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Abstract

Background: Current reconstructive techniques for continuity defects of the mandible include the use of free
flaps, bone grafts, and alloplastic materials. New methods of regenerative medicine designed to restore tissues
depend mainly on the so-called extrinsic neovascularization, where the neovascular bed originates from the
periphery of the construct. This method is not applicable for large defects in irradiated fields.

Methods: We are introducing a new animal model for mandibular reconstruction using intrinsic axial
vascularization by the Arterio-Venous (AV) loop. In order to test this model, we made cadaveric, mechanical
loading, and surgical pilot studies on adult male goats. The cadaveric study aimed at defining the best vascular
axis to be used in creating the AV loop in the mandibular region. Mechanical loading studies (3 points bending
test) were done to ensure that the mechanical properties of the mandible were significantly affected by the
designed defect, and to put a base line for further mechanical testing after bone regeneration. A pilot surgical
study was done to ensure smooth operative and post operative procedures.

Results: The best vascular axis to reconstruct defects in the posterior half of the mandible is the facial artery
(average length 325 + 1.9 mm, caliber 2.5 mm), and facial vein (average length 333 + 1.8 mm, caliber 2.6 mm).

Defects in the anterior half require an additional venous graft. The defect was shown to be significantly affecting
the mechanical properties of the mandible (P value 0.0204). The animal was able to feed on soft diet from the 3rd
postoperative day and returned to normal diet within a week. The mandible did not break during the period of
follow up (2 months).

Conclusions: Our model introduces the concept of axial vascularization of mandibular constructs. This model can
be used to assess bone regeneration for large bony defects in irradiated fields. This is the first study to introduce
the concept of axial vascularization using the AV loop for angiogenesis in the mandibular region. Moreover, this is

the first study aiming at axial vascularization of synthetic tissue engineering constructs at the site of the defect
without any need for tissue transfer (in contrast to what was done previously in prefabricated flaps).

Background
Bone tissue has regenerative capabilities that enable the
self-repair of fractures and tissue loss; however, in extreme
situations in which the extent of bone loss or damage due
to trauma, surgery, or a metabolic disease is too large,
spontaneous complete regeneration cannot occur.
Traditionally, the augmentation of bony defects is car-
ried out using allografts, xenografts, autogenous bone, and
synthetic biomaterials. The transplantation of autogenous
bone is regarded as the gold standard. Globally, there are

* Correspondence: dr_ae@hotmail.com

'Department of Head and Neck and Endocrine Surgery, Faculty of Medicine,
University of Alexandria, Egypt

Full list of author information is available at the end of the article

( BiolMed Central

more than 2 million autogenous bone transplantations in
humans each year [1,2]. Because of the osteoinductive and
osteoconductive characters [3] of autogenous bone, there
are a number of good results obtained upon transplanta-
tion. However, there are disadvantages, namely:

1. In most cases, two surgical procedures are necessary:
one for bone harvesting (e.g., from the iliac crest) and the
other for implantation. This can cause some patients to
suffer from complications associated with the donor site.

2. At the site of bone transplantation, the risks of wound
infection, necrosis, and resorption, representing up to 30%
of transplanted material, have been experienced [1,2].

One major reason for mandibulectomy and maxillect-
omy is oral cancer; an estimated 34,000 of such cases
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were anticipated in the United States in 2008 [4]. In
addition, approximately 1,600,000 bone grafts are per-
formed each year to regenerate bone lost due to trauma
or disease, of which 6% (96,000) are craniomaxillofacial
in nature [5]. Current reconstructive techniques for con-
tinuity defects of the mandible encompass the use of
revascularized free flaps, free nonvascularized bone
grafts, and alloplastic materials. Although revascularized
composite flaps may be regarded as the “gold standard,”
they are associated with donor site morbidity [6,7].

Tissue engineering methods designed to restore dis-
eased and damaged tissues depend on the presence of a
matrix structure (scaffold) that is amenable to cell growth
and proliferation. In order to support the development of
complex biologic structure, such biomaterials must effec-
tively interact with the surrounding tissue and incite the
host to populate the graft with new tissue. To accomplish
this task, these matrices must either create-or induce the
host to establish an early and aggressive angiogenic
response leading to the development of a blood supply
for the restoration of structure and function [8].

The majority of currently applied tissue-engineering
approaches rely on the so-called extrinsic mode of neo-
vascularization. In this setting, the neovascular bed ori-
ginates from the periphery of the construct, which
should be implanted into a site of high vascularization
potential [9]. This represents a major obstacle for bone
regeneration in post irradiated regions. Furthermore, dif-
fusion limits oxygen and nutrition supply to cells to a
maximum range of 200 yum into a given matrix. That is
why suboptimal initial vascularization often limits survi-
val of cells in the center of large constructs [10]. These
issues of vascularization implemented the need for novel
angiogenic approaches and new in vivo models evolved
with the aim to generate constructs with a dedicated
neovascular network not under the immediate influ-
ence of the local environment [11]. In 1979 Erol and
Spira reported about their work on vascular induction
by means of inserting microvascular constructs onto
free skin grafts. Several vessel configurations were inves-
tigated including a flow through vascular pedicle, a dis-
tally ligated arteriovenous pedicle as well as an
arteriovenous (AV) fistula. The latter was found to pos-
sess the highest capacity of inducing and sustaining vas-
cularization into the free skin transplant. As a result, a
new tissue element was generated with a dedicated vas-
cular network based on an arteriovenous axis. The axial
vascularization of the new flap was similar to the pattern
seen in tissue transplants suitable for microvascular
transfer (free flaps). During the late 1980s the principle
was refined and found a way into plastic surgical recon-
struction under the collective designation of the so
called ‘prefabricated free flaps’ [12]. Recently, the super-
jority of the AV-loop as a vascular carrier for an axial
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type of vascularization has been clearly demonstrated
[9,13,14].

We are introducing here a new animal model for
mandibular reconstruction using intrinsic axial vascu-
larization by the AV loop. In order to test this model,
we have performed cadaveric, mechanical loading, and
surgical pilot studies on adult male goats.

Methods

Our model is based on Cadaveric studies, mechanical
loading studies, and pilot surgical studies. Qualitative
and quantitative data on angiogenesis and osteogenesis,
together with the long term follow up of this model are
being further studied by our team.

« Cadaveric studies

We studied the mandibular and parotid regions in the
goat aiming at good orientation of the anatomy, spe-
cially the vascular anatomy. Our goal was identification
of the best vascular axis to be used in creating the AV
loop. The study included 6 fresh cadaveric adult male
goat heads; 3 right and 3 left.

« Mechanical loading studies and design of the defect
We studied the mechanical loading of the normal goat
mandible aiming for detecting reference levels for the
‘break point’ at the region of the angle of the mandible.
The Equipment used is the 3 Points Bending apparatus;
Autograph AG-IS 100 KN, SHIMADZU (Mubarak City
for Scientific Research, Borg El-Arab). Four adult male
goat mandibles where sharply dissected from cadavers
and the large soft tissue parts were removed by sharp
dissection. Each mandible was submerged in 30%
Hydrogen peroxide for 5 minutes. The residual soft tis-
sue was mechanically removed under running tap water.
The apparatus was adjusted so that the 2 resting points
where 8 cm apart. The mandible was placed horizontally
on the 2 resting points so that the lateral side of the
mandible is facing upwards (towards the pressing blade).
The mandible was slightly tilted so that the pressing
blade will apply the load on a line overlying the anterior
boundary of the designed defect (figure 1). The rate of
application was adjusted to 1 mm/minute. The results
were plotted in the form of graphs where the force (N)
is plotted against the stroke (mm). The data was calcu-
lated as mean value + standard deviation (SD) and ana-
lyzed using the Graphpad online software.

In order to detect the ‘break point’ after creating the
defect at the angle of the mandible, another four adult
male goat mandibles were dissected and prepared as
previously mentioned. A 3 x 2 c¢cm full-thickness rectan-
gular defect was created at the angle of the mandible.
The anterior border of the defect (2 cm) coincides with
a line drawn between the notch at the posterior lower
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Figure 1 Three points bending test applied on the goat
mandible.

margin of the mandible (constant bony landmark) and
the posterior edge of the last molar. (figures 2,3). The
defect was created using an oscillating saw (5400-031
Stryker TPS, USA). The 3 points bending test was done
for the resected mandibles as previously mentioned.

+ Animal Surgery

In order to assess the feasibility of our model, and to
insure smooth intra and post operative procedures, we
performed a pilot animal surgery on a 3 year-old male
goat. All the procedures were done according to the
NIH guidelines for animal surgery [15]. The animal
fasted overnight. General IM anesthesia was induced
using Xylazine HCl 0.22 mg/kg. 15 minutes later keta-
mine HCl IM was administrated at a dose of 11 mg/kg.
The dose of Ketamine was repeated twice throughout
the operation (every 25 minutes).

Procedure

In a left lateral decubitus with head extended, the right
mandibular region was shaved and disinfected using

Figure 2 Design of the defect.

Figure 3 The defect created.

povidine iodine (Betadine). Dissection was done in layers
through a submandibular skin incision 10 cm long. The
periosteum covering the angle of the mandible was ele-
vated together with the masseter muscle, parotid gland
and fascia using sharp dissection and a periosteal eleva-
tor. Using the oscillating saw (5400-031 Stryker TPS,
USA) a 3 x 2 cm full-thickness defect was created at the
angle of the mandible as previously designed. Continu-
ous irrigation with normal saline 0.9% is done through-
out the sawing procedure. The bone segment was
sharply dissected from the underlying medial pterygoid
muscle. Small pieces of Gelatin sponge (Gelfoam, Pfizer)
and Oxidized regenerated cellulose (Surgicel, Ethicon
Inc.) were used for hemostasis of the field before appli-
cation of the scaffold. The preformed scaffold (60% HA,
40% BTCP, 62% porosity, BioGraft Dental Bone Gran-
ules and Blocks, ISO 9001:2000, CE Certifications-CE
1023) was mounted to a titanium miniplate (4 x 5
holes) using a stainless steel wire as shown (figure 4).
Two 2 mm screws were used to fix the miniplate to the
mandible. The facial artery and vein could be easily ana-
stomosed using 9/0 polypropylene sutures (Prolene,
Ethicon) and laid into a deep groove in the scaffold
(reaching 5 mm depth in the 10 mm-thick scaffold),
covered with granules of the same material and kept in
place by the titanium plate (figures 5, 6). The masseter
muscle and parotid fascia were sutured back to cover
the defect using Vicryl 1/0 continuous sutures. The skin
was closed using interrupted simple 1/0 Silk sutures.
The wound was disinfected with povidine iodine (Beta-
dine) and left uncovered. 30 mg ketorolac tromethamine
(Ketolac) IM was given immediately postoperative and
once daily for 2 days for analgesia. Oxytetracycline trihy-
drate 250 mg IM was administrated once daily for 2
days postoperatively as prophylactic antibiotic. During
the first postoperative day the animal received NPO and
500 cc glucose 5%. During the second day the animal
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Figure 4 The scaffold placed in the mandibular defect.

Figure 6 The grooved scaffold.

received 500 cc glucose 5% and free fluid intake was
allowed. From the 3™ day till the end of the first week,
free fluid intake and soft diet with supplements were
allowed. The animal returned to normal diet after one
week.

Results

« Cadaveric study

The vessels available in the mandibular region are the
facial, transverse facial and lingual vessels. The best vas-
cular axis to be used is the facial artery and facial vein.
The lingual and transverse facial vessels are much smal-
ler, far from the mandible, and their dissection requires
disturbance of the parotid gland. Moreover, the dia-
meter of the facial vessels was more or less constant
within the parotid region due to fine branching that did
not significantly affect the vessel caliber. The facial
artery arises from the External carotid artery (via linguo-
facial trunk) and the facial vein unites with the lingual
vein to form the linguo-facial vein to drain into the

AV

Figure 5 Diagram showing how the AV loop will be laid inside
the scaffold.

-

Jugular vein. The facial vessels run epifascially parallel
to each other in an angle of 45° to the long axis of the
mandible. The artery is cranial to the vein (5 mm apart).
Both vessels are deep to the tendon of longissimus
capitis muscle and the duct of the parotid gland. The
average length of the facial artery from the anterior mar-
gin of the parotid gland till the alveolar margin is 32.5 +
1.9 mm. The length of the facial vein from the alveolar
margin till uniting with the lingual vein is 33.3 £ 1.8 mm.
The average diameter of the facial artery is 2.5 mm and
the facial vein is 2.6 mm. The anastomosis can be easily
done in the region of the anterior mandible using the
surgical loupe or operative microscope (figures 7,8).

« Mechanical loading studies

The study showed the feasibility of using the 3 points
bending test for mechanical loading analysis at the region
of the angle of the mandible in this model. The average
force used to break the normal mandible was 640.2 +
137.89N (Figure 9). The inner (medial) table of the
mandible broke before the outer (lateral) table and the
line of break passed close to the alveolar foramen while
the line of break of the outer table is the line of applica-
tion of the force. The average force used to break the
mandible with defect was 210.63 + 108.92 N (Figure 10).
The sequence and line of break was similar to that of the
normal mandible. The two-tailed P value equals 0.0204
and is considered to be statistically significant.

« Animal surgery

The study showed the feasibility of the surgical proce-
dures to be done on the goat model under general
anesthesia with minimal animal morbidity. The animal
was able to feed on soft diet from the 3" postoperative
day and returned to normal diet in a week postopera-
tively. The mandible did not break during the period of
follow up (2 months).



Eweida et al. Annals of Surgical Innovation and Research 2011, 5:2
http://www.asir-journal.com/content/5/1/2

Figure 7 Lt. Parotid region. S: Reflected skin, Mm: Masseter
muscle, T: tendon of Longissimus capitis muscle, P: Parotid gland, D:
Duct of parotid gland, M: Body of the Mandible, V: Facial vein, A:
Facial artery.

Based on the cadaveric, mechanical, and surgical stu-
dies, this model can be standardized as a safe efficient
model for studying axially vascularized mandibular
regeneration in large animals. The next step will be
charging the scaffold with suitable growth factors e.g.
BMP2 and establishment of the AV loop inside the scaf-
fold then investigating the resulting angiogenesis and
osteogenesis.

Discussion

Radiotherapy is commonly used as primary treatment
and as an adjuvant to the surgical excision of malignant
tumours especially in the head and neck regions. While
radiotherapy is an effective post operative measure in

Figure 8 Lt. Parotid region. S: Reflected skin, Mm: Reflected
Masseter muscle, P: Parotid gland, D: Duct of parotid gland, V: Facial
vein, A: Facial artery.
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destroying potential residual cancer cells, its side effects
are well-documented and include damage to normal
epithelial, dermal, and endothelial cells [16]. The result-
ing hypocellularity and hypoxic environment leads to
scarring and fibrosis that make secondary reconstruction
of the surgical site difficult. This further adds to the
challenges against reconstruction using the modalities of
regenerative medicine or tissue engineering. Regenera-
tion at the central region of large constructs usually fails
due to absence of adequate vascularization [10].

One tissue-engineering approach to the regeneration
of bone involves the delivery of cell signaling factors
such as growth factors or genes from biomaterial scaf-
folds. Growth factors such as VEGF, TGF-1, and BMPs
have been delivered to defects and have significantly
improved bone repair in irradiated sites [17-21]. Other
research groups tried sustainably expressing osteoinduc-
tive factors through cells that are transduced in vivo
[22] in regenerating defects compromised by radiother-
apy [23]. However, these studies did not demonstrate
clinically relevant complete regeneration of critical-sized
defects in large animals. Furthermore, large doses are
often necessary in protein-based therapies, which are
extremely expensive and thus may be impractical for
universal clinical application.

Other research groups started to address the issues of
vascularization in order to be able to deliver clinically-
relevant sized tissues with axial vascularization to the
site of reconstruction [24-26].

The sheep groin AV-loop model was the very first
large animal model for de novo creation of axially vas-
cularized tissue using microsurgical techniques [27].
That model was further standardized and axial vascular-
ization was successfully induced in a large volume (16
cc) of a clinically approved biphasic calcium phosphate
ceramic [28]. Yet, all these trials aimed at axially-vascu-
larizing constructs that would be later on transferred to
the site of reconstruction.

Successful trials for mandibular reconstruction in
clinically-relevant sized defects using the issues of axial
vascularization have not been reported. The concept of
axial vascularization of bones was previously introduced
in research studies [29] and even in clinical practice in
order to revascularize bones as in cases of avascular
necrosis of scaphoid bone or Kienboeck’s disease. These
methods used either ligated vascular pedicles or AV
loops with or without bone grafting [30,31]. However,
the concept of induction of axial vascularization of syn-
thetic tissue engineering constructs at the very same site
of reconstruction without the need for tissue transfer
(with subsequent operative and microsurgical hazards
accompanying tissue transfer) has not been introduced.

Our concept regarding axial vascularization of man-
dibular constructs is based on solid data in literature
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Figure 9 A graph showing the results of 3 points bending test on a normal mandible.

confirming the efficiency of using the AV loop model
for axial vascularization of transplantable tissues
[12,13,32]. In order to further evaluate this in the
mandible, we introduced a new design of a mandibu-
lar defect in goats. The defect should have a critical
size [33], and should significantly affect the mechani-
cal properties of the mandible. However, the defect
design should be as simple as possible in order not to
add to the complexity of the procedure which involves
micro-anastomosis inside the construct. The model
aimed at minimizing the animal morbidity where
there is no loss of mandibular continuity and intact
oral mucosa.

Our studies showed that direct anastomosis of facial
vessels allows the AV loop to be set in for reconstruction
of defects in the posterior half of the mandible. Defects
in the anterior half, however, may require a venous graft
between the facial artery and vein. The caliber of the
facial vessels can allow anastomosis to be done easily
using the surgical loupe or operative microscope.

Regarding the status of the mandibular region after
cancer surgery and irradiation, our AV loop model can
be quite suitable for further clinical applications. In
most of the cases of head and neck cancers requiring
mandibulectomy the facial vessels could be preserved.
Being medium sized vessels, the facial vessels can be
used even after exposure to irradiation as recipient ves-
sels for free flaps [34] and thus can be technically suita-
ble to construct the AV loop.

The study showed that the 3 points bending mechani-
cal test is a simple and feasible method for testing the
region of the angle of the mandible in our defect model.
Although the test does not mimic the normal physiolo-
gical stresses on the goat mandible, which is very diffi-
cult to analyze and simulate, it is efficient in detecting
the difference in the strength between the normal and
the resected mandible. This difference was shown to be
significant. Applying this test on the regenerated mand-
ible after explantation will provide information about
the mechanical properties of the regenerated bone in
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Figure 10 A graph showing the results of 3 points bending test on a resected mandible.
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the mandible in comparison to the normal and the
resected mandibles.

Our pilot study showed the feasibility of the surgical
procedures to be done on the goat model under general
anesthesia with minimal animal morbidity.

Conclusions

We introduced a model for axial vascularization of a tis-
sue -engineered mandibular construct using the AV
loop. To the best of our knowledge, this is the first
study to introduce the concept of axial vascularization
using the AV loop for angiogenesis in the mandibular
region. Moreover, this is the first study aiming at axial
vascularization of a synthetic tissue engineering con-
struct at the same site of the defect without any need
for tissue transfer (in contrast to what was done pre-
viously in prefabricated flaps). Qualitative and quantita-
tive data on angiogenesis and osteogenesis, together
with the long term follow-up of this model is now being
further studied by our team.
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