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The intricate relationship between microtubules
and their associated motor proteins during axon
growth and maintenance
Andreas Prokop
Abstract

The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and
which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible
paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both
axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize
into parallel bundles that are established through extension at the leading axon tips within growth cones, and
these bundles then form the architectural backbones, as well as the highways for axonal transport essential for
supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks
and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular
motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT
dynamics, axonal transport and the motors is essential for nervous system development and function, and its
investigation has huge potential to bring urgently required progress in understanding the causes of many
developmental and degenerative brain disorders. During the last years new explanations for the highly specific
properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become
increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an
overview of these new developments.
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Introduction
Axons are the longest cellular processes produced by an-
imals. They conduct action potentials away from the
neuronal cell body to pass them on to other cells at
synapses (Figure 1) [1]. They are slender nerve cell ex-
tensions that electrically wire up the brain and establish
the information highways that essentially underpin ner-
vous system function. Axons can be up to a meter long
in humans, especially those axons that are bundled into
nerves of the body or into nerve tracts in the CNS
(Figure 1). These remarkable cellular structures need to
be fabricated during development and maintained for
the lifetime of an animal, which in humans is for
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decades. This long-lasting maintenance is an enormous
logistical challenge where a tiny neuronal cell body
sustains a cell compartment that is up to weeks away in
terms of cargo transport duration - in relative dimen-
sions comparable to the communication and supply lines
which Alexander the Great or Hannibal faced when
sustaining their war campaigns far away from their
homelands [2]. In architectural terms, axons form not
just a stable, cemented structure, but mature axons have
the principal ability to undergo plastic reorganization
underpinning learning and memory, and may re-grow
after injury in order to regain lost control over body
movement and behavioral abilities [3,4].
Clearly, axons are masterpieces of biology and their

study has fascinated neurobiologists since they were first
described in the second half of the 19th century [1].
Their study is important and will have important
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Figure 1 The growth and function of axons. The process of neurogenesis provides pools of neurons that migrate into their appropriate
positions (left), that extend axons along reproducible paths (middle), and that are eventually wired up into the synaptic circuits which convey
information across the nervous system, thus coordinating behavior (orange arrows: action potentials; yellow: presynaptic sides).

Prokop Neural Development 2013, 8:17 Page 2 of 10
http://www.neuraldevelopment.com/content/8/1/17
implications when considering the increasing social bur-
den of brain disorders [5]. For example, axons undergo
incremental loss during ageing, reaching 50% loss at 80
years [6], and understanding the reasons underlying this
loss will address age-related brain disorders. Axons die
back in many neurodegenerative diseases, and we will
learn a lot from understanding whether this is cause or
consequence of neuronal decay [7-9]. Failed re-growth
of axons after spinal cord injury is an important cause of
sustained paralysis, and learning ways to stimulate
axonal re-growth and regeneration clearly addresses is-
sues of life quality and economic burden [4].
To address such issues, it is pivotal to gain a funda-

mental understanding of the cell biology of neurons, in
particular the role and regulation of axonal microtubules
(MTs) which are the centerpieces of axons and have long
been recognized as displaying unique features when
compared to non-neuronal cells [10]. Important progress
has been made over the last years in understanding these
features, and it has become increasingly clear that there
are close links between MTs, the process of axonal
transport, and the motors which perform this function.
In this review, I will give a brief overview of the role and
regulation of MTs in axons, describe their links to
axonal transport and their intricate relationship with
MT-associated motor proteins, the functions of which
are not only transport-related.

MTs in axons display specific properties and essentially
drive axon growth
MTs form the structural backbones of axons (Figure 2).
They are stiff hollow tubes typically composed of 13 parallel
protofilaments. These protofilaments are polar filamentous
polymers of α-/ß-tubulin heterodimers which frequently
display posttranslational modifications including (poly-)
glycylation and (poly-)glutamylation on the C-termini
of both α- and ß-tubulin, as well as α-tubulin-specific
acetylation and detyrosination (often followed by de-
glutamylation, resulting in Δ2-tubulin) [11,12] (Figure 3). In
contrast to MTs in non-neuronal cells, axonal MTs display
a number of special features. First, axonal MTs range in
length from just a few μm to many tenths of μm and they
are arranged into evenly spaced prominent parallel bundles
where most MTs point with their plus ends towards the



Figure 2 Axon structure and key mechanisms of axon growth. The image shows a neuron which extends an axon into a zone of an
attractive factor. Parallel bundles of MTs fill the axon and splay in the growth cone (plus end-out polarity indicated for some MTs by encircled +
and - signs). F-actin networks are prominent in growth cones, and scarce but highly organized into evenly spaced rings in axons. Close-ups
illustrate the following molecular mechanisms contributing to axon growth: (1) MT plus end-associated factors (for example, EB1, CLASP, type 13
kinesins, XMAP215; blue ellipses) regulate elongation and shrinkage of MTs (blue arrows); (3) molecular motors (orange Y structures) mediate
cargo transport; (2,4) the MT severing protein katanin (scissors) generates MT fragments which are moved anterogradely through MT-sliding; (5)
proteins that bind along MTs (for example, tau, MAP1B; brown L's) protect MTs from depolymerization or severing factors and organize MTs by
cross-linking them and regulating their spacing; (6–8) F-actin networks influence MT behaviors through antagonizing MT advance into
lamellipodia and filopodia via retrograde flow (red arrows), through forming structures that can be supportive (for example, radial bundles) or
inhibitory (for example, transverse arcs), through MT cross-linkage (yellow stars), through contractile activity (not shown), or through F-actin
clearance from protrusions (shown in 8). For detailed information see [3,23].
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axon tip [13,14]. The mechanisms that bundle MTs are lit-
tle understood, but are believed to involve MT-binding pro-
teins (MTBPs) such as MAP1B or tau (Figure 2) [15,16].
Second, the nucleation of axonal MTs does not require the
centrosome in the cell body (Figure 2), but can occur from
diffuse sites in axons [17,18]. Third, ß-tubulin-associated
guanosine triphosphate (GTP) is usually hydrolyzed to
guanosine diphosphate (GDP) once incorporated into MTs
(Figure 3), whereas axonal MTs maintain a high level of
GTP-tubulin [19] with likely implications for their stabil-
ity [20]. Fourth, sub-fractions of axonal MTs become
polyaminated by transglutaminases (Figure 3) which ren-
ders these MTs stable to cold- and calcium-treatment [21].
Finally, axonal MTs of neurons are usually interwoven with
intermediate filaments which are highly abundant in axons,
are known to regulate the specific diameters of different
axon classes, and have been associated with neurodegenera-
tive processes [22].
Axon growth is essentially implemented through the

extension of axonal MT bundles, and net positive
polymerization of MTs is expected to contribute
essentially to this growth (Figure 2). This notion is best
illustrated by mutations in tubulin genes or tubulin
chaperones such as tubulin folding cofactor E (Tbce)
which negatively impact on MT polymerization, and
which have been linked to neuro-developmental diseases
including impaired axon growth [25,27]. There is some
evidence for elongation within the axon shaft, which
involves anterograde propulsion of long MTs and
slow incremental forward flow of the entire MT mass
toward the leading growth cone [28,29]. Such a finding
is in principle consistent with the idea of de novo
polymerization at disperse nucleation sites or at the plus
ends of MTs along axon shafts [10,17]. Certainly this
model needs further confirmation, but it could provide
interesting explanations for how the tips of axonal MT
bundles can push in growth cones during the process of
protrusion, engorgement and consolidation which imple-
ment axon extension [23,30,31].
MTs polymerize (grow) and depolymerize (shrink)

primarily at their plus ends, and these processes, as
well as the directionality of MT extensions, are essen-
tially regulated through tip interacting protein (+TIPs).
+TIPs localize to MT plus ends primarily through
interaction with end-binding proteins (EBs) which can
directly bind to those MT plus ends that undergo



Figure 3 Structural aspects of tubulins and microtubules (MTs). (A) MTs grow through head-to-tail polymerization of α-/ß-tubulin
heterodimers into protofilaments that arrange into hollow tubes through lateral interactions. The α-and ß-tubulin monomers need to be folded
properly assisted by chaperones, they heterodimerize through longitudinal interactions (peach arrow), they bind GTP (of which GTP on ß-tubulin
tends to undergo hydrolysis to GDP) and undergo a number of posttranslational modifications, including de-tyrosination (often followed by de-
glutamylation resulting in Δ2-tubulin), acetylation, poly-amination, (poly-)glycylation and (poly-)glutamylation [11]. MTBPs primarily interact with
the C-terminus of tubulins which sticks out from the MT surface. (B) The secondary structure of α- and ß-tubulin (color-coded as in A) showing
the positions of ß-sheets (B1-10) and α-helices (H1-12; image modified from [24]); the borders and principal functions of the N-terminal,
intermediate and C-terminal domains of ß-tubulin are indicated at the bottom and arrows indicate examples of posttranslational modification
sites [11,21]. Positions of known dominant-negative mutations are shown below the two secondary structures [25]. Those mutations tested by
Niwa and colleagues are highlighted in light blue, asterisks indicate those mutations that impair tubulin incorporation into MTs and blue
arrowheads indicate the two charge-changing mutations in H12 [26].
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polymerisation [3,23,32]. This said, β3-tubulin can also
directly interact with membrane receptors during axon
growth and guidance [33]. MTBPs and +TIPs regulate
further aspects of MT dynamics, such as stability and
cross-linkage into bundles and MT cross-talk with
F-actin, the cell cortex, organelles and transported
cargo (Figure 2), and some of these activities have
been shown to contribute to axon growth [3,23].
However, as argued recently [23], knowing these single
molecular or subcellular mechanisms and their principal
impacts on axon growth, is still far from understanding
axon growth. We need to acknowledge that the
various molecular mechanisms of different MTBP
classes (as well as of actin- and intermediate filament-
regulating proteins) integrate into one common and
complex cytoskeletal machine. Taking out a single com-
ponent does not bring the machinery to a halt, but may
significantly change the way it works and cause pheno-
types that are difficult to interpret. Therefore, we need to
find strategies to decipher this machinery across its
various components and to understand their functional
interfaces.

Axonal microtubules provide the highways for motor-
driven cargo transport
As stated above, communication of a neuronal cell body
with distant segments of its axon poses a serious logis-
tical challenge and involves long-distance axonal trans-
port of a wide range of different cargoes including lipids,
different protein classes (usually transported via cargo
vesicles), organelles as large as mitochondria, but also
mRNAs [34,35]. This transport occurs along the axonal
MT bundles and is driven by dynein/dynactin and
kinesin motor protein dimers/complexes which use pairs
of motor domains to step along MTs in a ‘hand-over-
hand’ mode at a speed of ≤ 1 μm/s (Additional file 1:
Table S1) [34,36]. These molecular motors require ATP
as an essential energy source. The major producers of
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ATP in cells are the mitochondria, but molecular motors
will only occasionally encounter mitochondria on their
axonal journey. A recent report suggests that this logis-
tical problem is solved via a system of ‘on-board’ ATP
provision in form of the enzyme GAPDH (glyceralde-
hyde 3-phosphate dehydrogenase), which localizes to the
cargo vesicles and contributes to the break-down of glu-
cose from the neuronal cytosol [37].
Retrograde transport (that is, towards the cell body) is

mediated by cytoplasmic dynein/dynactin which is a
fairly large and multi-component protein complex
adaptable to all kinds of cargos and functional tasks
(Additional file 1: Table S1) [36,38]. Anterograde trans-
port (that is, away from the cell body) is driven by
kinesin motor proteins. Forty-five different kinesins
grouped into 14 families are known in mammals,
of which hetero-oligomeric type 1 and 2 as well as
homodimeric type 3 kinesins are the most prevalent me-
diators of anterograde transport in axons (Additional file
1: Table S1) [34]. The regulation of transport speed and
direction is only partly understood and involves guid-
ance through neuronal architecture, signaling mecha-
nisms, distinct qualities and modifications of the various
motors, linkers and otherwise associated proteins, post-
translational modifications of MTs and cargo, as well as
complex interactions of motors with other motors and
MTBPs (Additional file 2). Understanding this transport
machinery is of importance as emphasized by the many
links that mutations in the various kinesin and dynein/
dynactin genes have to developmental and neurodegen-
erative brain disorders [8,34,39-41].

Charge-changing mutations in tubulins translate into
roadblocks for migrating kinesins
Also mutations in tubulin genes have been linked to human
brain disorders (Figure 3) [25]. Mammalian genomes en-
code six classes of ß-tubulins (with TUBB1, 2 and 3 being
most abundant in the brain), and four classes of α-tubulins.
Given the high degree of sequence conservation between
tubulins, they are likely to be able to functionally replace
each other, at least partially. It seems therefore logical that
most disease-linked tubulin mutations discovered to date
are of dominant-negative nature, that is, mutant tubulins
need to be incorporated into MTs or their polymerization
machinery to alter MT functions or dynamics and impact
on cellular behaviors. Some of these mutations are known
or speculated to affect MT polymerization or stability inter-
fering with protein folding and/or chaperone interactions,
α-/ß-heterodimerization, head-to-tail polymerization of
dimers, the GTP-binding ability (important for MT dy-
namics), or the ability to establish lateral bonds between
protofilaments (Figure 3) [25]. Other tubulin mutations
are far less understood, but can be expected to alter in-
teractions with different classes of MTBPs, and studies
in non-neuronal cells or yeast suggested interference of
some mutations with molecular motors [25,42].
Clear evidence that certain tubulin mutations affect

the MT interaction with kinesins in axons has now been
provided by the studies of Niwa and collaborators [26].
They transfected cultured hippocampal neurons with 14
different mutant ß-tubulins (highlighted in Figure 3) and
found that two of them, TUBB3E410K and TUBB3D417H,
suppressed anterograde axonal cargo transport as well as
the ability of type 1, 3 and 4 kinesins (that is, major
players in axonal transport) to move to axon tips. Of
these, the type 4 kinesin KIF21A is of particular interest:
it acts as a genuine axonal transporter [43] and its muta-
tions have been linked to type 1 congenital fibrosis of
the extraocular muscles (CFEOM), a pathology that af-
fects nerve growth to certain eye muscles [44]. The
TUBB3E410K and TUBB3D417H mutations cause a very
similar pathology (type 3 CFEOM) [25], suggesting that
these mutations functionally relate to KIF21A in vivo.
Both mutations are positioned in the H12 helix of ß-

tubulin where they cause a negative-to-positive charge
change (Figure 3, dark blue arrowheads), and a detailed
structure-function analysis clearly demonstrated that the
negative charge of H12 is crucial to properly support
kinesin attachment to MTs [26]. Introduction of the
E410K or D417H mutations into TUBB2 or TUBB5
caused similar transport defects, as long as these mutant
tubulins were strongly expressed in neurons. However, if
these mutant tubulins were prevented from assembling
into MTs (by inserting a second site mutation which
structurally prevents this tubulin from incorporation),
their dominant-negative impact on MTs was abolished.
A 10% incorporation rate of mutant tubulins into MTs
was estimated to be sufficient to interfere with kinesin
transport to a degree that becomes disease-relevant [26],
and only brain expression of TUBB3 is high enough to
achieve this degree of incorporation.
In conclusion, this work convincingly explains a mo-

lecular link between tubulins and kinesins and how
their molecular properties and interactions can cause
the CFEOM disorder as a common systemic outcome.
Clearly, it links molecular mechanisms to cellular effects,
and it nicely combines the two areas of neuronal tubulin
and kinesin research in a way that expands our under-
standing of neuronal cytoskeletal machinery.

MT motor proteins contribute to axon growth through
their transport function
Transfection of neurons in the embryonic mouse brain
with TUBB3E410K and TUBB3D417H caused reduced axon
growth, and the same phenotype was observed when
knocking down the type 3 kinesin KIF1B [26], suggesting
that functional interactions of kinesins with MTs promote
axon development. Similar observations were made for
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other axonal transport motors, in particular with loss of
function of kinesin-1 and dynein/dynactin, which likewise
caused reduced axon growth [45-47]. Furthermore, the loss
of kinesin-3 or of dynein/dynactin components in Drosoph-
ila causes axonal aberrations, in particular of the branching
and differentiation of their synaptic terminals [48-51]. This
poses the important question of how the loss of motor ac-
tivity affects axon growth and morphogenesis. The answer
to this question is not trivial.
One obvious mechanism through which motors support

axon growth is through cargo transport [52]. Thus, any
growth process is in need of building materials, such as
lipids, structural proteins, signaling pathway components
and cell organelles which can not all be produced at the
growth cone. At least part of them, or the mRNAs encod-
ing them, have to be delivered through the axonal supply
line from the cell body. This requirement is nicely illus-
trated by a classical experiment in which growing axons of
frog retinal ganglion cells were cut off from their cell bodies
in vivo; the longer the axon fragment attached to the
growth cones was, the longer these growth cones survived
and continued to execute their proper growth program (up
to three hours), suggesting that the attached axon frag-
ments provided a function- and life-sustaining supply pool
[53]. However, aberrations of axonal transport might cause
axonal growth phenotypes not only through depletion of
supplies, but could trigger other pathomechanisms which
secondarily impact on axon morphogenesis and differenti-
ation. For example, a hypomorphic allele of the Drosophila
Unc4 gene (kinesin-3) was recently reported to show over-
growth at the neuromuscular junction [50]. Very similar
phenotypes are observed when inducing oxidative stress
[54], suggesting a potential mechanism for this phenotype
that can easily be tested in the fly system (Additional file 3).

MT motor proteins contribute to axon growth through
direct regulation of MT networks
Also MTs are amongst the cargos transported in axons. Ori-
ginally this has been considered to be slow axonal transport
(0.1 to 3 mm/day) performed by KIF5/kinesin light chain
(KLC) activity [52]. This view has been disputed after different
experimental procedures revealed rapid bi-directional move-
ment of short MT fragments of ≤ 10 μm length [55,56].
Dynein/dynactin has been shown to mediate MT fragment
movement through ‘MT sliding’, that is, by anchoring to long
MTs or F-actin and driving MT fragments anterogradely by
walking towards their minus ends (Figure 1, inset 4), and this
function seems to contribute to axon growth [56-58]. It has
been suggested that transported MT fragments are very stable
(likely through polyamination) and could therefore promote
axon growth by serving as powerful nucleation sites for new
MTs along axons [10]. In agreement with this idea, blocking
polyamination severely inhibits axon growth, although the
underlying mechanisms have so far not been resolved [21].
This example of MT fragment transport illustrates that
molecular motors not only depend on MTs for their
transport functions but, vice versa, they also influence
MT dynamics and behaviors, that is, they regulate
the construction of the highways they will later travel
on. Further examples for this have come to light.
For example, type 5 (KIF11), type 6 (KIF23) and type
12 (KIF15) kinesins are best known for their MT
sliding roles during mitosis. In developing axons these
kinesins are growth inhibiting and seem to regulate axon
growth, branching and growth cone turning through
antagonizing dynein-mediated MT fragment transport
and through regulating the extension of MTs in growth
cones [59-62]. Furthermore, dynein and its associated
factor Lis1 (Additional file 1: Table S1) have been sug-
gested to antagonize inward-directed forces imposed by
retrograde actin flow, thus helping MTs to extend into
the growth cone periphery and promote axon growth
[63-65]. The dynactin complex component p150 Glued
plays direct roles in MT catastrophe regulation in axons
[66]. Type 13 kinesins, such as KIF2A, are minus end-
directed motors (not contributing to transport) which
can be recruited to MT plus ends and actively
disassemble them, and this function inhibits collateral
branch formation of axons in vivo [67].
Also type 1 kinesins have recently been implicated in

MT regulation during axon growth. Thus, the Drosoph-
ila KIF5 homolog kinesin heavy chain (KHC) was
shown to drive axon initiation and transiently maintain
axon growth (though to a lesser degree), even if MT
polymerization or axonal transport were blocked [68].
This function did not require the transport-relevant
KLC, and the authors proposed that KHC can cross-link
MTs via its N-terminal motor domains and C-terminal
MT-binding sequences. A similar mechanism was de-
scribed for fly KHC as well as its frog homolog KIF5 in
non-neuronal cells [69]. Notably, KIF5 is one of the first
factors accumulating at axon initiation sites in mamma-
lian neurons [70] and, if the MT sliding mechanism
applies, it could similarly help MTs to push and initiate
newly forming axons in mammals. Since KIF5 is also
strongly enriched in growth cones [26,70], it might as
well play a role in growth cone extension and/or turning,
in parallel to the roles of KIF11 mentioned above [59].
In conclusion, molecular motors perform functions

that clearly reach beyond mere transport roles suggesting
that they display prominent mutual dependencies with
MT network regulation.

The roles of transport, MTs and MT motor proteins in
axon maintenance
Apart from their developmental roles, molecular motors
certainly play major roles also in mature neurons. Thus,
they continue to sustain the supply and communication
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lines that maintain neuronal physiology, and the trans-
port of synaptic components, and of mitochondria to
meet the high energy demand of synapses [71]. There-
fore, MT motors are essential for neuronal longevity, as
is also indicated by the numerous mutations in kinesin
and dynein/dynactin genes which link to neuropathies
and neurodegeneration [8,34,39-41], as well as by the
fact that the H12 loop mutations of TUBB3 link to neu-
ropathies [25]. Intriguingly, axons in the ageing or de-
mented brain frequently display swellings or diverticula,
which are areas of looped and criss-crossed MTs posing
potential transport traps [9,72,73]. Thus, in addition to
mutations that affect the molecular motors or their bind-
ing to MTs, the turning of straight axonal MT tracks into
spaghetti junctions where cargos get blocked through
steric hindrance seems to be an important mechanism of
interference with axonal transport, and this effect has been
reproduced through mathematical modeling [74].
Since the appearance of diverticula seems to increase

with ageing, research needs to be directed to the investi-
gation of the underlying causes, that is, the study
of mechanisms that maintain parallel MT bundles in
healthy neurons. So far, a number of potential mecha-
nisms were identified. Thus, structural MAPs (for ex-
ample, tau and MAP1B) have long been suggested as
playing an important part in maintaining MT bundles
[15]. The level of cold-stable polyaminated tubulin in-
creases in older neurons, suggesting that MT stability
plays an important part [21]. Mutations affecting the
MT-severing spastins cause axon swellings and transport
defects in mouse models and humans [75,76]. Inter-
mediate filaments are closely interwoven with MTs and
might play roles in their ordered maintenance [22].
However, MT bundles in mature axons are not only
highly stabilized structures, but they are likely to
undergo constant renewal through MT polymerization
[77], as is also indicated by the linkage of neuropathies
to the misregulation of stathmins, powerful regulators of
MT polymerization [78-81] or the tubulin chaperone
Tbce [27,82,83]. This suggests that some mechanisms
acting in development might be maintained at adult
stages, as recently proposed for the actin-MT linking
spectraplakins. Spectraplakins guide MTs along actin
structures (potentially cortical actin; Figure 2) and lay
them out into parallel bundles during axon growth, and
their loss causes MT disorganization [84,85]. Analo-
gously, loss of the spectraplakin dystonin causes MT
disorganization at postnatal stages and this correlates
with sensory neuropathy [23,86].
Therefore, it is tempting to speculate that develop-

mental roles of MT motors in MT organisation
[45,63-66] might likewise apply at adult stages. Support
for this notion is provided by KIF11 which negatively
regulates axon growth during development, but also
during axonal regeneration after injury in the adult
brain [87]. As a further example, loss of dynein/dynactin
from Drosophila neurons induces an increase in wrongly
oriented minus end-out MTs in axons [88], and this is
almost certain to cause transport aberrations. To explain
this phenomenon, an appealing model has been put
forward suggesting that dynein/dynactin might remove
wrongly oriented MTs through retrograde MT transport,
instead of chopping them up, like Hydra's head that
would sprout new ones in their place, by using generated
MT fragments as nucleation sites [56]. These few exam-
ples may only be the tip of the iceberg and more MT-
regulating roles of molecular motors contributing to the
cellular processes underlying axon maintenance might
well be discovered, but not necessarily roles and mecha-
nisms that might be expected at this stage.
Conclusions
There is an intricate relationship between MTs, the mecha-
nisms that drive their nucleation, (de-)polymerization,
cross-linkage and modification, and the motors that use
them for transport but also influence them in their regula-
tion. Given the disease relevance of this regulatory machin-
ery it is pivotal that we gain a better understanding
of its workings. Yet, this task is challenging; it requires
multidisciplinary approaches and a stronger integration of
the various lines of research in the areas of tubulin regula-
tion and MT dynamics as well as motors and transport. Im-
portantly, we need neuronal systems in which studies
of the various molecular components and functional
contributions can be integrated, and this cries out for
the use of simpler invertebrate model organisms such
as Caenorhabditis elegans or Drosophila, which are well
known for their power to work out fundamental concepts
and mechanisms that can then be applied in higher animals
or studies of human disease (Additional file 3) [23,89]. One
essential factors that drives such research in invertebrate
models is their low genetic redundancy (Additional file 1:
Table S1) which facilitates functional removal of whole gene
classes, alone or even in combination [90,91]. Notably, cel-
lular models for nervous system development, injury and
disorders in which the axon-relevant roles of tubulin,
MT regulators and motors can be studied are already
well established in Drosophila [92-94], and various
examples cited in this review come from fly studies.
Furthermore, attempts have already been made to simulate
Drosophila axons in mathematical models [95,96], thus
paving the way towards experimental assembly lines that
can integrate molecular mechanisms with genetic analyses
of their cellular functions and develop them into mechanis-
tic models that will eventually be able to predict the out-
come of single mutations and deliver explanations for how
they cumulate in disease phenotypes.
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Naturally, the fly model has certain limitations, such
as the far shorter length and life span of axons, but
these differences might also provide opportunities. For
example, the plekstrin homology domain-containing
type 3 kinesins KIF1A and KIF1Bß and their fly homo-
log Unc-104 (Additional file 1: Table S1) have been im-
plicated in transport of synaptic vesicles [52]. Whereas
deletion of KIF1A or KIF1Bß function causes reduced
axon growth in the mouse brain [26,97], loss of Unc-
104 in fly does not, although it shows deficits in the final
morphology of synaptic terminals [50,51]. This might
indicate functional deviation but, more likely, it reflects
cellular differences where aberrant cargo transport has a
greater impact in the much longer mouse axons. These
possibilities are easy to test via inter-species rescue
experiments and might therefore offer exciting experi-
mental means to distinguish between roles of motors in
cargo transport and their roles in MT regulation.
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