation about the overall distribution of phenotypes,
the severity of the disease in BMD patients, the presence
or absence of cardiomyopathy and mental retardation

and the size and amount of dystrophin (when such data
are available) (Figure 4B).

Clicking on the “Protein structural domains” tab provides
a map of the protein domains modified by the mutation
and a table summarizing the consequences of the deletion
for the four shorter dystrophin isoforms (Figure 4C). Simi-
larly, clicking on the “Protein binding domains” tab brings
up a map of modifications to the binding domains of the
mutated protein (Figure 4D). Finally, clicking on the “3D-
structure model of the mutation site” tab provides the user
with a model of the three-dimensional structure of the
regions on either side of the mutation in cases in which
exons encoding part of the central rod domain are deleted
(Figure 4E). The user can freely download a PDF summary
file including the clinical data described above, information
about structural and binding domains and the three-
dimensional structure model. A final comment about the
impact of the mutation on the filamentous structure of the
protein is also provided.

Overview of the content of the database

Statistics

The 209 mutations recorded in the eDystrophin data-
base include 128 large deletions of one or several exons
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(See figure on previous page.)

down in the form of PDF files.

Figure 4 Screenshot of data available for the deletion of exons 45 to 49. (A) A general view of the webpage after loading. Description of
the mutation at the nucleotide and protein levels, cDNA and protein size, the molecular weight of the mutated protein, a link to cDNA and
protein sequences and a list of references reporting patients carrying the mutation are available in table form. Detailed information about clinical
data, structural and binding domains and models of three-dimensional structure can be obtained by clicking on the boxes below. (B) The “Clinical
data” tab on the first line provides access to a table showing the distribution of phenotypes. In the second line, pie-charts showing the amount
and size of dystrophin, as determined by western blotting, the presence of cardiomyopathy and mental retardation are given. (C) The “Structural
domains" tab provides a schematic representation of the mutated dystrophin. The sequences of each protein domain are available. (D) The
“Binding domains” tab indicates, in red, the changes to the binding domains caused by the mutations listed in the table. (E) The “3D-structure
model of the mutation site” tab shows the model of the three-dimensional structure of the domains around the mutation junctions (here R16,
R17, R19 and H3). The secondary structure predicted by I-TASSER is displayed above the model. The PDB file and the Ramachandran plot are also
available. The modeling tab is available only for the deletion of exons encoding part of the central rod domain. All information can be saved

(61% of the mutations listed) and 50 large duplications
of one or several exons (24% of the mutations). There
are also 23 missense mutations (11%), and 8 small in-
frame deletions (4%) (Figure 5A).

Figure 5B shows the phenotype distribution for all the
patients. Of the 945 patients, 733 (78%) had the BMD
phenotype, 131 (14%) had the DMD phenotype (most of
these patients had mutations towards the 3’ end of the
DMD gene), and 20 patients (2%) had the IMD phenotype.
Thus, 16% of the patients registered in the eDystrophin
database are exceptions to the Monaco rule [26], as they
carry in-frame mutations associated with the severe
DMD/IMD phenotypes. Deletions of exons 60 to 79 are
generally observed only in DMD patients, but deletions of
exons 45-79 and of exon 60 have been reported in at least
one BMD patient (Additional file 3 Figure S1A, B). This is
consistent with previous reports showing that deletions
involving the Cys-rich domain are more deleterious than
mutations involving the central rod domain. Similarly, 18

A

®Exon deletions
Other deletions
® Exon duplications

® Substitutions

=BMD
“DMD
® Asymptomatic
®|MD
"DCM
Pending

Figure 5 Statistics for mutations recorded in the eDystrophin
database. (A) Mutation types: the number of cases is shown for
each of 209 different mutations. (B) Phenotype distribution: for each
phenotype, the number of patients concerned, from a total of 945
patients, is shown.

mutations starting at exon 3 have been found in at least
one DMD patient, whereas only nine such mutations have
been found in at least one BMD patient. As previously
reported, deletions affecting ABD1 were generally found
to be more deleterious than those affecting the central
domain [23,40]. Twenty-nine of the deletions involving
the central domain were found in at least one DMD
patient, whereas 60 were found in at least one BMD
patient. Thirty-one of the duplication mutations were
observed in at least one DMD patient (Additional file 3,
Figure S1C,D), and 24 were observed in at least one BMD
patient. These findings indicate that duplications are gen-
erally more deleterious than deletions.

Case studies

We illustrate the use of the eDystrophin database for
analysis of the consequences of a specific in-frame DMD
mutation, by studying two exon deletions: deletion of
exons 13—44 (c.1483-? 6438 + ?del; p.Val495_Lys2146del)
which is a proximal large deletion with a low frequency,
and deletion of exons 45-47 (c.6439-?_ 6912 + ?del;
p-Glu2147_Lys2304del), a very frequent, distal, relatively
short deletion. The easiest way to proceed is to select
one of the mutated exons from the “Mutated dys-
trophin” page and then to click on the “Search by muta-
tion type”/“deletions” tabs. The desired mutation is
chosen and the “see protein” tab is clicked to view the
results page.

As shown in the summary at the top of the new page,
the deletion of exons 13—44 has been observed in only
one BMD patient (“Clinical data” tab). This deletion
leads to the production of a 2033-residue dystrophin
protein with a molecular weight of 234kDa, which is
smaller than its wild-type counterpart (3685 residues
and a molecular weight of 427kDa) and was originally
reported in [22]. All the data on the page can be down-
loaded as a pdf file, by clicking on “Get pdf file”. The
“Protein structural domains” tab shows that the region
from the C-terminal part of repeat 2 to the N-terminal
part of repeat 17 (including hinge 2), is missing from the
mutated protein (Figure 2B). Furthermore, this deletion



Nicolas et al. Orphanet Journal of Rare Diseases 2012, 7:45
http://www.ojrd.com/content/7/1/45

affects the promoter of the Dp260 and Dp140 isoforms
but has no effect on Dpl16 and Dp71. The “Protein
binding domains” tab shows that the deletion encom-
passes the entire PAR-1b and synemin-binding domains
and partly modifies the LBD1, LBD2, ABD2, and nNOS
binding domains. Clicking on the “3D-structure model
of the mutation site” tab brings up the I-TASSER-built
three-dimension structural model, showing that a long
helix is reconstituted at the mutation site junction between
the N-terminal part of repeat 2 and the C-terminal part of
repeat 17 (Figure 2B). Thus, the reconstitution of a triple
coiled-coil, as in the wild-type three-repeat model, may
occur. This I-TASSER model has a C-score of 0.66, indica-
ting a correct fold, as confirmed by Verify3D, ProSA-web
and Procheck, all of which indicated a high overall quality
for the model. The Ramachandran plot showed that 91.7%
of the residues were in the most favored regions, with 1.7%
of residues in disallowed regions. These disallowed residues
are located in loops, which are often poorly defined. These
values are compatible with a crystal structure. As shown in
the box, we can therefore conclude that a correct filament-
ous three-dimensional structure, in the form of a hybrid re-
peat generated by the concatenation of two truncated
repeats, is reconstituted at the new junction. Such a hybrid
repeat was hypothesized for the deletion of exon 41-42 in
an in vitro experiment. The author of the study concerned
concluded that this hybrid repeat is viable and has some of
the properties of the native repeat [62].

The second case study is that of the deletion of exons
45-47. Unlike the first example, this deletion is very fre-
quent, having been observed in 223 patients (23.6% of
the eDystrophin cohort). The resulting protein is 3527
residues long, with a calculated molecular weight of
409kDa. The “Clinical data” tab shows that the observed
phenotypes correspond to BMD in 96% of patients, asso-
ciated cardiomyopathy in 19% of patients, and features
suggesting mental retardation in 2% of patients. Dys-
trophin protein levels were reported to be lower than
normal in 30% of the patients and normal or high in 1%
of patients, with no data available for the remaining
patients. The protein was small in 30% of patients and
of normal size in 3% of patients, with no data available
for the remaining patients. Thus, data concerning the
amount and size of the dystrophin protein are missing
for 67% of the patients. The “Protein structural domains”
tab shows that the deletion eliminates the C-terminal
end of repeat 17 and the N-terminal end of repeat 18
(Figure 2C). Dp260 is deleted, along with Dp427m and
the Dp140 promoter is affected by the deletion, but the
wild-type Dp116 and Dp71 isoforms are unaffected. The
“Protein binding domains” tab shows that the ABD2,
LBD2, and nNOS binding domains are partially modified
by this deletion. As can be seen by clicking on the “3D-
structure model of the mutation site” tab, the junction
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region on either side of the mutation is correctly folded,
consistent with the findings of Verify 3D and ProSA-
web analysis. The Ramachandran plot shows that 90.2%
of the residues are in the most favored regions, and 1.6%
residues are in disallowed regions, specifically in loops
between helices. However, the model also includes small
helices that do not reconstitute a triple coiled-coil
(Figure 2C). This implies that no hybrid repeat reconsti-
tution occurs at the junction, with a fractional repeat
formed instead and resulting in an incorrect filamentous
3D structure. The term “fractional repeat” has previously
been used to describe the joining of two truncated
repeats without the reconstitution of a triple coiled-coil
similar to that observed in native repeats [62,63]. This
conclusion is again displayed in the box.

Exon phasing versus repeat phasing

The triple coiled-coil structure of the wild-type dys-
trophin repeats requires the amino-acid sequences to
have a seven-residue pattern (the heptad), with apolar
residues located alternately three and four residues
apart. The a-helices assemble such that they are tilted
and coiled around one another, each in an opposite dir-
ection to the other helices. This generates the multi-
stranded structure of the coiled-coil [64,65]. Such struc-
tures may be formed from two or three helices. Like all
spectrin-like repeats, dystrophin repeats consist of three
helices. As shown above, exon deletions may or may not
allow the reconstitution of a triple coiled-coil at the
junction between the sequences on either side of the
deletion.

Comparison of the heptad pattern of the repeat align-
ment obtained by Winder [7] with the exon boundaries
showed that all the B helices were encoded by two succes-
sive in-frame coding exons (Additional file 3, Figure S1). A
simplified diagram of this global organization of exons and
repeats in the central rod domain of dystrophin is shown
in Figure 6A. Each line represents a repeat or a hinge. The
exons encoding the repeats are represented by rectangles,
with alternating colors for clarity: even-numbered exons
are shown in orange and odd-numbered exons are shown
in light yellow. In all the repeats other than repeat 14, the
B helices appear to be encoded by two successive in-frame
exons with the boundaries precisely aligned with the third
heptad of the B helices (Additional file 4, Figure S2).

Thus, an in-frame deletion of two successive exons, the
first of which encodes the C-terminal part of a B helix,
would be expected to result in deletion of the end of this
B helix and of the C helix of the first repeat, together with
the beginning of the B helix of the following repeat. This
deletion results in a concatenation of the first part of the
B helix of the first repeat with the second part of the B
helix of the second repeat. Consequently, the heptad pat-
tern remains similar to that in wild-type dystrophin, and
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frameshifting exon borders are shown as blue triangles. The approximate position of the helices is indicated above the figure. (B) Focus on the
deletion site for the deletion of exons 13 to 44, showing the reconstitution of a hybrid repeat by the joining of exons 12 and 45 (in green),
maintaining the phasing of exon coding for a reconstituted B helix. (C) Focus on the deletion site for the deletion of exons 45 to 47, showing
how the joining of exons 44 and 48 (in red) does not respect the phasing of the repeats and the presence of an extra sequence inconsistent
with a repeat. (D) Focus on the deletion site for the deletion of exons 45 to 48, showing how the hybrid repeat can be reconstituted by the
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the domain can fold like a native repeat, thereby constitut-
ing a hybrid repeat. This observation confirms the previ-
ous report of an observation of a hybrid repeat [62]. A
similar phenomenon may occur for many deletions in-
volving two such exons or multiples of two exons. In
situations in which the formation of a hybrid repeat is not
possible, fractional repeats, in which the heptad pattern of
alignment is not respected at the new junction between
the sequences on either side of the deletion, may form, as
previously suggested [63].

Discussion

The eDystrophin database is a new biomedical resource
for clinicians and researchers working on human dys-
trophin diseases. This dedicated database for the dys-
trophin protein specifically aims to provide information
about in-frame DMD mutations and their consequences
for the dystrophin protein. It provides a framework for
the analysis of such mutations, by presenting a large
body of information for both wild-type and mutated dys-
trophin proteins, including findings relating to the struc-
ture of these proteins and their interactions with known
partners. Although eDystrophin is a locus-specific data-
base, it was not constructed with an existing database

system, such as LOVD [66,67] or UMD [68,69]. Indeed,
such systems are more useful for DNA variant databases
and are not suitable for the construction of a protein-
based database like eDystrophin.

In human dystrophin diseases, the ratio of the fre-
quency of DMD to that of BMD is approximately
2/3 — 1/3 [40,70]. Most cases of DMD are caused by
frame-shift mutations, whereas BMD is generally caused
by in-frame mutations, although exceptions have been
reported [26]. Documented cases of in-frame mutations
are largely underrepresented in existing databases, and the
primary aim of the eDystrophin database project was to
redress the balance, by developing a dedicated information
source for in-frame mutations. Unlike frame-shift muta-
tions, in-frame mutations lead to the production of pro-
teins with various degrees of functionality. The secondary
goal of eDystrophin was therefore to determine and show
the predicted consequences of these mutations for the
composition and structure of the encoded proteins and
their clinical consequences. In this first version of eDy-
strophin, patients and in-frame mutations were obtained
from one of the major French contributors to the UMD-
DMD database and from published studies. Evidently, the
database could be expanded in the near future by
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including mutations and patients from around the world,
which would probably yield more accurate phenotype-
genotype correlations.

However, dystrophin is a large protein, and it is a chal-
lenge to investigate the consequences of mutations of its
gene. The dystrophin protein has two principal roles: as
a scaffolding protein for several interacting partners and
as a filamentous protein with a mechanical and struc-
tural function, providing resistance to the stress of
muscle contraction [8,13]. Any mutation altering the
structure of dystrophin may therefore affect both these
functions (and potentially other minor functions of the
protein as well) simultaneously. Our database provides
an overview of the effects of mutations on protein func-
tion. In particular, it provides the user with information
about changes to interactions and about the mainte-
nance or disruption of the filamentous structure of the
mutated dystrophin protein.

Several binding partners of dystrophin have been iden-
tified, and the eDystrophin database infers changes to
their binding to a mutated dystrophin variant by consid-
ering whether the interacting domains remain intact and
unmodified. Based on these inferences and previous
observations, deletions affecting the Cys-rich or ABD1
domains appear to be much more deleterious than those
affecting the central domain [23,40]. However, we
detected several mutations affecting the central rod do-
main and causing a DMD phenotype in a substantial
number of patients. In these patients, mRNA levels may
have been low and/or unstable, accounting for the pres-
ence of little or no protein. Careful re-examination of
the boundaries of the mutation is also necessary for
these patients. Indeed, Taylor et al. (2007, PhD thesis)
re-examined a large cohort of DMD patients with in-
frame deletions affecting the central rod domain and
found that most were frame-shift mutations, consistent
with the Monaco reading frame rule. Furthermore, we
cannot entirely exclude the possibility of two mutations
occurring in the same gene. For the other DMD patients
carrying in-frame mutations, uncertainties remain
concerning the levels or stability of the corresponding
mRNA.

We obtained models of the three-dimensional struc-
ture of the new junctions created between the sequences
on either side of the deletions in the central rod domain,
as previously described [53]. The database provides a
computational model for each in-frame deletion col-
lected. An analysis of the structural features of these
new junctions showed that two outcomes were possible:
the reconstitution of a hybrid repeat and the formation
of a fractional repeat in situations in which it was not
possible to form a hybrid repeat. The likelihood of
hybrid repeat formation depends on the phasing of the
exon boundaries with the center of the B helix of the
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repeats. The reconstitution of a hybrid repeat can be
assumed to occur because the major factor controlling
this folding pattern is the presence of a heptad pattern.
As this pattern is respected in cases in which the dele-
tion creates a new junction between the first half of one
B helix and the second half of the next, from two trun-
cated repeats, coiled-coil folding similar to that in native
repeats would be expected [64,65]. By contrast, in frac-
tional repeats, the a-helices can fold correctly, but the
heptad pattern is not respected and a three-dimensional
coiled-coil structure therefore cannot be obtained. This
may result in a less stable deletion site than for native
and hybrid repeats. The hypothesis that repeats phasing
in truncated dystrophins is essential to ensure a high
level of protein function has already been tested. Trans-
genic mdx mice were produced with several types of
truncated dystrophin, some with correct and others with
incorrect phasing of the repeats. However, in this previ-
ous study, native repeats were either entirely conserved
or entirely lost [71]. These findings led to the “mini-
dystrophin” concept for DeltaH2-R19, in which the rod
domain was decreased in size by a deletion encompass-
ing the amino acids from hinge 2 to repeat 19. By con-
trast the “micro-dystrophin” DeltaR4-R23 had a deletion
extending from repeat 4 to repeat 23. Constructs encod-
ing these proteins proved to be among the best thera-
peutic constructs for mdx mouse rescue. In BMD
patients, phasing is not as described in these previous
experiments and only hybrid repeats may be reconsti-
tuted. However, the demonstration of beneficial effects
of phasing in the mdx mouse suggests that the presence
of hybrid repeats may be associated with a milder
phenotype than the presence of fractional repeats
[62,63]. Such a correlation between the structural fea-
tures of mutated dystrophin and clinical severity in a
cohort of BMD patients has been reported for cardio-
myopathy [24]. The authors constructed models of the
mutated dystrophin for deletions involving exons 45 to
49 and investigated the phasing of spectrin repeats. They
concluded that the absence of hinge 3 delayed the onset
of dilated cardiomyopathy.

However, it should be stressed that the presence of a hy-
brid repeat does not itself imply a better conservation of
dystrophin function than the presence of a fractional repeat.
Indeed, mRNA instability or changes to protein-protein
interactions may also affect the function of the mutated
dystrophin, and it is not currently possible to predict these
effects. Investigations of the correlation between the pres-
ence of a hybrid repeat and the severity of clinical symp-
toms are now required. However, the eDystrophin database
can be used as a predictive tool for exon skipping—based
therapy. The choice of the exon to be deleted to restore the
reading frame could be based on careful consideration of
the likelihood of reconstituting a hybrid repeat.



Nicolas et al. Orphanet Journal of Rare Diseases 2012, 7:45
http://www.ojrd.com/content/7/1/45

Conclusions

The eDystrophin database is a new tool providing an
overview of the proteins generated by DMD genes carry-
ing in-frame mutations. It provides information about
the consequences of these mutations for protein produc-
tion and folding and for phenotype-genotype correla-
tions. This database, through these features, is thus a
valuable tool for predicting the efficacy of exon-skipping
therapy for DMD patients.

Supporting data
The supporting datasets are provided within the article

and the additional files.

Additional files

Additional file 1: Table S1. provides the references from which
information about the structural and binding domains of dystrophin
described in eDystrophin was obtained [7,51,52,72-90].

Additional file 2: Table S2. provides the origin of the mutations
described in the eDystrophin database [18,20,22,24,91-102].

Additional file 3: Figure S1. Statistics for mutations included in
eDystrophin. Exon deletions (A, B) and duplications (C, D) associated with
at least one DMD (A, C) or one BMD (B, D) patient. Each line represents a
type of exon deletion (A and B) or duplication (C and D).

Additional file 4: Figure S2. Sequence alignment of the 24 spectrin-like
repeats of dystrophin. Repeats were aligned by ClustalW, using default
parameters, as described by Winder et al. [7]. The alignment was
visualized in Jalview. In the first line, heptad motifs are indicated,
showing the hydrophobic residues in the (a) and (d) positions. The
repeat numbers and the number of residues per repeat are indicated at
the start of the repeat sequence. The presence of absence of hinges 2
and 3 is indicated in separate lines. There are two extra sequences at the
ends of repeats 15 and 18 not aligned with the heptad pattern. The
presence of these sequences is indicated at the end of the
corresponding lines. At the end of each line, the numbers of the exons
encoding the repeat are indicated in parentheses. The repeat sequences
are highlighted alternately in orange (even-numbered exons) and light
yellow (odd-numbered exons). The rectangle indicates the middle of the
B helices of the repeats. If the successive exons are not in frame, the
residues are shown in red. The alignment reported by Koenig et al. [76] is
also mentioned: the residues at the start of the repeats are underlined
when they differ from Winder's alignment.
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