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Abstract

expressed in embryonic C. elegans GABAergic neurons.

studies of mammalian forebrain development.

Background: In an effort to identify genes that specify the mammalian forebrain, we used a comparative
approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans
GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly

Results: Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their
expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human
homologs indicates several of these genes are potential candidates in neurodevelopmental disorders.

Conclusions: Our comparative approach has revealed several novel candidates that may serve as future targets for

Background

Proper forebrain patterning and cell-fate specification
lay the foundation for complex behaviors. These neuro-
developmental events in large part depend on a series of
gene expression refinements (reviewed in [1]) that com-
mit cells to express certain phenotypic features that
define circuit formation. Relatively subtle disturbances
in development may underlie the etiology of neurodeve-
lopmental disorders, especially when alternative cogni-
tive phenotypes do not have an apparent malformation
at the gross anatomical level. In the forebrain, cells pro-
ducing y-aminobutyric acid (GABAergic interneurons)
have been implicated in neurodevelopmental disorders,
including autism and schizophrenia [2-4]. These neu-
rons are composed of a diverse class of cells providing a
wide range of control of neural activity, and vary in neu-
roanatomical location, electrophysiological properties,
transcriptome/proteome and innervation patterns as
either local circuit or long-range projection neurons [5].
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As with other cell types, the diversity of GABAergic
neurons has its basis in different developmental origins,
with timing and location of birth playing key roles in
cell fate [1,6-8].

Despite the phenotypic variety of GABAergic neurons,
all use GABA as a neurotransmitter. In mammals,
GABA is produced by one of two GABA-synthesizing
enzymes, glutamic acid decarboxylase (GAD)65 or
GADG67. These closely related enzymes are orthologs of
the Caenorhabditis elegans protein UNC-25, which is
found only in cells that produce GABA. Because UNC-
25/GAD and other components of the GABA synthetic
pathway are highly conserved, it is likely that mamma-
lian orthologs of some of the genes that specify
GABAergic cell fate in C. elegans embryogenesis may
also control GABAergic fate specification during mam-
malian embryogenesis.

We have explored this hypothesis in an effort to
define new candidates for regulating forebrain GABAer-
gic cell fate that may be highly conserved across evolu-
tionarily distant taxa. This discovery-based approach
(Figure 1) complements existing analyses of the tran-
scriptomes of subpopulations of mammalian GABAergic
cells [9-13]. Thus, by using data from the transcription
profiling of GABAergic cells in embryonic C. elegans, in
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Figure 1 Summary diagram of experimental approach.

combination with bioinformatics analyses, we report
here transcripts with sequence homologs that may also
be involved in GABAergic fate specification in mam-
mals. We focused our attention on transcripts with gene
regulation ontologies. To probe the potential role of
these conserved players in mammalian development, we
mapped these gene products in the developing mouse
forebrain, with a selective focus on the telencephalon.
As a proof of principle, this strategy identified several
gene products already known to play a role in the speci-
fication of forebrain GABAergic interneurons in mam-
mals. Additionally, our approach identified several
previously unexplored gene products that serve as pro-
mising candidates for future investigation of forebrain
patterning.

Materials and methods

C. elegans transcription profiling

A microarray profiling of C. elegans cells (MAPCelL)
strategy was used to obtain a transcriptome profile of C.
elegans GABAergic neurons [14,15]. A complete
description of the methods used for this study and the
GABAergic neuron expression profile will be reported
elsewhere (S Barlow, L Earls, ] Watson, C Spencer, K
Watkins, D Miller, manuscript in preparation). Briefly,
the unc-25::GFP marker was used to label C. elegans
GABAergic neurons. unc-25::GFP-expressing embryos
were dissociated with chitinase and cultured for 24
hours and viable unc-25::GFP labeled cells were isolated
by fluorescence activated cell sorting (FACS). Total
RNA was purified from both the sorted unc-25::GFP
positive cells and from the reference sample of all
embryonic cells. The RNAs were amplified and hybri-
dized to the Affymetrix C. elegans array. Average signal
intensities were calculated from three independent

isolates of the unc-25::GFP cells and from four replicates
of the reference samples. A comparison of the unc-25:
GFP and reference data sets identified 673 transcripts
showing elevated expression (1.7x) in GABAergic neu-
rons at a false discovery rate (FDR) < 1% [14]).

Bioinformatics screen

Genes in the list of GABAergic enriched transcripts with
Gene Ontology (GO) terms related to DNA and tran-
scription regulation were analyzed for potential homol-
ogy to mouse transcripts. Because functional homology
is conserved at the protein level, we generated a list of
C. elegans proteins from the list of corresponding tran-
scripts and then used BLASTP [16] analysis available at
WormBase [17] from June 2005 to November 2008
(wormbase releases WS144 to WS196) to identify the
closest matching mouse protein sequence homologs. We
then used this list of mouse protein homologs to gener-
ate the corresponding catalogue of mouse transcripts for
in situ hybridization analysis. We did not distinguish
among potential splice variants and/or protein isoforms
for a given single gene locus. To further rank potential
candidates, we performed BLASTP in the reverse direc-
tion; after generating the list of mouse protein sequence
homologs, those proteins were used to identify the best
sequence homologs in the C. elegans proteome.

Mouse care and use

Timed pregnant C57Bl6j mice were bred in-house from
founders originating from Jackson Labs under protocols
approved by the Institutional Animal Care and Use
Committee of Vanderbilt University. Mice were main-
tained on a 12:12 light-dark cycle and were permitted
food and water ad libitum. Noon on the day following a
time-delimited overnight pairing was considered
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embryonic day 0.5 (E0.5). Pregnant females were readily
identifiable at E14.5 and were deeply anesthetized with
isofluorane vapors followed by rapid decapitation in
order to harvest embryos. Expression patterns of genes
at this fetal age were analyzed because it is a mid-point
in the age-range for cortical GABAergic neuron produc-
tion and migration in the mouse forebrain [8]. Thus, we
hypothesized that expression patterns related to
GABAergic neuron specification and differentiation
likely would be apparent at this age.

Riboprobe labeling

L.M.A.G.E. clones were obtained from ATCC (Manassas,
VA, USA) and Open Biosystems (Huntsville, AL, USA)
for the mouse transcripts (Additional file 1). The iden-
tity of each .M.A.G.E. clone was confirmed by sequen-
cing at the Vanderbilt DNA Sequencing Facility. When
necessary, due to cDNA size or the plasmid vector, we
subcloned the I.M.A.G.E. clone into a separate vector
(Additional file 2). These subclones were also sequenced
to confirm identity and orientation. Plasmids were line-
arized and transcribed using T7, Sp6 or T3 polymerase
(Promega, Madison, WI, USA) depending on the plas-
mid vector, by standard methods. Digoxigenin-11-uri-
dine-5’-triphosphate (0.35 mM; Roche, Indianapolis, IN,
USA) was included in the transcription reaction to allow
for non-radioactive colorimetric detection of transcripts.

In situ hybridization

Fetuses at E14.5 were harvested into cold phosphate-
buffered saline and crown-rump length (11 to 12 mm)
confirmed. Whole heads or microdissected brains were
immersion fixed for 24 hours in 4% formaldehyde in
0.156 M NaH,PO,4, 0.107 M NaOH, pH 7.12 with HCL
After fixation, brains were cryoprotected in graded 10,
20 and 30% sucrose in phosphate-buffered saline fol-
lowed by embedding in TFM Tissue Freezing Medium
(Triangle Biomedical Sciences, Inc., Durham, NC, USA)
over liquid nitrogen. Brains were stored at -80°C until
cryostat sectioning into 6 series at 20 microns each.
Slides containing the tissue were stored at -80°C until
they were fixed, acetylated and dehydrated, and then
returned to -80°C until in situ hybridization was per-
formed. In situ hybridization was performed on a Tecan
Evo 150 (Tecan Group Ltd, Méinnendorf, Switzerland)
following the Allen Brain Atlas [18] and GenePaint [19]
protocols (Additional files 3 and 4). After the machine
completed the described protocol, BCIP and NBT
(Roche) were applied manually. The time in color devel-
opment ranged from 30 minutes to 4 hours. After color
development, the slides were rinsed four times with
double distilled water and then twice with 4% formalde-
hyde. Slides were removed from the machine, dehy-
drated through a series of alcohols and coverslipped
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with VectaMount (Vector Laboratories, Burlingame, CA,
USA).

Light microscopy

Microscopy was performed using an Axioplan II micro-
scope (Zeiss, Jena, Germany), and micrographs were
acquired with a Zeiss AxioCam HRc camera (Zeiss) in
Axiovision 4.1 software (Zeiss). Low-magnification
images were collected and linearly adjusted for bright-
ness and contrast using Adobe Photoshop (version 7.0,
Adobe, San Jose, CA, USA). No other image alterations
other than resizing were performed. All figures were
prepared digitally in PowerPoint 2007 (Microsoft, Red-
mond, WA, USA).

Results

Genes expressed in C. elegans GABAergic neurons

C. elegans embryonic GABAergic neurons were profiled
by the MAPCeL approach in which unc-25::GFP labeled
cells were isolated by FACS for microarray analysis.
Comparison to a reference data set obtained from all
embryonic cells revealed 673 transcripts with enriched
(1.7x) expression in GABAergic neurons. Strong enrich-
ment of established GABAergic neuron markers, such as
unc-25 (glutamic acid decarboxylase; 61x), unc-47 (vesi-
cular GABA transporter; 7x) and acr-9 (nicotinic acetyl-
choline receptor; 25x) [20,21] indicate that other
transcripts in this data set are also likely to be highly
expressed in embryonic C. elegans GABAergic neurons
in vivo (S Barlow, L Earls, ] Watson, C Spencer, K Wat-
kins, D Miller, manuscript in preparation). Seventy five
percent of the highly expressed transcripts had defined
gene ontologies and of those, 17 transcripts (2.5%) in
this list met criteria for DNA regulation-related gene
ontologies (Table 1).

Bioinformatics assessment of mouse homologs

The original list of 17 C. elegans candidate transcription
factors was used to identify 68 mouse homologs by
BLASTP with an expectation cut off of < E-3 (Table 2).
The average number of mouse homologs was 3.8 for
each C. elegans protein, with a mode of 3, a minimum
of 2 and a maximum of 8 sequence homologs. Because
of the similarity among certain C. elegans transcripts,
three mouse proteins (Hnf4A, Hnf4G and Ezh2)
appeared on the list more than once. When considering
these duplications, there were 62 unique gene products
to pursue for expression analysis. This analytical strategy
appears to be suitable for identifying neurodevelopmen-
tal candidates, as we found that several mouse orthologs
with homology to C. elegans transcripts have a known
role in forebrain patterning. In particular, genes with
selective roles in determining GABAergic phenotype in
mammals were identified, including known players in



Hammock et al. Neural Development 2010, 5:32
http://www.neuraldevelopment.com/content/5/1/32

Page 4 of 14

Table 1 Transcription regulation genes with enriched expression in embryonic C. elegans GABAergic cells

Worm transcript Fold change KOG

unc-30 20.11 Transcription factor PTX1, contains HOX domain

fkh-10 9.64 Transcription factor of the Forkhead/HNF3 family

bar-1 4.94 Armadillo/beta-Catenin/plakoglobin

F30A10.3 328 Inositol polyphosphate multikinase, component of the ARGR transcription regulatory complex
alr-1 323 Transcription factor, contains HOX domain

ceh-27 3.03 Transcription factor tinman/NKX2-3, contains HOX domain

nhr-47 274 Hormone receptors

nhr-190 248 Hormone receptors

F53H10.2 236 Predicted DNA-binding protein, contains SANT and ELM2 domains
mes-2 220 Transcriptional repressor EZH1

taf-11.1 193 Transcription initiation factor TFIID, subunit TAF11

nhr-4 1.85 Hormone receptors

ceh-44 1.84 Transcription factor/CCAAT displacement protein CDP1

mdt-6 1.82 RNA polymerase Il transcriptional regulation mediator

aly-2 1.79 RRM motif-containing protein

mdt-8 1.74 Uncharacterized conserved protein

hlh-11 1.73 bHLH transcription factor

the forebrain (Nkx2. 1 [22], Arx [23], Cux2 [24]), mid-
brain (Pitx2 [25]) and spinal cord (Cux2 [26]).

Performing the reverse BLASTP from mouse proteins
to worm proteins informed the strength of the sequence
homology for the mouse and worm proteins relative to
the other potential homologues in C. elegans. This
reverse BLASTP can help rank-order candidates for
further functional assessment in the future. If the
reverse BLASTP returned the original C. elegans as the
hit with the highest E-value, then ‘yes’ was entered in
the R BLASTP column in Table 2. If the reverse
BLASTP had a different C. elegans protein as the top
hit, then a value of ‘no’ was entered in Table 2. Of the
68 mouse proteins, 22 had the original worm protein as
the top reciprocal hit for sequence homology in the
reverse BLASTP.

In situ hybridization mapping of mouse sequence
homologs

Our criterion for potential relevance of mouse gene pro-
ducts in the specification of telencephalic interneurons
was that transcripts must be present in known GABAer-
gic proliferative zones (such as the medial, lateral and
caudal subdivisions of the ganglionic eminence),
although they need not be exclusively expressed in those
brain areas. Representative expression patterns are
depicted in Figure 2 with complete results summarized
in Table 3. In addition to the expression data generated
here, other sources for assessment and/or confirmation
of expression were used, including GenePaint [19], Brain
Gene Expression Map (BGEM) [27] and the Allen Brain
Atlas [18].

Of the 62 unique transcripts, 57 have sufficient data to
ascertain brain expression (Table 3). Of these, 52 (91%)
exhibited brain expression. We narrowed our focus to
known areas of cortical interneuron generation, migra-
tion and maturation, particularly the ganglionic emi-
nences. In particular, we closely examined the
proliferative ventricular zone (VZ), subventricular zone
(SVZ), mantle of the subpallium and the pallium. A
majority (38 of 52, 73%) of transcripts from our list
were detected in the VZ, although this expression was
not restricted to ventral proliferative zones. Rather,
these transcripts were more broadly expressed through-
out the dorsal and ventral VZ. Sixty percent (31 of 52)
of transcripts were expressed in the cortex, 35% (18 of
52) in the mantle and 33% (17 of 52) in the SVZ.
Expression patterns that included multiple embryonic
histogenic forebrain areas were evident for the majority
of transcripts.

We observed three general patterns of expression
(Table 3 and Figure 2): pattern 1, expression throughout
the forebrain (for example, Ctnnbl, Tcfap4); pattern 2,
expression in post-mitotic cells based on location in the
mantle zone and cortical plate (for example, Cux2, Fox1,
Myst3); and pattern 3, expression mainly in proliferative
zones (for example, Hist1hla, Ncl, Ezh2, Suv39hl1). For
patterns 2 and 3, expression was generally mosaic and
limited to subsets of cells. Although more rare, we did
observe expression of some transcripts in discrete areas,
such as the well known pattern of Nkx2.1 in the medial
ganglionic eminence (MGE; Figure 2) and Pitx2 (data
not shown) in discrete nuclei outside of established fore-
brain GABAergic proliferative zones.
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Table 2 Mouse homologs by protein sequence homology
Worm Mouse gene  Gene Description E value R
transcript synonyms BLASTP
unc-30 Pitx1 Bft, Potx, Ptx1 Pituitary homeobox 1 (Paired-like homeodomain transcription factor 1) 3.9E-28 Yes
(Homeobox protein P-OTX) (Pituitary OTX-related factor) (Hindlimb-expressed
homeobox protein backfoot)
Pitx2 Arpl, Brxl, Pituitary homeobox 2 (Paired-like homeodomain transcription factor 2) 4.8E-28 Yes
Otlx2, Ptx2, Rgs  (Homeobox protein PITX2) (Orthodenticle-like homeobox 2) (Solurshin) (ALL1-
responsive protein ARP1) (BRX1 homeoprotein) (Paired-like homeodomain
transcription factor Munc 30)
Pitx3 Pituitary homeobox 3 (Paired-like homeodomain transcription factor 3) 1.2E-26 Yes
(Homeobox protein PITX3)
fkh-10 Foxb2 Fkh4 Forkhead box protein B2 (Transcription factor FKH-4) 26E-27 No
FoxL1 Fkhé, FkhiT1 Forkhead box protein L1 (Forkhead-related protein FKHL11) (Transcription factor 42E-27 No
FKH-6)
Foxal Hnf3a, Tcf-3a, Hepatocyte nuclear factor 3-alpha (HNF-3A) (Forkhead box protein A1) 6.2E-27 No
Tcf3a
Foxbl Fkh5, Foxbia, Forkhead box protein B1 (Transcription factor FKH-5) 1.1E-26 No
Foxb1b, Mf3
Foxi2 Forkhead box protein 12 1.2E-26 No
Foxd?2 M2 Forkhead box protein D2 (Mesoderm/mesenchyme forkhead 2) 1.8E-26 No
Foxql Hfh1, Hfh1l Forkhead box protein Q1 (Hepatocyte nuclear factor 3 forkhead homolog 1) 6.5E-26 No
(HNF-3/forkhead-like protein 1) (HFH-11)
Foxa3 Hnf3g, Tcf-3g, Hepatocyte nuclear factor 3-gamma (Forkhead box protein A3) 74E-26 No
Tcf3g
bar-1 Jup Junction plakoglobin (Desmoplakin-3) (Desmoplakin ll) 5.2E-43 No
Ctnnb1 Catnb Catenin beta-1 (Beta-catenin) 1.1E-42 No
F30A103  Ip6ki1 lhpk1 Inositol hexakisphosphate kinase 1 (Inositol hexaphosphate kinase 1) 37E-54 Yes
Ip6k2 lhpk2 Inositol hexakisphosphate kinase 2 (P(i)-uptake stimulator/PiUS) 1.6E-48 Yes
Ip6k3 lhpk3 Inositol hexakisphosphate kinase 3 (Inositol hexaphosphate kinase 3) 5.9E-48 Yes
Ipmk Impk Inositol polyphosphate multikinase (Inositol 1,3,4,6-tetrakisphosphate 5-kinase) 1.4E-08 No
alr-1 Phox2a Arix, Phox2, Paired mesoderm homeobox protein 2A (Paired-like homeobox 2A) (PHOX2A 5.6E-28 No
Pmx2, Pmx2a homeodomain protein) (Aristaless homeobox protein homolog)
Arx Homeobox protein ARX (Aristaless-related homeobox) 5.9E-28 Yes
Alx4 Homeobox protein aristaless-like 4 (ALX-4) 5.1E-26 Yes
Phox2b Pmx2b Paired mesoderm homeobox protein 2B (Paired-like homeobox 2B) (PHOX2B 3.6E-25 No
homeodomain protein) (Neuroblastoma Phox/NBPhox)
Pax7 Pax-7 Paired box protein Pax-7 6.7E-25 No
ceh-27 Nkx2-5 Csx, Nkx-2.5, Homeobox protein Nkx-2.5 (Homeobox protein NK-2 homolog E) (Cardiac- 36E-22 No
Nkx2e specific homeobox) (Homeobox protein CSX)
Nkx2-3 Nkx-2.3, Nkx2c~ Homeobox protein Nkx-2.3 (Homeobox protein NK-2 homolog C) (Nkx2-C) 6.0E-20 No
(Homeobox protein NK-2 homolog 3)
Nkx2-1 Nkx-2.1, Titf1, Homeobox protein Nkx-2.1 (Thyroid transcription factor 1/TTF-1) (Thyroid nuclear ~ 2.1E-18 No
Ttf1 factor 1)
Nkx2-4 Nkx2d Homeobox protein Nkx-2.4 (Homeobox protein NK-2 homolog D) 2.2E-18 No
nhr-47 Hnf4g Nr2a2 Hepatocyte nuclear factor 4-gamma/HNF-4-gamma (Nuclear receptor subfamily 7.7E-35 No
2 group A member 2)
Hnf4a Hnf-4, Hnf4, Hepatocyte nuclear factor 4-alpha/HNF-4-alpha (Transcription factor HNF-4) 74E-34 No
Nr2al, Tcf14 (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14)
nhr-190 Hnf4a Hnf-4, Hnf4, Hepatocyte nuclear factor 4-alpha/HNF-4-alpha (Transcription factor HNF-4) 2.3E-12 No
Nr2al, Tcf14 (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14)
Hnf4g Nr2a2 Hepatocyte nuclear factor 4-gamma/HNF-4-gamma (Nuclear receptor subfamily 71812 No
2 group A member 2)
Rarg Nrib3 Retinoic acid receptor gamma/RAR-gamma (Nuclear receptor subfamily 1 group 1.1E-09 No
B member 3)
F53H10.2  Znf541 Shipl, Zfp541 Zinc finger protein 541 (Spermatogenic cell HDAC-interacting protein 1) 4.2E-31 Yes
Trerf1 Transcriptional-regulating factor 1 (Transcriptional-regulating protein 132) (Zinc 1.4E-28 Yes
finger transcription factor TReP-132)
C130039016Rik Putative uncharacterized protein 1.2E-17 Yes
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Table 2: Mouse homologs by protein sequence homology (Continued)

Mier1 Kiaa1610 Mesoderm induction early response protein 1/Mi-er1 2.7E-04 No
Reorl D12Wsu95e, REST corepressor 1 (Protein CoREST) 2.7E-04 No
Kiaa0071
Foxj3 Kiaa1041 Forkhead box protein J3 4.3E-03 No
Ncorl Rxrip13 Nuclear receptor corepressor 1/N-CoR1/N-CoR (Retinoid X receptor-interacting 6.7E-03 No
protein 13/IP13)
mes-2 Ezh2 Enx1h Histone-lysine N-methyltransferase EZH2 (Enhancer of zeste homolog 2) (ENX-1) 3.0E-60 Yes
Ezh1 Enx2 Histone-lysine N-methyltransferase EZH1 (Enhancer of zeste homolog 1) (ENX-2) 8.2E-56 Yes
Suv3ohi Suv3oh Histone-lysine N-methyltransferase SUV39H1 (Suppressor of variegation 3-9 5.1E-13 No

homolog 1) (Position-effect variegation 3-9 homolog) (Histone H3-K9
methyltransferase 1) (H3-K9-HMTase 1)

taf-11.1 Tafll Transcription initiation factor TFIID subunit 11 (Transcription initiation factor 3.0E-24 Yes
TFIID 28 kDa subunit/TAF(I1)28/TAFII-28/TAFII28) (TFIID subunit p30-beta)
Dspp Dmp3 Dentin sialophosphoprotein precursor (Dentin matrix protein 3/DMP-3) 1.3E-04 No

[Cleavage products: Dentin phosphoprotein (Dentin phosphophoryn/DPP);
Dentin sialoprotein/DSP]

Myst3 Moz Histone acetyltransferase MYST3 (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) 6.4E-04 No
(Monocytic leukemia zinc finger protein) (Monocytic leukemia zinc finger
homolog)

nhr-4 Hnf4a Hnf-4, Hnf4, Hepatocyte nuclear factor 4-alpha/HNF-4-alpha (Transcription factor HNF-4) 1.7E-35 No
Nr2al, Tcf14 (Nuclear receptor subfamily 2 group A member 1) (Transcription factor 14)

Hnf4g Nr2a2 Hepatocyte nuclear factor 4-gamma/HNF-4-gamma (Nuclear receptor subfamily 1.5E-31 No
2 group A member 2)

Rxrb Nr2b2 Retinoic acid receptor RXR-beta (Retinoid X receptor beta) (Nuclear receptor 2.8E-27 No

subfamily 2 group B member 2) (MHC class | regulatory element-binding
protein H-2RIIBP)

ceh-44 Cux1 Cutll, Cux, Homeobox protein cut-like 1 (CCAAT displacement protein/CDP) (Homeobox 8.3E-75 Yes
Kiaa4047 protein Cux)

Cux2 Cutl2 Homeobox protein cut-like 2/Cut-like 2 (Homeobox protein Cux-2) 3.5E-61 Yes

Cux1 Cutl Protein CASP 1.9E-39 Yes

Myh8 Myhsp Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal/ ~ 9.1E-16 No

MyHC-perinatal)

Myh10 Myosin-10 (Myosin heavy chain 10) (Myosin heavy chain, non-muscle llb) (Non- 1.3E-15 No
muscle myosin heavy chain llb) (Cellular myosin heavy chain, type B) (Non-
muscle myosin heavy chain B)

Clip1 Kiaa4046, Rsn CAP-Gly domain-containing linker protein 1 (Restin) 6.0E-15 No
Myh11 Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle 73E-14 No
isoform) (SMMHC)
mdt-6 Med6 Mediator of RNA polymerase Il transcription subunit 6 (Mediator complex 1.7E-25 Yes
subunit 6)
Rogrip1 X-linked retinitis pigmentosa GTPase regulator-interacting protein 1/RPGR- 5.6E-04 No
interacting protein 1
Spton1 Spectrin beta chain, brain 1 (Spectrin, non-erythroid beta chain 1) (Beta-Il 7.5E-03 No
spectrin) (Fodrin beta chain) (Embryonic liver fodrin)
Ncl Nuc Nucleolin (Protein C23) 84E-03 No
Pnn Pinin 85E-03 No
aly-2 Thoc4 Aly, Refl, THO complex subunit 4/Tho4 (Ally of AML-1 and LEF-1) (Transcriptional 1.3E-20 Yes
Refbp1 coactivator Aly/REF) (RNA and export factor-binding protein 1) (REF1-)
Refbp2 Ref2 RNA and export factor-binding protein 2 1.6E-14 Yes
Fox1 A2bp, A2bp1 Fox-1 homolog A (Ataxin-2-binding protein 1) 2.0E-03 No
Histihla HIf1 Histone H1.1 (H1 VAR3/H1a) 2.0E-03 No
mdt-8 Ezh2 EnxTh Histone-lysine N-methyltransferase EZH2 (Enhancer of zeste homolog 2) (ENX-1) 24E-61 No
Med8 Mediator of RNA polymerase Il transcription subunit 8 (Mediator complex 2.7E-23 Yes
subunit 8) (Activator-recruited cofactor 32 kDa component/ARC32)
Pou6f2 POU domain, class 6, transcription factor 2 1.1E-03 No
hlh-11 Tcfap4 Ap4 Activator protein 4 (Putative uncharacterized protein) (Transcription factor AP4) 1.5E-17 Yes
Hey2 Chf1, Herp, Hairy/enhancer-of-split related with YRPW motif protein 2 (Hairy and enhancer 34E-07 No

Herpl, Hesr2, of split-related protein 2/HESR-2) (Hairy-related transcription factor 2/mHRT2)
Hrt2 (HES-related repressor protein 2) (Protein gridlock homolog)
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Figure 2 Examples of the variety of expression patterns at E14.5.(A) Restricted; (B) broad; (C-F) proliferative zone; (G-) post-mitotic regions.
Scale bar = 500 um. (A) Nkx2.1, (B) Cux1, (C) Suv3%hl, (D) Ezh2, (E) Hist1hla, (F) Ncl, (G) Cux2, (H) FoxI, (I) Myst3. CTX, cortex; LGE, lateral ganglionic
eminence; MGE, medial ganglionic eminence; SVZ, subventricular zone; VZ, ventricular zone.

OMIM and disease linkage meta-analysis

Human orthologs of the mouse genes were identified
through NCBI Homologene. Only one mouse gene,
Refbp2, does not yet have an identified human ortholog.
Manual pBLAST of non-redundant protein entries also
revealed no significant human homology to mouse

Refbp2. The genes identified in this work are scattered
throughout the human genome (Figure 3; Additional file 5).
In order to assess any potential bias in the distribution
of the homologs, we tallied the genes on each chromo-
some as a percentage of the genes in this study. We
then compared those fractions with the distribution of



Table 3 Summary of transcript expression in C57BI6j mice from E13.5 to E15.5

Brain expression \'74 svz Mantle Cortex
Mouse gene Vv G A A B Vv G A A B \' G A A B Vv G A A B Vv G A A B
name 145 145 135 155 15 145 145 135 155 15 145 145 135 155 15 145 145 135 155 15 145 145 135 155 15
Pitx1 + + ND ND ND - - - - - - - -
Pitx2 + ND + ND 4+ - - - - - - - - - - - -
Pitx3 + ND ND ND - - - - - - - - -
Foxb2 - ND  ND + ND - - - - - - - -
FoxL1 ND  ND ND ND ND
Foxal - ND + + + - - - - - - - - - - - - - - - -
Foxbl - + + + ND - - - - - - - - - - - - - - - -
Foxi2 - ND ND ND ND - - - -
Foxd? ND + + ND ND - + - + - - - +
Foxql ND + ND + ND - + - - +
Foxa3 - + - - - - + - - - - + - - - - + - - - - + - - -
Jup + + ND ND ND - - - - - - -
Ctnnb1 + + + ND ND  + + + + + + - + - - + +
Ip6k1 + + ND  ND ND - - - + + + + +
Ip6k2 - + ND ND ND - - - + - + - +
Ip6k3 ND  ND ND ND ND
Ipmk + ND ND ND ND + + + +
Phox2a ND + ND - ND - - - - - - -
Arx - ND + + ND - + - - + + - + + - + +
Alx4 - + ND + ND - - - - + - - - - - - -
Phox2b - ND + + ND - - - - - - - - - - - -
Pax7 - ND  ND + ND - - - - - - - -
Nkx2-5 ND ND ND ND - - - -
Nkx2-3 ND ND ND + - - - - + - -
Nkx2-1 + + + + ND - - - - + + + + - - - - - - - -
Nkx2-4 ND  ND ND ND ND
Hnf4g - + - - ND - - - - - - - - - - - - - - - -
Hnf4a - ND ND ND  ND - - - -
Rarg - + ND + ND - + - - - - - - - - + -
Znf541 ND ND ND ND ND
Trerfl - + ND ND ND - + - - - - - +
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Table 3: Summary of transcript expression in C57BI6j mice from E13.5 to E15.5 (Continued)

C130039016Rik
Mier1
Reorl
Foxj3
Ncorl
Ezh2
Ezh1
Suv3ohi
Tafll
Dspp
Myst3
Rxrb
Cux1
Cux2
Myh8
Myh10
Clip1
Myh11
Medé
Rpgrip1
Sptbnl
Ncl
Pnn
Thoc4
Refbp2
Fox1
Histlhla
Med8
Pou6f2
Tcfap4
Hey2

ND

ND

+
ND
+
ND
ND
+
ND

ND
ND
+
ND
+
ND
ND
ND
ND
ND
ND

+
+
ND
ND
ND
ND
ND
ND
ND
+
ND
ND
ND
ND
ND
+
+
+

ND
ND
+
+
+
ND
ND
ND
ND
ND
ND
ND
+
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

+

ND
ND
ND
ND
+
ND
ND
+
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
+
+
ND
ND
ND
ND
ND
ND
ND

+ o+ o+ o+

+

+

+ o+ o+ o+

+ o+

+ o+

+

V145 (Vanderbilt Study), Gy45 (GenePaint data), Ajzs to A;ss (Allen Brain Atlas data at two ages), B;s (BGEM dataset).

ND or empty cell = no data. SVZ, subventricular zone; VZ, ventricular zone.
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Figure 3 Distribution of study genes throughout the human genome.

W expected

observed

all the genes in the genome (data were obtained from
NCBI Homo Sapiens build 37.1). A difference score of
observed-expected was calculated for each chromo-
some. We then standardized the difference scores and
estimated confidence intervals (degrees of freedom 23).
In general, the human homologs of transcripts
enriched in worm embryonic GABAergic cells were
distributed evenly throughout the genome. The only
exception was chromosome 14, in which the standar-
dized difference score fell outside of the 98% confi-
dence interval. Chromosome 6 was just inside the 95%
confidence interval, although several of the genes
(IP6K3, TAF11, TRERF1, RXRB, HISTIHIA) cluster
near 6p21, a known site of suppressed recombination
[28]. This region is associated with reading disability
[29] and schizophrenia [30].

To identify known diseases or disorders associated
with the identified genes from the C. elegans screen,
each human gene was used as a search term in Online
Mendelian Inheritance in Man (OMIM). Of the 62 tran-
scripts, 17 had OMIM entries. Of these, only three were
relevant to neurocognitive phenotypes (Table 4). Muta-
tions in ARX are causal for X-linked mental retardation
[31], PHOX2B mutations are associated with congenital
central hypoventilation syndrome [32], and mutations in
NKX2.1 are associated with congenital chorea [33].

In addition to OMIM analysis, we surveyed the litera-
ture for gene association studies that may implicate any
of the genes identified in this study with neurocognitive
disruption as evident in autism spectrum disorders
(ASDs), mental retardation, schizophrenia, seizure disor-
ders or bipolar disorder. These findings are presented in
Table 4. ARX (reviewed in [34]) is the best-known con-
tributor to phenotypic disturbances among the tran-
scription factors in our list. A2BP1 (human FOXI)

appears to have a similar level of pleiotropy. While
A2BP1 is relatively understudied, it has been associated
with ASD [35], mental retardation and seizure activity
[36].

Finally, the hypothesis that disturbances in GABAergic
interneurons may play a role in ASD, combined with
the emerging interest in endophenotype analysis in trait
genetics in ASD, prompted a comparison of the 62
genes to chromosomal regions associated with ASD
endophenotypes, rather than association with full ASD
diagnosis. Specifically, we relied on summarized evi-
dence from the literature of chromosomal association
with autism endophenotype data reviewed by Losh et al.
[37]. The chromosomal positions of selected genes are
presented in Table 4 along with the associated autism
endophenotypes for those chromosomal positions.
There are several potential candidates for further analy-
sis of autism endophenotypes. In particular, EZH2
stands out, as it is located at 7q35-36, within a repli-
cated linkage peak for ASD genetics, including language,
communication and developmental regression endophe-
notypes [38-40]. Additionally, A2BP1(FOX1I) is included
in a chromosomal position associated with autism
(35,36].

Discussion

In this report, we adopted a conservation-based bioin-
formatic approach to identify potential molecular regu-
lators of GABAergic identity in the mammalian
telencephalon. GFP-marked GABAergic neurons from
the nematode, C. elegans, were isolated by FACS for
microarray profiling. These data revealed enrichment (>
1.7x) of 17 transcripts encoding conserved proteins with
potential roles in gene regulation in the nematode.
BLASTP of these C. elegans proteins identified mouse
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Table 4 Transcripts with brain expression were surveyed for evidence of gene association with neurocognitive

disorders

Mouse Human Gene association with neurocognitive Chromosomal Autism endophenotype [37]

gene gene disorders position

Pax7 PAX7 1p36.2-p36.12 Language, communication

Ncl NCL 2q12-qter Language, communication

Ctnnbl CTNNB1 SZ [51] (protein level) 3p22-p21.3

Phox2b PHOX2B SZ [52], OMIM 603851 4p12

Pitx1 PITX1 ASD [53] 5031

Ezh2 EZH?2 7935-q36 Language, communication; developmental
regression

Ipmk IPMK 10g21 Social responsiveness

Nkx2-3 NKX2-3 10024.2 Social responsiveness

Pitx3 PITX3 10925 Social responsiveness

Foxi2 FOXI2 10926 Social responsiveness

Cux2 Cux2 BPD [54] 12924.12

Nkx2-1 NKX2-1 MR [55], OMIM 600635 14913

Tcfap4 TFAP4 16p13 Repetitive behavior/OCD; language,
communication

Fox1 A2BP1 ASD [35], MR and seizures [36] 16p13.3 Repetitive behavior/OCD

Jup JUP 17921 Social responsiveness

Ezhi EZH1 17921.1-g21.3 Social responsiveness

Hnf4a HNF4A 20q12-g13.1 Language, communication

Arx ARX ASD, MR, seizures [34], OMIM 300382 Xp22.13

Autism endophenotype data are reviewed in [37]. ASD, autism spectrum disorder; BPD, bipolar disorder; MR, mental retardation; OCD, obsessive-compulsive

disorder; OMIM, Online Mendelian Inheritance in Man; SZ, schizophrenia.

homologs and 62 independent transcripts corresponding
to these mammalian transcription factors were assessed
for expression in E14.5 mouse brain. The data generated
in our comparative strategy revealed several highly con-
served players in GABAergic interneuron differentiation,
including Arx, Nkx2.1 and Cux2 [22-24]. The positive
identification of these transcripts supports the utility of
our bioinformatic approach as a productive strategy for
identifying conserved determinants of neuronal fate. Of
the reciprocal BLASTP top hits, 14 unique transcripts
showed relevant in situ hybridization patterns for tele-
ncephalic GABAergic neurogenesis, with 3 having
known roles (Arx, Cuxl, Cux2). Indeed, mutations in
ARX have been associated with human brain function
and interneuron pathology as identified in OMIM [41].
The 11 remaining top reciprocal hits with relevant
expression patterns serve as novel candidate genes
(Ip6k1, Ip6k2, Trerfl, C130039016Rik, Ezh2, Tafll,
Med6, Thoc4, Refbp2, Med8, Tcfap4). While not top
reciprocal hits, based on striking expression pattern
alone, Histlhla, Fox1, Myst3 and Suv39h1 warrant
further attention. This is especially true as reciprocity is
not a perfect predictor of candidacy, as two proteins
with known function in GABAergic specification were
not top reciprocal hits (NKX2.1 and beta-Catenin).
Mammalian GABAergic cells are generated in the pre-
optic area and ganglionic eminence of the ventral

pallium during embryogenesis [8,42-44]. The three main
subdivisions of the ganglionic eminence-lateral (LGE),
medial (MGE) and caudal (CGE)-generate a diverse
portfolio of GABAergic cells. The LGE produces
GABAergic projection neurons of the striatum and
interneurons of the amygdala and the olfactory bulbs
whereas the MGE and CGE produce the majority of
cortical and striatal interneurons, although each contri-
butes a different repertoire of cell types. Cells from the
MGE (for example, Nkx2.1-expressing cells) settle in
cortical layers in an inside-out fashion based on cell
birth date, whereas the most ventral MGE cells generate
neurons of the globus pallidus and striatal cholinergic
neurons [45]. In contrast, cells from the CGE tend to
migrate to upper layers, independent of birthday, and
comprise 15 to 30% of all cortical interneurons [46]. It
is curious that of all of the transcription factors that we
mapped, Nkx2.1 was the only one that was limited to
one of the three progenitor pools.

It is clear that the gene regulatory transcripts identi-
fied in our study, with the exception of Nkx2.1, do not
delineate these well-known pools of progenitor popula-
tions. The absence of tissue specificity could mean that
these transcription factors exercise general roles in neu-
ronal differentiation as opposed to functioning as selec-
tive determinants of GABAergic fate. However, the
broader expression beyond the boundaries of these
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defined progenitor zones does not preclude a role for
the protein products of these transcripts in contributing
to the development of a selective neuronal type. For
example, these candidates may be permissive for a parti-
cular fate or act in combination with other gene pro-
ducts with more limited expression patterns.

The data generated by our comparative approach
blend with and add to the existing data on mammalian
transcription factors that could play a role in the full
development of GABAergic fates. There have been sev-
eral efforts in mouse embryogenesis to use transcription
profiling of microdissected GABAergic proliferative
zones or fluorescent sorting of enhanced GFP (EGFP)-
positive interneurons in dissected embryonic brain. For
example, Batista-Brito et al. [9] used FACS to isolate
embryonic interneurons from presumptive neocortex of
E13.5 and E15.5 DIx5/6<"¢RIS-EGFP mijce, They con-
trasted the transcriptomes of EGFP-positive (interneur-
ons) and EGFP-negative cells (all other cell types) and
identified several enriched transcripts, including Arx and
Cux2, as in our study. Because of the region dissected,
Nkx2.1 was not enriched, as its expression wanes as
interneurons leave the medial ganglionic eminence.
They also identified several other candidate transcription
factors, including some with association with neurologi-
cal disorders. Faux et al. [10] performed a similar
experiment contrasting the transcriptomes of interneur-
ons in the cortex versus the ganglionic eminence using
GADG67-EGFP FACS isolated cells obtained at E13.5 and
E15.5. Among other transcription factors, Faux et al.
also show increased expression of Cux2. Cux2 was also
identified in a similar study by Marsh et al. [11]. By
changing the contrasted pools of mRNA, the Faux et al.
study addressed a different question than the Batista-
Brito et al. study. The purpose of the Faux et al. study
was to enrich for transcripts that may play a role in the
migration of interneurons, while the Batista-Brito et al.
study addressed the question of what genes are differen-
tially expressed in interneurons versus other cell types
in the embryonic cortex. Clearly, the contrasted pool of
mRNA makes a difference in what transcripts appear to
play a role in aspects of interneuron specification [9],
migration [10] and maturation [12]. Indeed, contrasting
mRNA pools from CGE, LGE and MGE can provide
candidates for specifying interneuron subtype [13].

While the comparative approach used here has identi-
fied novel potential candidates in the specification of
interneurons, there are limitations. The experimental
design would not detect elements of chromatin struc-
ture or microRNAs, for example, as mechanisms of
transcriptional regulation. Our analysis was limited to
transcripts that encode proteins involved in gene regula-
tion; other protein classes (for example, receptor tyro-
sine kinases, ion channels) could also be involved.
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Moreover, the results are correlational; the expression
patterns of these novel candidates overlap with areas
that produce GABAergic cells, but do not show that
these transcripts participate in GABA fate. Functional
studies will be necessary to determine a role for these
potential novel players. Additionally, while the compara-
tive data used in this study are based on protein
sequence homologies, the ultimate goal is to identify
functional orthologs across species. Because true func-
tional orthology is determined over time with experi-
mental methods outside of the scope of this manuscript,
we implore the reader to view these data as a first step
on the path to identifying potential functional orthologs
in conserved gene regulation networks to specify a
GABAergic fate.

While this comparative approach revealed several
highly conserved players in GABAergic neurogenesis,
including Nkx2.1, Arx and Cux2, we failed to identify
some known factors in mammalian forebrain specifica-
tion, including Olig-2, although we did identify other
basic helix-loop-helix (bHLH) transcription factors, such
as Tcfap4. Also noticeably absent from the list were
Lhx6 (lim-4 in C. elegans), Mashl and Dlx1/2, all of
which have been demonstrated to play a role in
GABAergic differentiation in the mammalian forebrain.
We note that a related LIM homeodomain protein,
LIM-6, is required for differentiation and expression of
UNC-25/GAD in a subset of C. elegans GABAergic neu-
rons [47].

While unc-30 is the top candidate with the highest
enrichment in GABAergic cells in the worm data set,
none of the mammalian homologs (Pitx1, Pitx2, Pitx3)
revealed expression in known GABAergic proliferative
zones of the forebrain, even though there was expres-
sion in other brain areas at E14.5. Pitx2 is highly
expressed in GABA neuron progenitors in diencepha-
lon/mesencephalon [48], where it is known to drive
Gad67 expression [25]. This role is also conserved in
the C. elegans homolog, unc-30 [49]. In fact, both mam-
malian Pitx2 and C. elegans unc-30 can both be used to
activate Gad67 transcription in vitro and in vivo [25].
While Pitx2 and unc-30 clearly give rise to a GABA
phenotype, based on the absence of Pitx2 expression in
the forebrain, there are other mechanisms that regulate
GABA phenotype in the interneurons of the telencepha-
lon. More than one type of transcription factor or com-
bination of transcription factors likely can drive the
GABAergic fate. Indeed, GABAergic fate regulation in
the worm offers a striking parallel to the mouse: unc-30
drives GABAergic fate in ventral cord motor neurons
but not in GABAergic motor neurons in the head where
the LIM homeodomain /im-6 is required; similarly,
Pitx2 is highly expressed in diencephalon/mesencepha-
lon GABAergic progenitors and drives Gad67
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expression but is not required for differentiation of fore-
brain GABAergic interneurons that depend on ARX.
Additionally, alr-1, the worm homolog of ARX, regulates
gene expression in worm GABA motor neurons [50].

Conclusions

Comparative transcription profiling across diverse taxa
is a fruitful approach for generating candidate genes for
brain development. Our comparative analysis has
pointed to several interesting candidates for the specifi-
cation of GABAergic cells in the mammalian telence-
phalon during embryogenesis based on their expression
in regions known to produce or contain interneurons.
While not exclusively expressed in these regions,
Histlhla, Ezh2, A2bp1 (Fox1), Suv39h1 and Myst3 are
all novel candidates for interneuron development.
Furthermore, these candidates represent two relatively
understudied classes of gene regulatory proteins in the
context of interneuron development, including histone
interacting proteins (Histlhla, Ezh2, Suv39hl and
Myst3) and RNA regulators (Fox1/A2bpl). As novel can-
didates for interneuron development, these transcripts
may also be candidate genes for, or participate in, path-
ways giving rise to neurodevelopmental disorders such
as autism, mental retardation and schizophrenia. Varia-
tion in function of these proteins and their interacting
partners might also play a role in brain evolution. These
hypotheses remain to be explored.

Additional material

Additional file 1: Table S1. IMAGE clones used to generate in situ
hybridization probes in this study.

Additional file 2: Table S2. Primers used for the generation of
subclones from IMAGE clones used to generate in situ hybridization
probes in this study.

Additional file 3: Table S3. Modified Allen Brain Atlas in situ
hybridization protocol and Eurexpress Il SOP on Tecan Evo GenePaint
System.

Additional file 4: Table S4. Buffer compositions for in situ hybridization
protocol.

Additional file 5: Table S5. Chromosomal position of human homologs
of all study genes.
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