
Healey et al. Carbon Balance and Management 2012, 7:10
http://www.cbmjournal.com/content/7/1/10
RESEARCH Open Access
A sample design for globally consistent biomass
estimation using lidar data from the Geoscience
Laser Altimeter System (GLAS)
Sean P Healey1*, Paul L Patterson1, Sassan Saatchi2, Michael A Lefsky3, Andrew J Lister4 and Elizabeth A Freeman1
Abstract

Background: Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has
the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return
data were collected globally in spatially discrete full waveform “shots,” which have been shown to be strongly
correlated with aboveground forest biomass. Relationships observed at spatially coincident field plots may be used
to model biomass at all GLAS shots, and well-established methods of model-based inference may then be used to
estimate biomass and variance for specific spatial domains. However, the spatial pattern of GLAS acquisition is
neither random across the surface of the earth nor is it identifiable with any particular systematic design. Undefined
sample properties therefore hinder the use of GLAS in global forest sampling.

Results: We propose a method of identifying a subset of the GLAS data which can justifiably be treated as a simple
random sample in model-based biomass estimation. The relatively uniform spatial distribution and locally arbitrary
positioning of the resulting sample is similar to the design used by the US national forest inventory (NFI). We
demonstrated model-based estimation using a sample of GLAS data in the US state of California, where our
estimate of biomass (211 Mg/hectare) was within the 1.4% standard error of the design-based estimate supplied by
the US NFI. The standard error of the GLAS-based estimate was significantly higher than the NFI estimate, although
the cost of the GLAS estimate (excluding costs for the satellite itself) was almost nothing, compared to at least US$
10.5 million for the NFI estimate.

Conclusions: Global application of model-based estimation using GLAS, while demanding significant consolidation
of training data, would improve inter-comparability of international biomass estimates by imposing consistent
methods and a globally coherent sample frame. The methods presented here constitute a globally extensible
approach for generating a simple random sample from the global GLAS dataset, enabling its use in forest inventory
activities.
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Background
Methods are needed to monitor the magnitude and spatial
distribution of global forest carbon storage, an important
component of the global carbon cycle. Initiatives such as
REDD (United Nations Collaborative Programmed on Re-
ducing Emissions from Deforestation and Degradation in
Developing Countries) depend upon accurate, precise, and
consistent national-level reporting of forest carbon storage.
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Traditionally, estimates of carbon storage in the context of
international monitoring have come from field-based in-
ventories [1]. In such inventories, well-developed principles
of sample design support straightforward derivation of esti-
mates and uncertainties. However, many countries do not
have national forest inventories, and among those that do,
important differences in methods and definitions can exist.
Satellite-based forest monitoring may offer observa-

tions which are more consistent across space and time,
and potential contributions of remotely sensed estima-
tion of carbon stored in biomass are widely recognized
[2,3]. However, barriers to broad acceptance of remotely
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sensed biomass estimates exist. Widely available satellite
data, particularly from optical sensors such as Landsat
and MODIS, may be relatively insensitive to different
levels of biomass under closed forest canopies (e.g. [4,5]).
More importantly, while credible efforts have been made
to empirically propagate errors through the process of
summing pixel-level biomass predictions at the national
level (e.g. [6]), acceptance of such approaches lags behind
more formal estimation methods.
Several efforts to move beyond these limitations have

centered around the use of lidar (light detection and
ranging), not in wall-to-wall mapping (which can be
relatively expensive) but as a vehicle for forest sampling
[7]. Lidar instruments measure characteristics of laser
pulses as they return off of objects at different heights
above the earth’s surface. The actively generated signals
used by lidar typically penetrate deeper into the forest
canopy than the passive signals used by optical sensors,
and strong relationships are often found between lidar
return data and forest structure parameters such as bio-
mass and volume [8,9].
While local- to regional-scale lidar monitoring mis-

sions are typically flown with instruments mounted on
fixed-wing aircraft, globally consistent monitoring may
be best achieved with spaceborne lidar. To date, the only
widely available source of spaceborne lidar has been the
GLAS (Geosciences Laser Altimeter System) instrument
on NASA’s ICESat (Ice, Cloud, and land Elevation) satel-
lite, which gathered data from 2002 to 2008. GLAS’ “full
waveform” measurements are based upon time variation
in the intensities of returned laser pulses, which resolve
elliptical areas approximately 65 meters in diameter.
GLAS measurements (“shots”) have been shown to be
strongly correlated with biomass [10], and earlier pro-
blems with data quality on steeper slopes have been
addressed to the point where such measurements can
now be used in vegetation monitoring [11].
The primary obstacle to widespread use of GLAS is its

irregular acquisition pattern over forests. Points were
acquired approximately 172 meters apart along the satel-
lite’s flight path, which included both ascending and
descending tracks on an orbit with a 94° declination
[12]. In aggregate, data points from the GLAS mission
exhibit a spatial pattern that is not clearly identifiable
with any particular sample design (Figure 1). In almost
all airborne lidar campaigns, acquisition follows a pre-
determined sample framework (e.g. random or stratified;
[13]), which informs the estimation process. In one of
the only published efforts to utilize GLAS as a biomass
sampling tool, Nelson et al. [14] tested a variance esti-
mator which was design-unbiased for simple random
sampling (SRS), and compared results to those obtained
by estimators used in systematic sampling. However, it is
debatable whether the spatial allocation of satellite tracks
depicted in Figure 1 can appropriately be labeled either
random or systematic. There are clearly areas of the
map which are sampled more intensively than other, and
an inability to explicitly define GLAS sample properties
is an important barrier to use of the sensor in global bio-
mass inventories.
In this paper, we propose a method for identifying a

subset of GLAS shots which can be treated as a simple
random sample. We then demonstrate the use of such a
sample over the U.S. state of California with a model-
based estimator similar to that used by Stähl et al. [16].
Model-based estimation, described below, allows us to
predict, instead of measure, biomass at each sample
point using relationships derived from a separate set of
co-located ground and lidar measurements. Variance
estimators used in this process take into account the un-
certainty associated with the models used.
The sample design we describe is similar to that used

by the U.S. national forest inventory (NFI), the Forest
Inventory and Analysis program (FIA) administered by
the U.S. Forest Service. Prior to a move toward a na-
tional sampling framework in the late 1990s, FIA plots
were distributed and measured in slightly different ways
in different regions of the country. The move to a na-
tionally coherent sampling frame was accomplished by
superimposing a hexagonal grid over the entire country,
with the area of each grid cell equal to the nominal area
represented by each FIA sample [17]. In cells where one
existing plot fell, that plot was kept. In those with more
than one plot, only one was selected at random for re-
tention. In those with no existing plots, a plot was estab-
lished in a random location.
Establishment of this semi-systematic, equal-area sam-

ple frame, therefore, allowed FIA to accommodate exist-
ing measurement locations while drawing a sample
which was spatially balanced across the country and yet
was random with respect to forest conditions [18]. The
sample design we propose for GLAS follows a similar
approach. One and only one GLAS shot is retained in
each cell of an equal-area (but not equal-shape) tessella-
tion of the area labeled as “forest” in a global land cover
map. This tessellation is created following a fractal-
based approach, using simple geometric rules to create
equal-area clusters [19]. Since retroactively “adding”
GLAS measurements (the last of which were collected
in 2008) is not possible, tessellation cell size (and, in-
versely, sample number) is limited by the constraint that
each equal-area cell must contain at least one GLAS
shot.
Given the elimination of all GLAS shots except one in

every tessellation cell under this approach, it is of prac-
tical interest to know the precision of resulting biomass
estimates. The precision (i.e. standard error) of model-
based estimates of biomass in California using the GLAS



Figure 1 Tracks of available ICESat/GLAS measurements in northern California. Sample density varies arbitrarily across the state. Darker
areas represent forested land cover classes [15].
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sample will be compared to design-based estimates
derived from FIA’s sample of more than 5500 field mea-
surements in the state.

Results
In the sample design we propose, pixels in a map of the
(forested) domain of interest are ordered along a number
line according to a space-filling curve following simple geo-
metric patterns. The goal is to generate what amounts to a
tessellation of the study area into equal-area sample
regions by dividing the pixel number line into equal-length
segments, each of which contains at least one pixel which
corresponds to a GLAS Lorey’s height measurement. Tests
in California involving all possible segment lengths and po-
tential segmentation starting points revealed that the smal-
lest segment length which met the “1 GLAS shot per
segment” rule was 9054 230-m pixels. Mapping these seg-
ments produced the pattern shown in Figure 2. There were
182 total tessellation cells, or one per 48,000 ha. While the
minimum number of GLAS shots in a single cell was one,
the average was 560, from which a single shot was chosen
at random. These randomly selected shots, constituting the
S1 sample, are displayed in Figure 3. The average distance
between each point in the S1 population and its closest
neighbor is 19.6 km (median = 13.5 km). The minimum
overall distance (i.e. closest pair of neighbors) is 2.4 km.
There were 35 co-located GLAS/FIA plots available

for use in determining the relationship between Lorey’s
height and biomass (i.e. the S2 sample; Figure 4). The most
parsimonious applicable model for this relationship was
considered to be a model with a single quadratic term and
no intercept (biomass = 0.3717 (Lorey’s height)2). A no-
intercept model was used because of our assumption that
forested plots with no biomass should return no Lorey’s
height. Significance tests indicated negligible gain of in-
cluding a linear term in the model.
The R2 value the quadratic-only model was 0.87, although

this figure should be viewed with the understanding that



Figure 2 Equal-area segments of the number line passing through each pixel center. Shown is the segmentation where each segment
represented 48,000 hectares, the smallest possible sample unit (and highest possible sample number) if each segment is to contain at least one
GLAS shot. One randomly selected GLAS shot from each segment is included in the S1 sample (Figure 3).
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the R2 for a no-intercept model is calculated differently and
represents a different aspect of correlation than R2 calcu-
lated for models which include an intercept term. To com-
pare the two models, one can use a conditional R2, namely

R2 ¼ 1�
X

Y � Ŷ Full model
� �2

=
X

Y � Ŷ Reduced model
� �2h i

,

where the full model is the intercept model and reduced
model is the no-intercept model. The value of this R2 is
0.001 in our case. Thus, for the sake of comparison with
relationships observed by others between GLAS and above-
ground tree biomass, the fit of the model was quite similar
to that of a quadratic-plus-intercept model, for which the r2

value was 0.64.
It should be noted that seven values (less than 4%) of the

S1 sample exceeded the largest value in the model-building
S2 dataset shown in Figure 4 (specifically, these were
values of: 45, 46, 48, 50, 52, 54, and 60 meters). Ideally, the
model-building dataset should span the entire range of the
values to be modeled. However, given the small percentage
of Lorey’s heights in S1 not represented in S2, we assume
that the model is valid for the entire population. We like-
wise assume no spatial autocorrelation among S1 samples.
Our GLAS-based estimate of biomass density in California’s

forests was 211.11 Mg/ha, which was within standard
error bounds (±2.88) of the FIA estimate of 208.95 Mg/ha
[20]. The FIA estimate was derived through a 10-year
ground sample of 5261 forested plots. The standard error
of the GLAS-based estimate was 20.70 Mg/ha (Figure 5).
The sample design portion of the variance estimation, the
first summand of Equation 4, was 241.00. Since there is

no intercept V̂ S2 β̂
� �

is equal toMSE=
X

S2
X2
i

� �2
, which

was equal to 0.0005776397. The product of V̂ S2 β̂
� �

and

�x2
� �2 ¼ X

S1
X2
i =n

� �2
was 186.31; this is the value of

the second summand in Equation 4 and is the contribution
of the uncertainty in the model predictions to the estimated
variance. The modeling variance is approximately 0.77
times the variance contributed by the sampling process.
Discussion
Model-based estimation using the sample design we de-
scribe provides a transparent method for estimating bio-
mass for particular spatial domains. This sample design, in
which one arbitrarily located sample point is drawn from
equal-area sample units distributed across the landscape, is
similar to that used by FIA, and our estimate of biomass
density in the state of California closely matched FIA’s
design-based estimate. The standard error of our estimate
(approximately 9.8% of the estimate) was substantially lar-
ger than that of the FIA estimate (1.4%) and that derived
through model-based estimation by Andersen et al. [21]



Figure 3 The 182 GLAS shots selected for inclusion in the S1 sample of California forests. This sample has properties similar to the sample
used in the US NFI and is treated here as a simple random sample. A National Land Cover Database [15] cover map is shown for context.
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using specifically acquired airborne lidar data (2011; 8%).
However, the cost of the FIA estimate was approximately
$10.5 million (using a commonly used valuation of $2000
per plot), and the lidar acquisition alone in Anderson
et al.’s much smaller study area cost $60,000. While
NASA’s investment in the GLAS mission was considerable,
future use of GLAS data in the process described here
represents an almost no-cost option for providing con-
sistent, moderate-precision biomass estimates across
the globe.
A primary advantage of the model-based inference
used here is the capacity to apply models developed in
areas of rich inventory data to GLAS shots informing
estimates in ecologically similar areas where field data
are sparse. For example, Nelson et al. [14] used relation-
ships observed in a limited area of co-located biomass/
GLAS observations to estimate biomass for the entire
Canadian province of Quebec, following a modified
model-based approach. However, the validity of infe-
rence in model-based approaches depends upon how



Figure 4 The relationship FIA-measured aboveground tree
biomass and GLAS Lorey’s height in California. The line is
described by: y = 0.3717 x2.
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well the stipulated models accord with the population of
interest [22]. The question of how well the model “applies”
to the population of interest is a critical consideration in
the application of our approach, whether the model was
developed in situ or from a spatially remote but perhaps
ecologically similar area. Since our model was created from
an arbitrary subset of FIA’s presumably unbiased ground
sample, there is a compelling argument that the model is
appropriate for the forests of California.
The degree to which this model may apply beyond

California remains an open question. Saatchi et al. [6]
noted regional differences in the relationship between bio-
mass and GLAS Lorey’s height in their pan-tropical study.
Data collected to support biomass estimation using the
global GLAS dataset would at least have to span major
ecological systems. The need for broadly collected ground
measurements in the composition of our S2 sample high-
lights the fact that there will always be demand for up-to-
date ground data. Model-based estimation may spatially
Figure 5 Comparison between the FIA carbon density estimate
for California’s forests and the estimate made here using GLAS
and model-based estimation. The estimates are nearly identical,
although FIA’s estimate has significantly less uncertainty (bars
indicate standard error).
extend the value of available field data, but models must
ultimately be grounded in actual observations that are rele-
vant to the domain of interest.
The consolidation of ground data needed to support a

global GLAS-based biomass inventory would require sig-
nificant international cooperation and, as illustrated by our
results, would likely not improve the precision of biomass
estimates available in countries with established National
Forest Inventories (NFIs). NFIs typically rely upon a denser
sample than is available from GLAS, and do not have to
account for model variance, which in our example made
up approximately 44% of the total variance.
However, a GLAS-based biomass inventory would repre-

sent an internationally coherent basis for comparison
among countries, especially those without established NFIs.
Even moderate-precision biomass estimates would repre-
sent an improvement in many countries [2], and consistent
sample design and estimation methods would remove an
important source of uncertainty in international monitor-
ing. The ICESat-2 mission, due in 2016, may provide an
opportunity to update any GLAS-based biomass monitor-
ing system. Although the scanning sensor on the ICESat-2
platform will provide continuous sample lines instead of
discrete waveform returns, similar acquisition patterns
from airborne lidar instruments have been discretized and
used in model-based estimation approaches [16,21].
An important variable not considered in this paper is

how the area of forest is determined. As stated earlier,
the domain of our estimation was the area in California
mapped as “forest” by the MOD12Q1 global land cover
product. However, significant disagreements can exist
among land cover maps [23], due both to varying defini-
tions and alternative mapping methods. Use of different
maps may result in different S1 sample sizes, varying
biomass density estimates, and different overall carbon
estimates as density values are multiplied by mapped
forest totals. Bearing in mind that the forest cover map
used in this methodology functions as a proxy for the
true distribution of forest, it is important to choose a
map which best serves analytical needs. For international
inventory purposes, it is reasonable to use a globally
consistent product such as MOD12Q1.
In view of international efforts to increase or preserve

forest carbon storage, the global GLAS height dataset
presents an opportunity to establish how forest biomass
was distributed internationally in 2005 (the mid-point of
the GLAS mission). GLAS data were acquired in spatial
patterns difficult to associate with either a systematic or
random process. The sample design presented in this
paper allows identification of a subset of GLAS data
which may be used as a simple random sample to esti-
mate biomass, perhaps globally, with consistent mea-
sures of uncertainty under a model-based estimation
framework.
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Conclusions

� The methods presented here constitute a globally
extensible approach for generating a simple random
sample from the global GLAS dataset. The
properties of the sample collected by GLAS have
hitherto not been strictly identifiable with any
particular design.

� Model-based estimation, following Stähl et al.
(2011), based upon GLAS data in the state of
California produced an estimate of biomass density
(biomass/hectare) almost identical to the estimate
derived from the design-based NFI.

� Global application of model-based estimation using
GLAS, while demanding significant consolidation of
training data, would improve inter-comparability of
international biomass estimates by imposing consistent
methods and a globally coherent sample frame.

Methods
GLAS processing
GLAS shots acquired in the following collections were
intersected with the global MOD12Q1(v004) MODIS
land cover product, subset for the state of California:
L3B, L3C, L3D, L3E, L3F, L3G, L3H, and L3I. Shots were
kept if they fell over one of five forest classes (“evergreen
needle leaf”, “evergreen broadleaf”, “deciduous needle
lead”, “deciduous broadleaf”, and “mixed”). This area be-
came the domain over which average biomass density
(tones/hectare) was to be estimated.
Shots were filtered only on the basis of quality flags due

in many cases to clouds or other atmospheric anomalies.
Topographic correction was applied following Lefsky et al.
[11]. Full-waveform signatures were processed to a crown-
weighted height metric called “Lorey’s height” [24]. Lorey’s
height, used recently in a global tropical biomass mapping
project [6], was the GLAS derivative upon which subse-
quent modeling and estimation were based.

A sample design for GLAS data
The choice of a particular statistical estimator does not
necessarily imply any particular sample design [22]. The
model-based approach to inference that we describe in
the next section has been employed with airborne lidar
data, often using sample designs which consider strips of
lidar measurements as systematic cluster samples (e.g.
[16,21]). However, as illustrated above, the irregular
positioning of GLAS ground tracks poses difficulty in
defining the terms under which the sample can be con-
sidered representative of the population. The primary
contribution of this paper, which we describe in this sec-
tion, is a means of identifying a subset of GLAS data
which can be treated as a simple random sample in the
estimation process.
Four steps were involved with this process:

1. Assign an ordinal number to each pixel in the forest
map representing the domain of interest. The
MODIS product referenced above was re-sampled
from its native 1-kilometer resolution to 230 meters
so that processing would occur at a scale closer to
the field of view of the GLAS shots (approximately
70 meters). Re-sampling to 230 meters produced
over 1.6 million pixels in the California study area,
which, given subsequent operations, was near local
computing limits. Next, a space-filling curve [19] was
applied through the center point of each “forest”
pixel to generate an ordered list of pixel locations.
This fractal-based ordering process (described in
detail in [19]) involved the generation of a self-
similar line (Piano curve) that folded in upon itself as
it occupied the set of pixel centers found on the
landscape.

2. Align GLAS-based Lorey’s heights with spatially
correspondent pixels on the ordinal number line.
The GIS coverage of GLAS shots was spatially
intersected with the ordered network of forested
pixel centers in a combination of a GIS and
Microsoft Access processes, and the Lorey’s
heights were added to approximately 102,000 of
the 1.6 million locations represented on the
number line. In cases where multiple GLAS
points fell within a single pixel, one was chosen
at random as representative.

3. Divide the ordered number line into equal-length
segments, such that there is at least one Lorey’s
height measurement associated with each segment. A
script was written using the open-source R statistical
programming language [25], in which the ordered list
of forested pixel centers (i.e., the number line) was
iteratively broken into equal segments of varying
length and tested for the condition of containing at
least one pixel associated with a GLAS shot. This
was accomplished by transforming the line into a
matrix of n columns made up of equal contiguous
line segments of lengths l, with the total length of
the number line equal to n l plus a remainder, which
was ignored. A matrix was considered a viable
solution if each column contained at least one pixel
center point with an associated GLAS measurement
(see step 2).

Matrices representing different segment lengths were
tested, starting with the shortest possible segment
satisfying the requirement of ≥1 GLAS shot per
segment (i.e. one half the length of the longest gap
between GLAS shots on the number line) and
working upward until a viable solution was found.
Since the location of the first pixel represented in the
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number line was arbitrary, all possible segmentation
starting points were tested for every tested segmentation
length, “looping” the end of the number line to the
beginning. R code for each of these operations has been
uploaded to the Journal archive (Additional File 1:
“gap_finding_and_segment_sampling_R_code.pdf”).

4. For segments associated with more than one GLAS
shot, choose one at random for the sample.

Similar to FIA’s sample design, this process assures a
relatively uniform spatial distribution of plots but allows
locally random positioning of measurements. Following
FIA’s precedent [18], this sample is treated subsequently
as a simple random sample.

Model-based estimation
Model-based inference depends upon fundamentally dif-
ferent assumptions than the design-based methods used
by most field-based inventories, including FIA’s (for
detailed description of the difference between model- and
design-based inference, see [22]). Unlike design-based es-
timation, model-based methods treat observations as rea-
lizations of a random process (model).
The model-based approach we follow is similar to that

of Stähl et al. [16]. We make use of two samples; sample
S1 is the “application sample” developed in the steps
above, for which modeled Lorey’s heights are the only
data available; and, sample S2, which is composed of co-
located field and GLAS measurements which can be
used to build and assess biomass models to be applied at
all S1 plots. In this study, the S2 sample was not a sub-
sample of S1; S2 was made up of the 35 single-condition,
forested FIA ground plots in California which had plot
centers falling within 120 meters of the center of a
GLAS shot and which did not fall along condition
boundaries, as determined by visual inspection of high-
resolution National Land Cover Database maps [15].
Care was taken to avoid condition boundaries to
minimize mismatch in the forest measured by the satel-
lite and forest measured in the field.
The relation between Lorey’s height x and biomass Y

was assumed to follow a linear regression model

Y ¼
Xp
j¼0

βjxj þ ε;with εeN 0; σ2
� � ð1Þ

The predicted value of biomass Ŷ was constructed using
maximum likelihood estimates based on the S2 sample,

denoted by the parameter estimates β̂j. The parameter esti-

mates were constructed using linear model package, lm, in
the R programming language [25]. By standard theory for
linear models [26], Ŷ is an unbiased estimator of the
expectation of Y and there is an unbiased estimator of the
variance covariance matrix of the parameter estimates, and
an unbiased estimate V̂ Ŷ

� �
of V(Ŷ), the variance of Ŷ.

We assume a finite population model, where the
population element is the land associated with each 230-
meter pixel. The term “pixel” will be used to refer to the
land associated with the pixel. It is of interest to estimate

the population mean N�1
X

Yi , where Yi is the biomass

in Mg per hectare for the ith pixel and N is the number
of elements in the population. We proposed using the
predicted biomass values of the S1 sample elements to
estimate the population mean, in particular

�̂y ¼ 1
n

X
S1
Ŷ i ð2Þ

where Ŷi is the predicted biomass value for the ith element
of S1 and n is the number of elements in S1. The estimator
is an unbiased estimator of the population mean of the
expected value of the Ŷi with respect to the sampling distri-

bution; that is: E �̂y
� � ¼ N�1

XN

i
ES2 Ŷ i

� �
. The bias in the

estimate is N�1
XN

i
ei , where ei is the value of unknown

error, with the expected value of this bias equal to zero.
In accounting for the sources of uncertainty we

assumed the model form was correct; that is, there was
no uncertainty due to incorrect specification of the
model. Also we assumed the Lorey’s height was mea-
sured without error. When the uncertainty due to the
sampling design of S1 and the uncertainty due to the
sampling distribution of the predicted value Ŷ were
taken into account, the variance of �̂y is

V �̂y
� � ¼ VS1
�Es2 Ŷ

� �� �

þ
Xp
k¼0

Xp
l¼0

CS2 β̂k ; β̂l

� �
ES1 �x�k �x�lð Þ ð3Þ

where ES1 and VS1 are the expectation and variance with

respect to the sample design of S1,�ES2 Ŷ
� �

is the mean

over the sample S1 of ES2 Ŷ i
� � ¼ Xp

j¼0

βjxij , CS2 is the co-

variance with respect to the sampling distribution of the
parameter estimates of the linear model [26], and �x�k is
the mean over S1 of the kth component of the x vector
[16]. By Ståhl et al. [16], an approximately unbiased esti-
mator of V �̂y

� �
is given by

V̂ �̂y
� � ¼ V̂ S1

�̂Y
� �

þ
Xp
k¼0

Xp
l¼0

Ĉ S2 β̂k ; β̂l

� �
�x�k �x�l ð4Þ

where V̂ is the standard estimate with respect to
simple random sampling of the variance of the mean.
Given the form of the model used in this case
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Y ¼ βx2 þ ε;with εeN 0; σ2ð Þ� �
, the double sum

Xp
k¼0

Xp
l¼0

Ĉ S2 β̂k ; β̂l

� �
�x�k �x�l collapses to V̂ S2 β̂

� �
�x2

� �2
because there is only one term in the sum. R code
for the model-building and estimation processes is
given in Additional File 2 (1-modelBuilding_and_biomass_
estimation_R_code.pdf).

Additional files

Additional File 1. This R code was used in the process described
under the heading “Divide the ordered number line into equal-
length segments, such that there is at least one Lorey’s height
measurement associated with each segment” in the Methods
section. Code is presented in the hope that it might be useful to those
replicating this process.

Additional File 2. This R code was used to develop the Lorey’s
height/biomass relationship drawn from the S2 sample. Also
included are calculations involved with model-based estimation of
biomass.
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