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Abstract

Dopaminergic neurons of the ventral mesodiencephalon are affected in significant health disorders such as
Parkinson’s disease, schizophrenia, and addiction. The ultimate goal of current research endeavors is to improve the
clinical treatment of such disorders, such as providing a protocol for cell replacement therapy in Parkinson’s
disease that will successfully promote the specific differentiation of a stem cell into a dopaminergic neuronal
phenotype. Decades of research on the developmental mechanisms of the mesodiencephalic dopaminergic
(mdDA) system have led to the identification of many signaling pathways and transcription factors critical in its
development. The unraveling of these pathways will help fill in the pieces of the puzzle that today dominates
neurodevelopment research: how to make and maintain a mdDA neuron. In the present review, we provide an
overview of the mdDA system, the processes and signaling molecules involved in its genesis, with a focus on the
transcription factor En1 and the canonical Wnt pathway, highlighting recent findings on their relevance - and
interplay - in the development and maintenance of the mdDA system.

The mesodiencephalic dopaminergic system
The mesodiencephalic dopaminergic (mdDA) system
has been the focus of intense scientific research due to
its involvement in numerous behavioral and neurologi-
cal disorders and thus its clinical relevance. The neuro-
transmitter dopamine (DA) is present in different areas
of the brain, such as the hypothalamus, the olfactory
bulb and the mid-forebrain. In this last area, mdDA
neurons are the main source of dopamine in the mam-
malian central nervous system (CNS), attributable to
two ventral groups of neurons: the substantia nigra pars
compacta (SNc) and the ventral tegmental area (VTA)
[1-3]. The main innervation targets of mdDA neurons
are the basal ganglia. The neurons of the SNc innervate
the dorsolateral striatum and caudate putamen forming
the nigrostriatal pathway. Neurons of the VTA project
to the ventral striatum (nucleus accumbens, amygdala
and olfactory tubercle) as part of the mesolimbic system
and establish additional ascending connections to the
prefrontal cortex forming the mesocortical system.
These ventral midbrain nuclei modulate specific brain
functions according to its distinct projection fields. The

SNc is involved in the control of voluntary movement
and body posture, and its selective degeneration leads to
Parkinson’s disease (PD) [4,5]. The mesocortical and
mesolimbic systems, on the other hand, are involved in
the modulation and control of cognitive and emotional/
rewarding behaviors, and their dysfunction is involved
in the pathogenesis of various affective disorders, such
as addiction [6-8], depression [9] and schizophrenia
[10,11]. Drug abuse, depression and PD constitute highly
common health disorders, which explains the intense
research in recent years on the mechanisms and factors
involved in the generation and survival of mammalian
mdDA neurons.

mdDA neurogenesis and differentiation
The development of an organ, such as the midbrain,
implies the sequential occurrence of developmental cas-
cades over time, while these might overlap in time and
space [12-14]. During early neuronal induction and pat-
terning, a precise molecular coding along the anterior-
posterior and dorsal-ventral axis in the developing
neural tube provides positional cues that are crucial in
pattern formation [15-17]. Anterior-posterior patterning
leads to the genesis of morphogenetic domains - fore-
brain, midbrain, isthmus and hindbrain - whereas dor-
sal-ventral patterning results in crosswise subdivisions in
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the brain throughout the neuroaxis - floor plate, basal
plate, alar plate and roof plate [16,18,19] (Figure 1A).
The successful regionalization of the early CNS is

necessary for the subsequent correct commitment and
positioning of mdDA neurons later on in development
[17]. The creation of the isthmus, a neuroepithelial sig-
naling center localized at the midbrain-hindbrain
boundary (MHB), together with the ventral signaling
center from the floor plate, are essential for pattern for-
mation and the generation of mdDA neurons in the
developing embryos [13,15,17]. The isthmus is charac-
terized by the expression of the fibroblast growth factor
8 (Fgf8) and the floor plate by the expression of sonic
hedgehog (Shh) [20,21]. The intersection of these
secreted factors provides the positional information that
determines where the mdDA progenitor domain will
arise [15,20,22-24]. While Fgf8 acts as an anterior-pos-
terior morphogen [25], the dorsoventral axis is deter-
mined by the ventralizing Shh in the floor plate and the
dorsally secreted bone morphogenetic proteins by the
roof plate [26-28]. The isthmus is established by the
opposing expression domains of two transcriptional
repressors: Gbx2 in the presumptive hindbrain and

Otx2 in the presumptive mid/forebrain [12,29].
Although Otx2 and Gbx2 are not necessary for the
induction of MHB genes (such as Fgf8), they are essen-
tial for the correct positioning of their expression
domains [30]. Other factors as well are involved in the
induction and maintenance of mdDA progenitors in the
ventral midbrain: the Wnt factors [31], Engrailed (En)1
and En2 [32], Pax2/5 [33,34], Lmx1a, Msx1 and Lmx1b
[35,36], and Foxa2 [37,38]. For comprehensive reviews
see [39-41]. The interplay of all these factors in the ven-
tral midbrain forms a grid of graded cues in which
neural progenitors follow different cell fates depending
on their position.
mdDA precursors will eventually become fully differ-

entiated mdDA neurons when they start expressing an
array of genes that are essential for DA signaling. These
key factors comprise the enzymes tyrosine hydroxylase
(Th) and the L-aromatic amino acid decarboxylase
(Aadc), which catalyze the conversion of L-tyrosine to
L-DOPA and L-DOPA to dopamine, respectively; the
vesicular monoamine transporter (Vmat2), which is
required for vesicular storage and release of dopamine;
and the dopamine transporter (Dat), involved in the re-

Figure 1 Spatial and temporal developmental stages leading to mesodiencephalic dopaminergic neurogenesis. (A) Sagittal and coronal
schematic sections showing the region in the developing central nervous system where mesodiencephalic dopaminergic (mdDA) neurons are
born. Anterior-posterior patterning leads to the genesis of morphogenetic domains: telencephalon (Tel), rostral diencephalon (RD), midbrain (M)
and hindbrain (H), whereas dorsal-ventral patterning results in crosswise subdivisions in the brain: floor plate (FP), basal plate (BP), alar plate (AP)
and roof plate. The mdDA area encompasses the midbrain and prosomeres (P) 1 to 3. The floor plate is divided in three main areas: the
ventricular zone (VZ), the intermediate zone (IZ) and the marginal zone (MZ). (B) Molecular cascades leading to mdDA neurogenesis, illustrated
by three different stages from top to bottom. The key genes driving mdDA development are represented. En1 and Wnt signaling are required
already in early development, being essential throughout mdDA development, from early patterning up to the induction of mdDA neurons.
Although we placed En1 in all these developmental stages, a molecular characterization of how En1 contributes to each of these has not yet
been performed. It remains to be seen as well whether Wnt signaling is active in a settled mdDA neuron (after embryonic day (E)14). The
progenitor pool is located in the VZ and its progeny migrates to the IZ, where it differentiates into post-mitotic mdDA precursors, expressing
Nurr1 and L-aromatic amino acid decarboxylase (Aadc). Later on, after E12, mdDA neurons start to differentiate, expressing mdDA key identity
genes like Pitx3, Th and Vmat2. The differentiated settled mdDA neurons localize in the MZ.
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uptake of DA from the synaptic cleft. These proteins,
among others, are essential in the make-up of dopami-
nergic neurons. Several transcription factors, such as
Nurr1, Pitx3, Lmx1b, are critical for the specification of
neuronal identity (that is, for the expression of the
above mentioned mdDA-specific factors) and matura-
tion and survival of postmitotic mdDA neurons
[35,42-44].
Around mouse embryonic day (E)10, proliferative

mdDA progenitors present in the ventricular zone (VZ)
begin migrating ventrally along radial glia towards the
pial surface [45,46] (Figure 1B). These migrating precur-
sors, besides continuing to express a large set of genes
from early mdDA progenitor specification, such as those
encoding En1/2, Lmx1a/b and Foxa1/2, start expressing
Aadc [14] and, at E10.5, the Nurr1 orphan nuclear
receptor [42], after which they exit the cell cycle and
become postmitotic [47] (Figure 1B). At this stage these
cells should be considered postmitotic mdDA precursors
since they are not yet fully differentiated mdDA neurons
[48]. Th-positive cells were first reported to appear in
the mouse ventral midbrain between E9.5 and E11.5
[49,50]. At this time-point the mdDA precursors
become dopaminergic neurons as they also acquire the
expression of the homeodomain transcription factor
Pitx3 [35,45,51]. mdDA neurogenesis peaks around day
E12.5 and declines thereafter [50,52]. Once the ventricu-
lar-to-pial migration is accomplished by E13, the mdDA
neurons take up their position corresponding to the
future SNc and VTA [45]. Hereafter, until the first post-
natal weeks, the mdDA neurons start extending axonal
outgrowths towards their target projection areas within
the striatum and cortex [45,53].
To assume that not every cell in the mdDA system is

the same, following exactly equal transcriptional pro-
grams, is plausible if we consider the existence of a posi-
tional grid of signals during neuronal development, each
coordinate specifying a different (if modest at times) cell
program. This existence of neuronal subsets within the
ventral midbrain is now an accepted fact; for example,
one difference between the SNc and the VTA is that
they present a different temporal order of Th and Pitx3
gene expression [54]. This difference, together with
other differential aspects, might explain why the SNc is
more vulnerable than the VTA to neuronal degeneration
[4,5,55]. For detailed reviews on mdDA neurogenesis,
see [56-58].

Engrailed
Engrailed proteins are bifunctional homeodomain tran-
scription factors [59], highly conserved throughout the
animal kingdom [60,61]. In the murine genome there
are two engrailed paralogs, En1 and En2, both essential
in embryonic development. En1 is already expressed at

the one-somite stage (E8) while En2 expression appears
half a day later [62]. The expression domain of engrailed
(En1/2) comprises the neuroepithelium of the posterior
midbrain and anterior hindbrain, which will later give
rise to the cerebellum, the colliculi and the ventral mid-
brain nuclei [63]. En1 is expressed highly by all mdDA
neurons from the moment they start to differentiate
(around E11) and continuously into adulthood, whereas
En2 is strongly expressed in only a subset of them
[32,64]. Outside the CNS, En1 is expressed in the cra-
nial mesenchyme, the mandibular arches, the vagus
nerve, the dorsal root ganglia, the sympathetic ganglia,
the somites, the heart, the cloaca, and the tail and limb
buds [64-67]. In the adult brain, both are expressed in
the pons and the substantia nigra and En2 alone is
found in cerebellar cells [62,67-69].
Today, after two decades of research, a multitude of

evidence has been produced establishing engrailed pro-
teins as key players in the embryonic development of
the CNS (Figure 2A). Up until now, it has been shown
that they are involved in multiple developmental pro-
cesses: the regionalization in early embryogenesis,
including isthmic organization [13,67,70-72]; neuronal
identity, such as the control of glial-neuronal fate in the
grasshopper [73] and serotonergic midline neurons in
Drosophila [74]; axonal outgrowth and pathfinding in
insects, birds and mammals [75-80]; and the identity
specification of subsets of vertebrate interneurons in the
spinal cord [68,81]. Engrailed proteins, besides function-
ing as transcription factors (localized in the nucleus),
have also been characterized as secreting survival factors
[80,82-84], where about 5% of the engrailed protein is
found associated with membrane vesicles, becoming
secreted and internalized by cells [82,85,86]. Further-
more, En1 secretion appears to be a regulated process
[87]. These studies have shown that engrailed proteins
can function as signaling molecules, acting in a para-
crine manner in mdDA neurons. In a recent study,
mdDA neuronal loss in En1+/- adult mice was antago-
nized by En2 recombinant protein infusions in the mid-
brain [88], showing both the ability of engrailed to act
as a signaling molecule and suggesting a biochemical
equivalence between En1 and En2.

Engrailed in the development of mdDA neurons
The spatial and temporal expression of En1 in the brain,
as mentioned above, is mainly restricted to the mid-
hindbrain junction and coincident with the development
and maintenance of mdDA neurons. To elucidate a
gene’s role within a certain biological system, such as
the dopaminergic system in the midbrain, the study of
its natural mutant (when available) or its engineered
knockout is essential. The brain phenotypes of En1 and
En2 mutants are quite different despite their similar
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expression patterns and structurally related protein pro-
ducts [67]. The En2 single mutant is viable and fertile
and exhibits a mild cerebellar phenotype involving a
reduction in the size of the cerebellum and colliculi
with an alteration in its folding pattern, while the
mdDA population remains normal [69,89,90]. Generated
En1 null mutant mice die at birth and have multiple
defects, such as abnormal forelimbs and sternum and a
deletion of hindbrain tissue resulting in loss of most of
the cerebellum and colliculi [67].
The mid-hindbrain phenotype in En1 mutant mice,

together with corroborative data from other mutants in
which En1 expression is absent, such as the Wnt1
mutant [91], clearly pinpoint En1 as a critical protein
for normal development of mid-hindbrain structures,
already starting from its earliest expression period in the
neural tube. However, detailed molecular characteriza-
tion of the mdDA system in the En1 single-null mutant
is lacking in the literature, the focus having been thus
far on the En1/En2 double knockout.

A few studies have shown the biochemical equivalence
between En1 and En2. En2 can functionally replace En1
when knocked-in to the En1 locus, allowing for normal
midbrain development and survival of the murine En1
null mutant [92]. This suggests that the two paralogs
are maybe redundant and functionally equivalent [60].
Functional equivalence across phyla has also been con-
firmed by using Drosophila engrailed (en) to replace
murine En1 [93]. However, neither en nor En2 could
rescue the limb defects caused by loss of En1 function
[93]. It is generally accepted that the main functional
differences between the engrailed null mutants are due
to their different temporal and spatial expression and
not to different molecular properties [51]. However, En1
and En2 differ substantially in their compensatory abil-
ities to maintain ventral midbrain dopaminergic neu-
rons. The complete loss of mdDA neurons only occurs
when all four alleles are deleted (En1-/-; En2-/-) [32].
This study by Simon et al. study describes that mdDA
neurons are induced, become postmitotic and express

Figure 2 The impact of the engrailed genes in the development of the central nervous system and the mesodiencephalic
dopaminergic system. (A) Engrailed proteins are key players in diverse processes during embryonic development of the central nervous
system (CNS), including patterning, axonal guidance and neuron specification. (B) Engrailed proteins are essential in mesodiencephalic
dopaminergic (mdDA) neuron development from an early stage, where they are involved in morphogenesis and mdDA neurogenesis, and in
the adult, where they play a role in mdDA neuron maintenance E, embryonic day.
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Th, but this entire mdDA population is lost by E14 due
to cell loss [32]. They compare all intermediate geno-
types of En1/En2 and show that engrailed is required in
mice for the survival of dopaminergic neurons of the
SNc and VT in a gene dose-dependent manner, with
one En1 allele sufficient to produce a wild-type pheno-
type, while one En2 allele cannot [32]. However, in the
En1-/- mutant there seems to be no significant altera-
tions in the organization of the mdDA system at birth,
with the number of midbrain dopaminergic neurons
remaining unaffected [32,67]. Furthermore, the engrailed
requirement for the survival of mdDA neurons is cell-
autonomous and not caused by the large deficiency of
the surrounding midbrain tissue [51].
In more recent studies focusing on the En1+/- geno-

types, the En1+/-; En2 -/- mutant showed no apparent
embryonic phenotype, while the adult had a phenotype
resembling key pathological features of PD [94]. The
postnatal mutant mice showed a specific and progressive
degeneration of dopaminergic neurons in the substantia
nigra during the first 3 months (other DA groups in the
mesodiencephalon were not affected), resulting in
diminished storage and release of dopamine in the cau-
date putamen accompanied by motor deficits (akin to
akinesia and bradykinesia), and a lower body weight
[94]. Interestingly, another study shows that in En1+/-

animals, in an En2 wild-type background, the number of
dopaminergic neurons in the SNc and VTA slowly
decrease between 2 and 6 months after birth [88]. This
reduction in dopaminergic neurons is stronger in the
SNc. The dopaminergic neuronal cell death was paral-
leled by a substantial decrease in striatal DA, impaired
motor skills, and listless behavior. Together, these stu-
dies demonstrate that engrailed genes have both impor-
tant embryonic and adult physiological functions (Figure
2B), and that their deregulation leads to progressive
dopaminergic cell death in the adult [88], a characteris-
tic of PD pathology.

En1 and Parkinson’s disease
The pathological hallmark of PD is the selective and
progressive degeneration of dopaminergic neurons in
the SNc [5]. En1 does affect the survival of this popula-
tion during embryonic development [88,94]. Further-
more, the deletion of one En1 allele leads to massive
cell death in the mdDA system of young adult mice
[88,94], making En1 a potential gene in the molecular
cascade leading to progressive cell death in the neuro-
pathology of PD. Recently, Sgado et al. [95] observed
that En1 heterozygous adult mice present a significant
reduction in striatal DA levels accompanied by a reduc-
tion in the number of nigral dopaminergic neurons, cor-
roborating Sonnier’s work [88]. Furthermore, the En1+/-

mice show motor deficits together with anhedonia,

decreased social interactions and depression-like beha-
viors, which are reminiscent of symptoms observed in
PD [96]. In PD, apoptosis is viewed as the mechanism
leading to nigral DA cell death [97-99]. Interestingly, in
the absence of both Engrailed genes, mdDA neurons
undergo caspase-3-mediated apoptosis [51]. Noteworthy,
a-synuclein, a protein implicated in PD [100], seems to
be regulated by engrailed [51,101]. In a recent study,
genetic variants in the En1 gene showed a significant
association with PD, indicating that these polymorph-
isms are potential genetic risk factors for sporadic PD
[102]. All the evidence so far points to the core impor-
tance of En1 in the maintenance of mdDA neurons,
making the En1 mutant a plausible model for PD
research.

Wnt signaling
A small number of signaling pathways are vital and used
repeatedly in the developmental processes of all meta-
zoa. One such core pathway is the Wnt signaling path-
way. Wnt signaling was initially characterized in the late
1980s during embryonic development studies of Droso-
phila melanogaster, when it became clear that it was a
key event for segmental and spatial organization of the
body plan (reviewed in [103]). The term ‘Wnt’ is derived
from a combination of the Drosophila wingless (wg) and
the mouse homolog Int1 (subsequently Wnt1) proteins
[104,105]. Wnts refer to the extracellular ligands of the
pathway, which comprise a family of secreted glycolipo-
proteins able to interact with cell surface receptors eli-
citing a variety of intracellular responses. Being lipid
modified, Wnts are hydrophobic in nature and localize
preferentially in the extracellular matrix and cell mem-
branes [106,107].
To date, 19 distinct Wnts have been identified in

mammals [108]. Wnt gene diversity is also observed in
other animals like Drosophila, Caenorhabditis elegans
and Xenopus, as well as in the ancient metazoan phylum
Cnidarians [109], showing not only that Wnts are evolu-
tionarily conserved but that Wnt gene diversity arose
early in evolution and is in itself required for successful
animal development. Indeed, Wnt signaling is crucial in
embryonic development, from gastrulation and early
pattern formation to organogenesis [110], and in adult
organisms, where it plays a central role in the mainte-
nance of tissue homeostasis and stem cell regulation
[111]. Namely, Wnt signaling controls diverse processes,
such as cell proliferation, self-renewal, cell polarity, cell
death and cell fate specification [112-115]. Wnts can
also function as morphogens, acting in both short- and
long-range signaling, modulating target cells in a dose-
and distance-dependent manner [116-119]. This pivotal
and complex role of Wnt signaling in such a myriad of
biological processes implies that its deregulation leads to
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disease, such as cancer, congenital disorders and degen-
erative diseases [120-124].
The complexity of Wnt signaling is due, in the first

place, to the large variety of ligands and receptors
involved in Wnt signal transduction, allowing for an
impressive number of possible ligand-receptor interac-
tions [125]. For example, there are the frizzled receptors
(ten Frizzled (Fz) receptor homologs in mammals) and
the recently described non-Fz receptors, the RYK and
Ror/Tyr kinases (reviewed in [126,127]). Secondly, Wnt-
receptor interactions can produce a variety of intracellu-
lar responses, since Wnt target genes are diverse and
context-dependent [115,128]. The Wnt signaling path-
ways have been characterized as either canonical or
non-canonical. For extensive and up-to-date reviews on
the Wnt receptors and pathways, see [126,129,130]. In
this review the focus will be primarily on the canonical
pathway.

Canonical Wnt signaling
The best understood and most extensively studied of the
Wnt pathways is the b-catenin-dependent Wnt signal
transduction pathway (Wnt/b-catenin), otherwise known
as the canonical pathway. This pathway relays its signals
by stabilizing b-catenin protein in the nucleus where it
will be part of transcriptional complexes mediating key
developmental gene expression programs [115]. Besides
being the key factor in Wnt canonical signaling, b-cate-
nin functions as a structural adapter protein linking cad-
herins to the actin cytoskeleton, in particular interacting
with both E-cadherin and a-catenin to mediate cell
adhesion [131]. The focus of past and recent research
on canonical Wnt signaling is explained by the impera-
tive role it has in development and disease, and in stem
cell specification and maintenance in various tissues and
organs, including the brain (reviewed in [112,132-134]).
Wnt-b-catenin signaling inactivation in vertebrates has
also been implicated in other diseases, such as heart dis-
ease [135] and Alzheimer’s [136-139]. The range of
action of Wnt/b-catenin signaling spans a few hours,
and that is why its activity is observed mainly in con-
texts of cell-fate determination and tissue homeostasis
[140].

Canonical signaling mechanism
In the absence of Wnt stimulation, b-catenin is tagged
for degradation by a cytoplasmic ‘b-catenin destruction
complex’. This complex is assembled by the scaffolding
protein Axin and comprises glycogen synthase kinase
(GSK)3b, casein kinase 1 and the adenomatous polyposis
coli (APC) protein and others, which function by captur-
ing ‘surplus’ b-catenin that is not involved in cell adhe-
sion [122,132]. Once b-catenin is bound by Axin and
APC, which act by efficiently positioning b-catenin and

the kinases together, phosphorylation of b-catenin occurs
by a dual kinase mechanism, whereby phosphorylation by
casein kinase I triggers further phosphorylation by
GSK3b [141]. This tagging results in b-catenin being
recognized by b-Trcp, a ubiquitin ligase, causing b-cate-
nin ubiquitination and subsequent proteasomal degrada-
tion [142]. In this manner, despite being continuously
synthesized in the cell, the levels of cytosolic b-catenin
are kept low, thus preventing it from accumulating in the
nucleus. When Wnts bind to Fz transmembrane recep-
tors and low-density lipoprotein receptor-related protein
co-receptors (Lrp5 or Lrp6; Figure 3(1)), the scaffolding
protein dishevelled (Dvl) joins this receptor complex,
causing sequestration of Axin and, thereby, the dissolu-
tion of the b-catenin destruction complex [143-147]
(Figure 3(2)). Consequently, b-catenin is not marked for
degradation and is stabilized as a hypophosphorylated
form, accumulating in the cytoplasm (Figure 3(3)), with
preferential nuclear localization (Figure 3(4)). Once in
the nucleus, b-catenin binds to the T cell factor/lym-
phoid enhancer factor (TCF/LEF) family of DNA-binding
factors, which bind to target promoter sequences via
a specific DNA-binding domain in TCFs to form a

Figure 3 Canonical Wnt signaling mechanism. (1) Wnts bind to
Frizzled (Fz) transmembrane receptors and low-density lipoprotein
receptor-related protein (Lrp) co-receptors (2) triggering the
dissolution of the ‘b-catenin destruction complex’, resulting in (3) b-
catenin not being marked for degradation (asterisk) thereby
accumulating in the cytoplasm and (4) translocating to the nucleus.
(5) Once in the nucleus, b-catenin binds to the T cell factor/
lymphoid enhancer factor (Tcf/Lef) family of DNA-binding factors to
form a transcriptional complex that binds target promoter
sequences via a specific DNA-binding domain in TCFs, mediating
Wnt target gene expression. APC, adenomatous polyposis coli.
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transcriptional complex that mediates Wnt target gene
expression [122,123] (Figure 3(5)). Furthermore, b-cate-
nin is essential as a docking platform for various tran-
scriptional co-activators and chromatin remodeling
complexes to stimulate transcription [107,148].

Wnt signaling crosstalk with key signaling pathways
b-catenin/TCF transcriptional activity can be turned on
by signaling molecules other than Wnt proteins
(reviewed in [149]). For example, insulin and insulin-like
growth factor-1 promote b-catenin nuclear translocation
and its binding to TCF on Wnt target gene promoters
[150]. b-catenin also interacts with forkhead box O
(FOXO) transcription factors to mediate protection
against oxidative stress. In this case, FOXO proteins
(which are active in stress signaling) will compete with
TCF factors (which are active in development and pro-
liferation) for the limited pool of free b-catenin
[151-153]. Noteworthy, insulin and growth factors will
have a role in this Foxo/TCF competition by antagoniz-
ing the function of FOXOs via a phosphorylation-
mediated nuclear exclusion process [154]. Finally, cross-
regulation of canonical Wnt signaling with that of
nuclear receptors) has been observed, including a
mutual regulation between Nurr1 and canonical Wnt
signaling (for a review, see [155,156]).

Wnt signaling in CNS development
Recent studies have provided us with a more complete
picture of the dynamic expression patterns of Wnts, their
receptors and co-factors during development and adult-
hood (for a review, see [157,158]). The expression of Wnt
signaling components during development of the CNS has
also been described. To begin with, many Fz receptors are
expressed in the mouse brain [139,159], including Ryk, the
lipoprotein receptor-related protein co-receptor [160] and
the receptor tyrosine kinase-like orphan receptor (Ror)
family [161]. Secondly, various Wnts are expressed in the
developing CNS and peripheral nervous system, in over-
lapping and complementary patterns [162]. More and
more evidence has surfaced corroborating the key role of
Wnt signaling in the developing neural tube and brain
[117]. Indeed, Wnt signaling seems to take part in most of
the processes needed to generate a fully functional neuron
(Figure 4A) from a neuronal stem cell, participating in
early events, such as neuronal induction [163], anterior-
posterior patterning and morphogenesis [164-167] and
neuronal precursor proliferation [168-174], as well as in
later processes, such as neuronal differentiation in the
spinal cord [175], neuronal stem cells [176,177] and corti-
cal neuronal precursors [178], neuronal cortical migration
in mice [179], axon guidance in Drosophila [180] and
in mice [181-183], synaptogenesis [184-186], synaptic
differentiation [187,188], dendritogenesis [189,190] and

neurogenesis in the telecephalon and hindbrain of adult
mice [191-193].

Wnt signaling in mdDA neurons
Wnt signaling has a known and pivotal impact on
mdDA neuron development (Figure 4B). To begin with,
midbrain morphogenesis is regulated by Wnt signaling.
Wnt1 mutant mice present an abnormal posterior mid-
brain, isthmus and rostral hindbrain, unveiling the
essential role of Wnt signaling in MHB formation
[194,195]. Other studies support the central role of the
canonical pathway in the patterning of the MHB region,
where the direct inactivation of b-catenin in a specific
manner in the MHB mimics the Wnt1 mutant pheno-
type [170,196]. Furthermore, mutant mice for the Wnt
receptor Lrp6 also phenocopy some of the Wnt1 mutant
defects [160,197] and Fzd3 and Fzd6 double mutants
show a severe impairment of midbrain morphogenesis
[198]. In addition, Wnt1 directly regulates the expres-
sion of Otx2, a factor involved in midbrain morphogen-
esis, in a Wnt1-Lmx1a autoregulatory loop during
embryonic development [199].
The proliferation and differentiation of midbrain

dopaminergic neurons during ventral midbrain neuro-
genesis depend on Wnt signaling (reviewed in [31,200]).
Already during early midbrain development, several
members of the Wnt family are expressed and seem
to be tightly regulated in a spatiotemporal way
[158,159,162,201,202]. In particular, b-catenin transcrip-
tional activity has been observed to take place in the
developing mouse midbrain before the birth of Th-posi-
tive neurons (at E10.5), with stronger intensity in the
Nurr1 expression domain [201]. It seems that activation
of the Wnt/b-catenin pathway contributes to increased
DA neurogenesis during development: b-catenin pro-
motes midbrain dopaminergic neurogenesis in vivo
[203] and the stabilization of b-catenin in ventral
mesencephalic precursors, by GSK3b inhibition, leads to
an increase in DA differentiation [204,205]. In these two
recent studies, a targeted deletion of b-catenin in Th-
IRES-Cre;b-Ctnfl/fl mutants resulted in reduced mdDA
neurogenesis [205]. More recently, the same group
reported that the constitutive activation of Wnt/b-cate-
nin signaling in the ventral midbrain of the Th-IRES-
Cre;b-CtnEx3/+ mutants revealed a significant increase in
the number of dopaminergic neurons as well as an
increase in the number of committed progenitors, in
line with their previous work [206]. On the other hand,
activation of b-catenin in Shh-Cre; b-CtnEx3/+ mutants
led to the expansion of dopaminergic progenitors by
reducing their exit from the cell cycle, with a concomi-
tant reduction in the number of dopaminergic neurons
more intensely in the SNc [206]. This suggests an
opposing role for Wnt/b-catenin signaling in early and
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late mdDA development. Another study showed that
Wnt1 activation enhanced the differentiation of mouse
embryonic stem cells to mdDA neurons [199]. Wnt1
was also found to be required for the terminal differen-
tiation of midbrain dopaminergic neurons at later stages
of embryogenesis [207]. In addition, Wnt2 was recently
identified as a novel regulator of dopaminergic progeni-
tors, necessary in their proliferation; Wnt2-null mice
therefore have decreased numbers of dopaminergic neu-
rons [208].
In the next two sections we focus on what is known

about Wnt signaling in connection to two decisive tran-
scription factors involved in the development of the
mdDA neurons, Nurr1 and En1.

Wnt signaling and Nurr1
It has been shown so far that activation of the Wnt/b-
catenin pathway contributes to increased mdDA neu-
rogenesis during development, that is, that it regulates
the proliferation and differentiation of ventral

mesodiencephalic Nurr1 precursors in vivo [203]. Tak-
ing into account the data as described, Kitagawa et al.
[156] tested the possibility of Wnt signaling regulating
Nurr1 activity, and found a convergence between
Nurr1 transcriptional regulation and Wnt signaling in
cell culture. In short, Wnt signaling via b-catenin
enhanced the transcriptional activity of Nurr1 in cells,
at Nurr1 responsive elements (NREs), leading to TH
promoter activation (Figure 5A). In the absence of b-
catenin, Nurr1 is associated with Lef1 in co-repressor
complexes on NREs. After activation of Wnt signaling,
b-catenin interacts with Nurr1 on NREs, competing
with Lef1 for Nurr1 binding, resulting in the disrup-
tion of co-repressors from the Nurr1 complex and the
concomitant recruitment of coactivators, such as CBP
(Creb binding protein) [156] (Figure 5A). b-catenin
functions, so it seems, as a transcriptional cofactor for
Nurr1. Small interfering RNAs targeting Nurr1 abol-
ished CBP and b-catenin association with the NRE in
the TH promoter [156]. On the other hand, Nurr1 was

Figure 4 Wnt signaling during the central nervous system and mesodiencephalic dopaminergic neuron development. (A) Wnt signaling
is critical in embryonic development, controlling diverse processes, such as cell proliferation and cell polarity. It is involved during early central
nervous system (CNS) development in gastrulation, early pattern formation, morphogenesis and precursor proliferation, in late CNS development
in processes such as neuronal differentiation and migration, and in adult organisms, where it plays a central role in the maintenance of tissue
homeostasis and stem cell regulation. Wnt signaling controls diverse processes, such as cell proliferation, cell polarity, cell death and cell fate
specification Wnts can also function as morphogens in both short- and long-range signaling, modulating target cells in a dose- and distance-
dependent manner. (B) Wnt signaling is involved in mesodiencephalic dopaminergic (mdDA) neuron development from early on, where it is
involved in morphogenesis, and later on as well in mdDA differentiation.
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Figure 5 Interplay between Wnt, Nurr1 and En1 signaling in vitro and in vivo. (A) Model adapted from Kitagawa et al. [156]: Wnt signaling
via b-catenin enhances the transcriptional activity of Nurr1 in cells at Nurr1 responsive elements (NREs). In the absence of b-catenin, Nurr1
associates with T cell factor/lymphoid enhancer factor (TCF/LEF) in co-repressor complexes on NREs. After activation of Wnt signaling, b-catenin
interacts with Nurr1 on NREs, competing with TCF/LEF for Nurr1 binding, resulting in the disruption of the co-repressors from the Nurr1 complex
and the concomitant recruitment of coactivators. (B) Model adapted from Kitagawa et al. [156]: on the other hand, Nurr1 was observed to
slightly modulate, in a negative way, the canonical Wnt signaling through association with the TCF/LEF region. After Wnt stimulation, b-catenin
competed with Nurr1 for Lef binding on the TCF/LEF promoter site and disrupted Nurr1 binding, promoting Wnt-target gene transcription.
(C) Several studies in Drosophila and chick embryos have described interactions between En1/engrailed (en) and the Wnt/wg signaling pathway
whereby engrailed expression is dependent on Wnt/wg signaling and vice versa. However, in Drosophila, engrailed expressing cells did not have
active wg signaling. From mice studies it is known that Wnt signaling regulates En1 expression early in midbrain development. Whether the
reverse happens in the mouse midbrain is not known. (D) In one cell culture study [216], it was observed that En1 can function as a negative
regulator of b-catenin transcriptional activity in a post-translational manner (that is, by affecting b-catenin protein levels only). (E) Three
questions remain currently unsolved: first, whether En1 cooperates with Nurr1 during mdDA development; second, whether Nurr1, En1 and
canonical Wnt signaling cooperate in later stages of mdDA neuron development, such as in mdDA neuron specification; and third, whether
Nurr1 and/or En1 regulate canonical Wnt signaling during mdDA neuron development.
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found to slightly modulate, in a negative way, the
canonical Wnt signaling by being able to associate
with the TCF/LEF region (Figure 5B). After Wnt sti-
mulation, b-catenin would compete with Nurr1 for
Lef1 binding on a TCF/LEF promoter site, such as the
cyclin D1 promoter, and disrupt Nurr1 binding, pro-
moting Wnt-target gene transcription [156]. A model
to describe this mechanism was proposed and is
shown in Figure 5A,B. Whether this model is valid for
mdDA neuron differentiation and maintenance in vivo
remains to be investigated. The question arises: do
Nurr1 and b-catenin interact in vivo synergistically to
drive Th expression? Previous studies strongly suggest
that this is the case [204-206]. Importantly, besides the
study from Kitagawa et al., synergistic interactions
between b-catenin and several nuclear receptors have
already been described [155]. Quite likely, b-catenin is
involved in mdDA neurogeneis, cooperating with the
Nurr1 transcription complex.

Wnt signaling and En1
In Drosophila and chick embryos, interactions between
engrailed (en) and Wnt/wg signaling pathways have
been described whereby engrailed expression is depen-
dent on Wnt/wg signaling and vice versa [209-211] (Fig-
ure 5C). However, in Drosophila, engrailed expressing
cells did not have active wg signaling [209]. A modula-
tion of Fz receptor expression by engrailed was shown
in Drosophila wherein the expression of Fz is lower in
engrailed-positive domains and, in the engrailed null
mutant, the usual striped expression of Fz is disturbed,
spreading everywhere in a non-segmental pattern [212].
Later, by means of chromatin immunoprecipitation
(ChIP) assays, engrailed was established to be a direct
repressor of Fz2 expression in vivo [213]. In mice, Wnt1
expression was found to overlap with En1 gene expres-
sion in the midbrain at 8.5 days post-coitus
[65,214,215], but while Wilkinson et al. [214] found
Wnt1 expression in the midbrain after 12 days post-coi-
tus, Davis and Joyner [65] did not observe overlapping
expression domains between En1 and Wnt1 within the
midbrain after this time point. As an explanation for
this discrepancy they advance the fact that Wnt1 expres-
sion is punctuated, making it hard to get brain slices
containing visible expression. So, a more detailed analy-
sis of the Wnt/b-catenin signaling in the mdDA system
is needed. As mentioned above, inactivation of the
Wnt1 gene leads to the deletion of the midbrain-hind-
brain area with concomitant loss of En1 (its expression
in the MHB region is initiated normally but is subse-
quently lost) [194,195,215]. Furthermore, the expression
of En1 under the Wnt1 promoter rescues most of the
Wnt1 phenotype, suggesting that En1 is a downstream

target of Wnt1 [91] (Figure 5C). In conclusion, both
Wnt1 and En1 cooperate in the patterning of the MHB
region during early development.
In cell culture studies, it was observed that En1 can

function as a negative regulator of b-catenin transcrip-
tional activity in a Gro/TLE-independent manner (TLE:
transducin-like enhancer of split 1) [216] (Figure 5D).
Silencing En1 expression using small interfering RNA
stimulated b-catenin transcriptional activity, measured
by luciferase reporter assays. By Northern analysis and
cycloheximide assays, Bachar-Dahan et al. [216]
observed that En1 affects the level of a constitutively
active form of b-catenin at a post-translational level
only. They suggest that En1 acts by destabilizing b-cate-
nin via a proteasomal degradation pathway that is
GSK3b-independent [216].
As we mentioned above, there might be a link between

En1 depletion and the onset of neurological disorders
such as PD. A direct interaction between the PD-asso-
ciated protein parkin and b-catenin has recently been
observed [217]. In this study, increased levels of b-catenin
activity were found in parkin mutant mice. This increase
in Wnt-b-catenin signaling led to an increase in dopami-
nergic neuron proliferation and death [217], which is in
contrast to the positive role Wnt-b-catenin signaling plays
during mdDA neuron development. This might be due to
the different needs in Wnt signaling activity in morbid
adult dopaminergic midbrain tissue when compared to
healthy one [158]. It is currently unknown whether En1
and canonical Wnt signaling cooperate in later stages of
mdDA neuron development, such as in mdDA neuron
specification and maintenance (Figure 5E).

Conclusions and future perspectives
The vertebrate mdDA system has been intensively stu-
died in the past decades and an enormous wealth of
information on the molecular cues controlling its devel-
opment has been gathered. Our future challenge is to
unravel in depth the gene cascades linking early induc-
tion to the differentiation and maintenance of mdDA
neurons, eventually obtaining a complete picture of
mdDA development (including the developmental origin
and the molecular coding characterizing various mdDA
subsets). Once this is accomplished, effective clinical
treatments for mdDA-associated neurological disorders,
such as PD, can be generated. As described in this
review, current evidence strengthens the central roles
that En1 and Wnt signaling might play in the advance-
ment of these therapies, especially for PD. However, a
detailed molecular characterization of the En1 mutant is
lacking. Furthermore, the precise function of En1 in
some mdDA developmental processes is also not
known, and questions such as whether En1 is essential
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in the differentiation of the mdDA system and is part of
key transcriptional complexes mediating such processes
(such as the Nurr1 complex) need to be investigated.
Concerning Wnt signaling, detailed knowledge about

which developmental processes it regulates within a parti-
cular dopaminergic neuron, as well as which key players
are involved, is still incipient. Furthermore, a more
detailed characterization of Wnt/b-catenin activity during
ventral midbrain development is essential. Wnt signaling
overlaps with that of En1 in time and space during CNS
development and these two pathways interact functionally
at least at one time point during embryonic mdDA devel-
opment. It is now known that canonical Wnt signaling
and En1 cooperate in the genesis of a competent mdDA
field during early development. However, whether Wnt
signaling and En1 might cooperate in later midbrain devel-
opmental stages, such as in the differentiation of mdDA
neurons, is still not known. Future research will have to
focus on disclosing the En1 mutant phenotype and its
relevance and eventual interplay with Wnt signaling dur-
ing mdDA differentiation. Recent improvements in techni-
ques, such as transcript expression profiling, ChIP-seq,
proteomics, and mdDA neuronal cell isolation and culture,
will certainly help unveil the molecular repertoire neces-
sary to generate a mdDA neuron.
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