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Interneurons in the mouse visual thalamus
maintain a high degree of retinal convergence
throughout postnatal development
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Abstract

Background: The dorsal lateral geniculate nucleus (dLGN) of the mouse thalamus has emerged as a powerful
experimental system for understanding the refinement of developing sensory connections. Interestingly, many of the
basic tenets for such developmental remodeling (for example, pruning of connections to form precise sensory maps)
fail to take into account a fundamental aspect of sensory organization, cell-type specific wiring. To date, studies have
focused on thalamocortical relay neurons and little is known about the development of retinal connections onto the
other principal cell type of dLGN, intrinsic interneurons. Here, we used a transgenic mouse line in which green
fluorescent protein (GFP) is expressed within dLGN interneurons (GAD67-GFP), making it possible to visualize them in
acutely prepared thalamic slices in order to examine their morphology and functional patterns of connectivity
throughout postnatal life.

Findings: GFP-expressing interneurons were evenly distributed throughout dLGN and had highly complex and
widespread dendritic processes that often crossed eye-specific borders. Estimates of retinal convergence derived
from excitatory postsynaptic potential (EPSP) amplitude by stimulus intensity plots revealed that unlike relay cells,
interneurons recorded throughout the first 5 weeks of life, maintain a large number (approximately eight to ten)
of retinal inputs.

Conclusions: The lack of pruning onto interneurons suggests that the activity-dependent refinement of retinal
connections in dLGN is cell-type specific. The high degree of retinal convergence onto interneurons may be
necessary for these cells to provide both widespread and local forms of inhibition in dLGN.
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Findings
The dorsal lateral geniculate nucleus (dLGN) serves as the
primary relay of visual information to cortex. Underlying
the faithful relay of retinal signals are the precise patterns
of connectivity between retinal ganglion cells (RGCs) and
thalamocortical relay cells. Initially, projections from both
eyes terminate diffusely in dLGN and single relay cells re-
ceive input from a dozen or so RGCs [1-3]. However, the
retinogeniculate pathway undergoes a period of activity-
dependent refinement in which projections from the two
eyes segregate to form non-overlapping eye-specific do-
mains and the number of functional retinal inputs onto
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relay cells is reduced to a few, to reflect the adult-like pat-
tern of convergence [4]. Far less is known about the pat-
tern of retinal convergence onto interneurons, the other
principal cell type present in dLGN. These local-circuit
neurons are involved in feedforward inhibition onto relay
cells and play a role in contrast gain control, shaping re-
ceptive fields of relay cells, and altering the temporal pre-
cision of retinal inputs [5,6].
Typically, the study of retinal convergence has been per-

formed in acute thalamic slice preparations where synaptic
responses of dLGN cells are evoked by electrical stimula-
tion of the optic tract. However, using this approach to as-
sess retinal convergence onto interneurons is difficult since
interneurons comprise a very small percentage of the total
population of dLGN cells in mouse [2,7] and they are not
readily distinguished under differential interference contrast
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(DIC) optics. Here we overcame these obstacles by using
transgenic mice that express enhanced green fluores-
cent protein (GFP) in γ-aminobutyric acid (GABA)ergic
interneurons (GAD67-GFP) [8]. Such cell-type specific
visualization via GFP allowed us to readily target inter-
neurons for in vitro recordings and test whether the
age-related pruning of retinal inputs onto dLGN cells
varies by cell type.

Results
In GAD67 mice, the expression of GFP in thalamus is
restricted primarily to GABAergic interneurons intrinsic
to dLGN and the lateral portion of the ventral lateral gen-
iculate nucleus (Figure 1A). As expected, only a few inter-
neurons were seen in the neighboring ventrobasal complex
(Figure 1A) [7]. In this transgenic strain, GFP is not
expressed in GABAergic cells of the thalamic reticular nu-
cleus, therefore providing unambiguous visualization and
access to intrinsic interneurons and their processes in
dLGN [9]. From fixed tissue and 70 μm thick coronal sec-
tions through the middle of dLGN, the average density of
GFP positive interneurons in dLGN was around one to
two cells per 2500 μm2. At all ages examined (P7, P9, and
P26), these cells were evenly distributed throughout dLGN
(Figure 1B) and showed no preference for either the mon-
ocular or binocular regions of dLGN (one-way analysis of
variance (ANOVA), F = 5.52, Bonferroni’s post hoc test,
P >0.5 for all comparisons). However, biocytin labeling of
individual interneurons during in vitro recordings showed
that the branching pattern of dendrites was complex and
expansive (Figure 1C). Indeed, processes of individual in-
terneurons spanned large sectors of dLGN, sometimes
even crossing eye-specific domains (Figure 1D).
Such specificity allowed us to readily identify and tar-

get dLGN interneurons for in vitro whole-cell record-
ings. Targeted recordings at different postnatal ages (P7
to P33, n = 72 cells) confirmed that GFP-expressing cells
possessed the morphological (Figure 1C-E) and func-
tional properties of rodent interneurons (Figure 2A-D)
[11-17]. GFP-expressing cells labeled with biocytin (P7
to P27, n = 22 cells) exhibited type B morphology, hav-
ing primary dendrites that originate from opposite poles
of a small, spindle-shaped soma (Figure 1C-E). GFP-
expressing cells also had a relatively high input resist-
ance (Ri) and more positive resting membrane potential
(RMP) when compared to relay cells [14]. Similar to
what others have shown in rat [17], we noted that RMP
remained constant throughout the first 5 weeks postnatally
(Figure 2A; one-way ANOVA, F = 0.56, Bonferroni’s post
hoc test, P >0.5 for all comparisons), but showed a signifi-
cant decrease in Ri between postnatal week 1 and all subse-
quent weeks examined (Figure 2B; one-way ANOVA, F =
9.34, Bonferroni’s post hoc test, P <0.001 for all compari-
sons with week 1). Voltage responses to depolarizing and
hyperpolarizing square-wave current pulses were also con-
sistent with those reported for interneurons (Figure 2C).
Membrane hyperpolarization evoked a large depolarizing
sag in the voltage response (h; Figure 2C, top). Termin-
ation of the hyperpolarizing current often led to the activa-
tion of a small rebound low threshold Ca2+ spike with an
action potential riding its peak (LT; Figure 2C, top).
Moderate depolarization led to tonic spike firing, but in
a number of cells it also produced an outward rectifica-
tion that delayed firing (A; Figure 2C, middle). Strong
membrane depolarization evoked a high frequency train
of spikes that displayed little if any frequency accommo-
dation (Figure 2C, bottom).
To study the synaptic responses of interneurons and ob-

tain estimates of retinal convergence, we recorded the
postsynaptic activity (n = 7,730 excitatory postsynaptic po-
tentials (EPSPs)) evoked by electrical stimulation of optic
tract from a total of 87 identified interneurons between P7
to P33. For each cell we measured the amplitude of EPSPs
evoked by progressive increases in stimulus intensity [1-3].
Single fiber responses, which were based on the minimal
stimulus intensity needed to evoke a reliable response [3],
were small (approximately 2 mV) and the amplitude at
week 1 was not different from weeks 3 to 5 (one-way
ANOVA, F = 3.77, Tamhane’s post hoc test, P >0.4 for all
comparisons). At all ages, a progressive increase in stimu-
lus intensity resulted in a graded increase in EPSP/excita-
tory postsynaptic current (EPSC) amplitude (Figures 2D
and 3). Such response profiles reflect a high degree of
retinal convergence [1-3]. In order to obtain estimates of
retinal convergence we generated EPSP amplitude by
stimulus intensity plots and adopted a criteria that was re-
lated to the amplitude of the single fiber response (see
Methods for details). Representative examples shown in
Figure 3 revealed that even at late postnatal ages interneu-
rons receive as many as nine to ten retinal inputs. These
input/output relations are summarized in Figure 4A,
which plots estimates of retinal convergence for individual
interneurons as a function of postnatal day. Throughout
postnatal development interneurons received a high
number of retinal inputs (approximately 8) with some
receiving up to 10 as late as P31. When individual data
were analyzed by postnatal week, the average number of
inputs onto interneurons did not show a significant
change with age (Figure 4B; one-way ANOVA, F = 2.60,
Tamhane’s post hoc test, P >0.2 for all comparisons;
week 1, n = 12 cells; week 2, n = 30; week 3, n = 21; week
4, n = 14; week 5, n = 10).

Discussion
Using the GAD67-GFP mouse we were able to readily
identify and target dLGN interneurons across a wide range
of postnatal ages. We found that these GFP-expressing
neurons were distributed evenly throughout dLGN and



Figure 1 Distribution of green fluorescent protein (GFP) expressing interneurons in dorsal lateral geniculate nucleus (dLGN).
(A) Coronal section of dLGN from a P7 GAD67-GFP mouse showing the distribution of GFP-expressing interneurons in thalamus (vLGN, ventral
lateral geniculate nucleus; VB, ventrobasal complex). (B) Coronal section of dLGN from a P26 GAD67-GFP mouse that had one eye injected with
cholera toxin subunit B (CTB) conjugated to Alexa Fluor 594. Interneurons in dLGN express GFP (green) and uncrossed retinogeniculate
projections from the ipsilateral eye were anterogradely labeled with CTB (red). (C) Thalamic slice preparation at P11 showing z-stack projection
image of GFP-expressing interneurons in dLGN labeled with biocytin during intracellular recordings. (D) Parasagittal section of P14 dLGN with
biocytin labeled interneurons. Dashed lines outline the borders of dLGN and the region that corresponds to the region occupied by ipsilateral
projections. (E) Z-stack projection images of GFP-expressing interneurons at P8 and P17 that were filled with biocytin during intracellular recording
and then reconstructed using confocal microscopy (see Krahe et al. [10] for details). Scale bars, 100 μm. In all, 22 interneurons were labeled with
biocytin (P7, n = 6 cells, 3 slices; P8, n = 1 cell, 1 slice; P10, n = 4 cells, 2 slices; P11, n = 2 cells, 1 slice; P14, n = 3 cells, 1 slice; P17, n = 3 cells, 3 slices; P20,
n = 2 cells, 2 slices; P27, n = 1 cell, 1 slice).
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possessed the hallmark structural and functional features
reported for rodent interneurons [11-17]. Most import-
antly, our results revealed that dLGN interneurons in
mouse maintain a high level of retinal convergence
throughout postnatal development. Even after 4 weeks of
age, a single interneuron receives input from as many as
eight to ten RGCs. This is in stark contrast to the pattern
of convergence for developing relay cells which experience
a fourfold to sixfold decrease, so by 3 weeks of age a single
relay neuron receives input from only one to three RGCs
[1-3]. It is important to note that our quantification of the
number of retinal inputs a given interneuron receives is an
estimate of retinal convergence. Indeed, our estimates may
be influenced by such non-synaptic factors as ionic driving
force and/or the activation of voltage-gated conductances.
While such non-linearities could affect EPSP amplitude
their potential impact would be similar across cells. We
also acknowledge that there are a number of ways to as-
sess retinal convergence and at least for the published
studies pertaining to dLGN relay cells, they yield similar
estimates [1-3]. Of notable significance, is that the EPSP
amplitude by stimulus intensity plots of interneurons in-
creased in a graded manner. A graded function reflects a
high level of convergence, whereas a step-like one, a low



Figure 2 Functional and morphological properties of green fluorescent protein (GFP) expressing interneurons in dorsal lateral
geniculate nucleus (dLGN). (A,B) Plots showing the resting membrane potential (RMP; (A)) and input resistance (Ri; (B)) for a total of 72
interneurons recorded at different postnatal weeks (week 1, n = 6 cells, 1 slice; week 2, n = 15 cells, 10 slices; week 3, n = 27 cells, 14 slices; week 4,
n = 14 cells, 4 slices; week 5, n = 10 cells, 2 slices). (C) Examples of voltage responses to varying current injection (indicated on the far right) at
P10. The letters next to the traces correspond to some of the more salient active membrane properties of interneurons (h, hyperpolarization
activated mixed cation conductance; LT, rebound low threshold Ca2+ spike; A, slow outward rectifying K+ conductance). The inset shows the
linear relationship between spike frequency and current injection for responses in (C). (D) Example of excitatory postsynaptic responses recorded
at −65 mV in current (top, excitatory postsynaptic potentials (EPSPs)) or voltage clamp (bottom, excitatory postsynaptic currents (EPSCs)) of a P14
interneuron evoked by increasing levels of electrical stimulation (40, 45, 50, 55, and 60 μA).
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level of convergence [1-3]. Interneurons maintain a
graded function throughout development while relay
cells show a change with age, from graded to step-like,
suggesting retinal inputs onto relay cells are pruned
during early postnatal life.
Such differences in the adult pattern of convergence

are consistent with some of the known functional and
structural features of these cell types. Compared to relay
cells, interneurons have larger receptive fields [18-20]
and tend to have a disproportionately higher number of
retinal synapses compared to non-retinal ones [21,22].
Unlike relay cells, which provide the primary excitatory
drive for visual cortical neurons, interneurons inhibit the
activity of relay cells through complex synaptic arrange-
ments that involve both conventional axonal (F1) as well
as dendritic (F2) terminals [5,23]. Global inhibition en-
compasses large sectors of dLGN and seems to require
coordinated input from several RGCs converging onto a
single interneuron [24]. Such activation is needed in
order to engage both F1 and F2 terminals that are dis-
tributed throughout the extensive processes of a given
interneuron. Additionally, a more local form of inhib-
ition can be accomplished via the direct activation of an
isolated dendritic F2 terminal that makes contact with a
single relay cell [25,26]. In this context, a single inter-
neuron could have hundreds of these elements dispersed
throughout their dendritic fields [5,26] potentially re-
ceiving input from many RGCs. Such high levels of con-
vergence are even more likely when one considers that
interneurons have highly complex and expansive den-
dritic fields [13,15-17] that can even extend across eye-
specific domains.
Perhaps the most remarkable aspect of these results is

the apparent lack of age-related retinal pruning onto in-
terneurons. It is widely believed that such refinement is
mediated by spontaneous retinal activity [4,27]. In de-
veloping dLGN relay cells, retinal activity evokes large
excitatory postsynaptic potentials that activate plateau-



Figure 3 Estimates of retinal convergence onto interneurons in dorsal lateral geniculate nucleus (dLGN). Examples of synaptic responses
evoked by progressive increases in the intensity of optic tract stimulation at P7, P14, P16, and P27. Corresponding excitatory postsynaptic
potential (EPSP) amplitude by stimulus intensity plots are below each set of responses. Each point on the graphs depicts the means and SEMs for
EPSP amplitude and stimulus intensity for a given retinal input. The interval that delineates one input from another was based on the value that
corresponded to the single fiber response. Each graph was based on 66 to 122 responses. First and last recruited inputs are numbered. All
responses recorded around −65 mV.
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like depolarizations that are mediated by high threshold,
L-type Ca2+ channels [2,3]. The Ca2+ influx through L-
type channels has been linked to cAMP response element-
binding protein (CREB)-related signaling cascades proven
to be critical for the refinement of retinogeniculate projec-
tions into segregated eye-specific domains [28,29]. While
interneurons are reported to have L-type Ca2+ activity
[24], we failed to detect retinally evoked plateau potentials.
Thus, an intriguing possibility that warrants further testing
is whether these events are the candidate mechanisms re-
sponsible for cell-type specific refinement.

Methods
Subjects
Experiments were performed on GAD67-GFP mice (JAX,
stock no. 007677, Bar Harbor, ME, USA) ranging in age
from postnatal day (P) 7 to 33. The GAD67-GFP founder
line was on a pigmented background (C57BL/6 × CB6F1/J).
All analyses conformed to National Institutes of Health
(NIH) guidelines and protocols, approved by the University
of Louisville and Virginia Commonwealth University
Institutional Animal Care and Use Committees.

In vitro slice physiology and intracellular filling
To examine the synaptic responses evoked by optic tract
stimulation, we adopted an acute thalamic slice prepar-
ation, which preserves retinal connections and intrinsic
circuitry in dLGN [1-3,10,23]. Mice were deeply anesthe-
tized with isoflurane vapors and decapitated. Individual
(300 μm thick) sections were cut in the parasagittal plane
using methods described elsewhere [1,3,23]. Sections con-
taining dLGN were placed into a recording chamber and
maintained at 32°C and perfused continuously at a rate of
2.0 ml/min with oxygenated artificial cerebrospinal fluid
(ACSF; 124 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4,
2.0 mM MgSO4, 26 mM NaHCO3, 10 mM glucose, and 2
mM CaCl2 (saturated with 95% O2/5% CO2), pH 7.4).
In vitro recordings were performed in the whole-cell

current-clamp configuration with the aid of DIC and
fluorescence optics on a fixed-stage, visualized recording



Figure 4 Retinal convergence onto dorsal lateral geniculate
nucleus (dLGN) interneurons during postnatal development.
(A) Scatterplot depicting the estimated number of retinal inputs as a
function of postnatal day. Each point represents a single cell (n = 87
cells). (B) Summary plot showing the mean number of retinal inputs as
a function of postnatal week. Error bars represent SEM (week 1, n = 12
cells; week 2, n = 30; week 3, n = 21; week 4, n = 14; week 5, n = 10).
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apparatus (Olympus, EX51WI, Shinjuku, Tokyo, JP). Patch
electrodes (3 to 7 MΩ) made of borosilicate glass were
filled with a solution containing: 140 mM K-gluconate, 10
mM hydroxyethyl piperazine-ethanesulfonic acid (HEPES),
0.3 mM NaCl, 2 mM MgATP, 0.1 mM NaGTP, pH 7.25.
Neuronal activity was digitized (10 to 20 kHz) through
an interface unit (National Instruments), acquired and
stored directly on the computer, and analyzed by using
commercial software (Strathclyde Electrophysiology Soft-
ware, Whole Cell Analysis Program, WinWCP V3.8.2,
Glasgow, Scotland, UK). In some cases, the membrane
properties and firing characteristics of interneurons were
examined by recording the voltage responses to intracellu-
lar injections of square-wave current pulses.
To evoke synaptic activity in dLGN, square-wave pulses

(0.1 to 0.3 ms, 0.1 to 1 mA) were delivered once every 20 s
through a pair of thin-gauge tungsten wires (0.5 MΩ)
positioned in optic tract. Stimulating electrodes were con-
nected to a stimulus isolation unit (World Precision Instru-
ments, A360) that received input from a computer
controlled, multichannel pulse generator (World Precision
Instruments, PulseMaster A300, Sarasota, FL, USA). Esti-
mates of retinal convergence were determined by EPSP
amplitude by stimulus intensity plots [2,3]. These were con-
structed by first determining the minimum stimulus inten-
sity needed to evoke a postsynaptic response. Once the
single fiber response was determined, current intensity was
increased in small increments (0.5 to 1.0 μA) until a re-
sponse of maximal amplitude was consistently reached [3].
A change in amplitude that was equal to or exceeded the
value that corresponded to the single fiber response was
used to distinguish one input from another. For each inten-
sity value a minimum of five responses were obtained. It is
important to note that we saw no evidence of retinally
evoked inhibition in our recordings (however, see [14,15]),
nor did we see a change in resting membrane levels even
when the highest stimulus intensities were used. To further
verify this we compared our recordings performed in nor-
mal ACSF with some performed in the presence of 20 μM
bicuculine and 10 μM 3-aminopropyl(diethoxymethyl)
phosphinic acid (CGP) to block GABAA-mediated and
GABAB-mediated activity. There was no significant differ-
ence in the number of retinal inputs between cells recorded
in the presence or absence of these GABA blockers (t test,
P >0.5; mean retinal inputs ± SEM; P11 normal ACSF, 8 ± 1
vs P11 ACSF with GABA antagonists, 7 ± 1; n = 6 cells for
both groups).
During some of the recordings a 0.1% to 0.2% biocytin

solution containing (in mM): 130 K-gluconate, 10 HEPES,
8 NaCl, 2 MgATP, 0.1 NaGTP, pH 7.25 was included in the
patch pipette and neurons were filled by passing alternat-
ing positive and negative current pulses (± 0.5 nA, 200 ms)
through the recording electrode. After recording, these
slices were fixed overnight with 4% paraformaldehyde in
0.1 M phosphate buffered saline (PBS), pH 7.2 and then in-
cubated for 24 h in a 0.1% solution of Alexa Fluor 647 con-
jugated to streptavidin (Invitrogen, Carlsbad, CA, USA)
dissolved in PBS with 0.1% Triton X-100. Slices were
washed with PBS and then mounted with ProLong Gold
antifade reagent (Invitrogen).

Cell density measurements of interneurons in dLGN
The overall density of interneurons was determined by
counting GFP positive cells within the boundaries of dLGN.
These measurements were obtained from 2 to 3 sections
corresponding to the middle of dLGN (n = 3 mice; P7, P9,
and P26). We also examined whether interneurons showed
a preference between binocular and monocular regions of
dLGN. To accomplish this we made ipsilateral eye injec-
tions of cholera toxin subunit B (CTB) conjugated to Alexa
Fluor 594 (Invitrogen) to label uncrossed retinal projections
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within dLGN [2]. The spatial extent of the ipsilateral patch
was then used to delineate monocular and binocular seg-
ments of dLGN.
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