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Abstract

Runt-related (Runx) transcription factors control diverse aspects of embryonic development and
are responsible for the pathogenesis of many human diseases. In recent years, the functions of this
transcription factor family in the nervous system have just begun to be understood. In dorsal root
ganglion neurons, Runx| and Runx3 play pivotal roles in the development of nociceptive and
proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional
regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a
consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In
this review, we summarize recent progress in determining the role of Runx in neuronal

development.

History

Runt related (Runx) genes are evolutionarily conserved
developmental regulators in metazoa, where they play
diverse roles in several different biological systems,
including cell differentiation. One of the Drosophila pair-
rule genes, Runt, controls segmentation, sex-determina-
tion and neuronal development [1]. The mammalian
Runx gene was first identified as AML1, which is fre-
quently involved in the chromosomal translocations asso-
ciated with acute myeloid leukaemia (AML) [2]. Both
Runt and AML1 encode a DNA binding subunit of the het-
erodimeric transcription factor PEBP2/CBF. Polyomavirus
enhancer binding complex (PEBP2/PEA2) was identified
during the characterization of the cellular mechanisms
involved in differentiation using embryonal carcinoma
cells [3]. CBF was first identified as a protein that binds to
the core sequence of the murine retrovirus enhancer,
which influences the tissue specificity of viral replication

[4].

There are three mammalian RUNX genes, RUNXI
(AML1), RUNX2 (CBFAI) and RUNX3 [5]. RUNXI is
essential for definitive hematopoiesis and frequently
involved in human leukaemia [6]. Runx2 is a master reg-
ulator of bone development [7]. Moreover, haploinsuffi-
ciency of RUNX2 is one of the causes of the hereditary
bone disease Cleidcranial displasia [8]. RUNX3, the third
member of the RUNX gene family, was the least character-
ized until gene targeting studies opened up new avenues
of investigation into Runx function. First of all, RUNX3 is
involved in many types of human cancer as a tumour sup-
pressor [9,10]. Hypermethylation of the RUNX3 pro-
moter and deletion of the RUNX3 gene are frequently
observed in several cancers, and RUNX3 protein is now
best considered as an apoptosis inducer [11,12]. Second,
RUNX3 controls the generation of the T-cell sub-lineage
[13-15]. In particular, transcriptional regulation of CD4
silencer and Th-POK have been described in detail
[13,15]. Finally, Runx3 controls the development of pro-
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prioceptive dorsal root ganglion (DRG) neurons [16,17].
The last discovery was particularly relevant to develop-
mental neurobiology and, since then, several groups have
characterized not only Runx3, but also Runx1 as a crucial
regulator of DRG neurogenesis [18,19].

Expression of Runx| and Runx3 in the nervous system
Earlier in situ hybridization studies indicated strong
expression of Runxl mRNA in spinal motor neurons,
DRG, cranial ganglia and specialized sensory epithelial
structures such as olfactory and gustatory mucosa, and fol-
licles of the vibrissae [20]. Subsequently, the generation of
specific antibodies against Runx1 and Runx3 and the uti-
lization of Runx1/s4 or Runx3/8i mice revealed the
expression of Runx1 and Runx3 in the nervous system in
more detail [16,21,22]. Runx1 is synthesized in both the
central and peripheral nervous systems of mouse
embryos. In the central nervous system, Runx1 is synthe-
sized in selective populations of somatic motor neurons
in the spinal cord and in cholinergic branchial and vis-
ceral motor neurons in the hindbrain, such as dorsal vagal
nucleus and nucleus ambiguus [21,22]. In the peripheral
nervous system, Runx1 is localized to DRG and selective
cranial ganglia, including trigeminal (V) and vestibuloco-
chlear (VIII) ganglia and the glossopharyngeal-vagal (IX-
X) ganglia complex [21,22]. In contrast to Runx1, Runx3
is confined to the peripheral nervous system, specifically
to DRG and cranial ganglia [16,21]. Although Runx1 and
Runx3 are almost exclusively found in postmitotic neu-
rons in the central nervous system and peripheral ganglia
[16,21,22], a rare exception is the expression of Runx1 in
proliferating progenitors of the olfactory epithelium [23].
These observations suggest Runx1 and Runx3 have exten-
sive functions in the mammalian nervous system.

Roles of Runx3 in the development of DRG neurons

DRG neurons convey peripheral somatosensory stimuli to
the spinal cord. There are three major subpopulations of
DRG neurons - nociceptive, mechanoreceptive, and pro-
prioceptive — which differ in their cell size, dependency on
neurotrophins, and distinct axonal terminal fields in the
spinal cord and peripheral tissues. Runx1l and Runx3 are
synthesized initially in TrkA* nociceptive and TrkC+ prop-
rioceptive neurons, respectively (Figure 1) [17,24,25].
This complementary expression pattern suggests specific
roles for Runx1 and Runx3 in subtypes of DRG neurons.
Indeed, the phenotype of Runx3 knockout mice is similar
to that of NT3 and TrkC knockout mice [16,17,26-29].
Namely, Ia/Ib type DRG neurons fail to form a stretch
reflex circuit with motor neurons in the spinal cord,
resulting in severe motor discoordination [16,17]. What is
the molecular basis of the phenotype? Several elegant
studies have been performed to answer this question.
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Runx proteins control the diversification of sensory
neurons.(a) Proprioceptive (TrkC*) and mechanoreceptive
(TrkB*) DRG neurons are derived from the common precur-
sors (TrkB*, TrkC*). During segregation of two complemen-
tary sensory populations, Runx3 represses trkB expression in
TrkC* neurons. (b) During early postnatal periods, TrkA*
DRG neurons differentiate into two nociceptive subpopula-
tions; TrkA* peptidergic neurons, and Ret* non-peptidergic
neurons that repress trkA. In Ret* non-peptidergic neurons,
Runx| represses trkA and neuropeptide CGRP. Runx| also
activates a number of nociceptor-specific G protein coupled
receptors, ATP channels, and TRPV channels. (c) G protein
coupled receptor MrgA, B and C are under dynamic tran-
scriptional regulation in DRG neurons. A carboxy-terminal
VWRPY motif of Runx proteins is critical for binding to
Groucho corepressor. Runx|, which lacks VWRPY, fails to
repress MrgA, B and C in DRG neurons.
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First, the role of Runx3 in the neurotrophin receptor phe-
notype was shown by Arber and her colleagues [25], who
thoroughly compared neurotrophin receptor synthesis in
mouse strains in which Runx3 had been disrupted or
expressed ectopically. In DRG neurogenesis, dynamic
changes are observed during the synthesis of neuro-
trophin receptors (TrkB, TrkC) [25]. At early developmen-
tal stages, most DRG neurons synthesize TrkC protein first
before the onset of TrkB synthesis. Thus, some TrkC+ DRG
neurons co-synthesize TrkB (Figure 1a). Subsequently, the
ratio of TrkB/TrkC-hybrid neurons declines to produce
DRG neurons that synthesize either TrkC or TrkB (Figure
1a). During this segregation, Runx3 is observed in most
TrkC* neurons but not in TrkB+* neurons [25]. One of the
functions of Runx3 is to repress TrkB when DRG neurons
acquire TrkC+ identity (Figure 1a) [25].

Second, the axonal outgrowth and/or axonal guidance of
propiroceptive DRG neurons are also regulated by Runx3.
Two different interpretations were proposed for the phe-
notype of the Runx3-/- DRG. One group proposed that
Runx3 controls the appropriate axon targeting of trkC-
expressing proprioceptive DRG neurons to motor neurons
[16]. However, another group observed massive cell death
of TrkC+ neurons in Runx3-/- DRG in apparent contradic-
tion to the previous proposition [17]. A recent study with
Runx3 and Bax-double knockout mouse revealed clearly
that the axonal projection of propioceptive DRG neurons
to motor neurons is still lost in the Runx3 mutant even in
the absence of apoptosis [30]. The study further clarified
that the initial model 'Runx3 — TrkC and Runx1 — TrkA'
might not apply to later developmental stages [30]. They
observed that Runx3 co-localizes not only with TrkC, but
also TrkA and TrkB at postnatal day 0 (P0) [30]. Of note,
Runx1+ and Runx3+ neurons were clearly segregated at
embryonic day 16.5 (E16.5) but almost all Runx3+ neu-
rons co-synthesize Runx1 at E18.5 and PO [30]. It is possi-
ble that Runx3 has some functions not only in
proprioceptive neurons, but also in nociceptive neurons
[30]. Overall, the evidence obtained from Runx3 and Bax
compound mutants support a role for Runx3 in the con-
trol of axonal projection, although the molecular mecha-
nisms remain unknown [30]. Prior studies showed that
DRG explants from Runx3-knockout mouse embryos
extended short neurites in the presence of NT3, a ligand
for TrkC, but not in the presence of NGF, a ligand for TrkA
[16]. This suggests that Runx3 may regulate the axonal
outgrowth of specific DRG neurons independently of the
target tissue. On the other hand, Chen et al. [24] revealed,
using a tour de force method, that Runx3 activity deter-
mines the dorso-ventral position of axonal termination of
DRG neurons in the spinal cord. DRG neurons with high
Runx3 activity extended their axons far into the ventral
spinal cord like proprioceptive neurons, whereas those
neurons with low Runx3 activity extended their axons into
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the dorsal spinal cord. Ectopic expression of Runx3 is suf-
ficient to drive axons from the dorsal to the ventral spinal
cord, indicating that Runx3 per se has instructive roles in
central axon targeting in DRG neurons.

Thus, Runx3 controls the neurotrophin receptor pheno-
type as well as the axonal projection of proprioceptive
DRG neurons. The two functions may not be mutually
exclusive but closely related to each other. For example,
NGF/TrkA signalling and NT3/TrkC signalling are
required for proper axonal projection [31,32].

Roles of Runx| in the development of DRG neurons

In contrast to Runx3, the study of Runx1 function in DRG
development was delayed owing to the early embryonic
lethality of the targeting mouse [22,23,33]. Thus, Runx1
knockout mice die due to a lack of definitive hematopoi-
esis by E12.5, which is before the onset of major events in
the development of TrkA+ DRG neurons. However, recent
studies have investigated the roles of Runx1 in DRG neu-
rons using different experimental models.

First of all, Runx1 controls the lineage diversification of
nociceptive neurons [25,33,34]. During late embryonic
and early postnatal periods, trkA-expressing neurons dif-
ferentiate into two subpopulations of nociceptive neu-
rons; trkA-retaining peptidergic neurons, and non-
peptidergic neurons that repress trkA and instead activate
Ret, a receptor for glial-derived neurotrophic factor
(GDNF; Figure 1b). During the late embryonic stages,
most trkA-expressing DRG neurons coexpress Runx1 (Fig-
ure 1b). Postnatally, Runx1 disappears in trkA-retaining
peptidergic neurons but continues to exist in Ret-inducing
non-peptidergic neurons (Figure 1b). Using the Runx1-
conditional knockout mouse, it was shown that Runx1 is
dispensable for the de novo induction of TrkA [34]. This
was confirmed by Shiga and his colleagues [33], who used
a different gene-targeting method that relied on the rescu-
ing of Runx1 expression in hematopoietic cells. However,
Marmigere et al. [35] showed that virally expressed Runx1
induced de novo synthesis of TrkA in the DRG and spinal
cord of chick embryos. One possible explanation is that
the minimal enhancer of kA, which Runx1 regulates
[35], may not be required for the de novo induction of trkA
expression [36]. On the other hand, Runx1 is essential for
the late repression of trkA and induction of Ret when
TrkA+ and Ret* neurons segregate (Figure 1b) [34]. In
addition to trkA, Runx1 also represses the neuropeptide,
calcitonin-gene-related peptide (CGRP; Figure 1b)
[25,33,34]. More surprisingly, nearly all the known
marker genes for nociception are under the control of
Runx1. In the conditional Runx1 mutant DRG, expression
of a number of nociceptor-specific G protein coupled
receptors, ATP channels, and TRPV channels is attenuated
(Figure 1b) [34].
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Similar to Runx3, Runx1 also regulates the axonal out-
growth and guidance of nociceptive neurons. Marmigere
et al. [35] revealed that the transfection of Runxl into
boundary cap-derived neural crest stem cells increased
neurite length and branching. In Runx1-knockout mice,
the axonal projection to laminae Ili of the dorsal spinal
cord was perturbed [33,34]. In the wild type, peptidergic
nociceptive axons project to layer I/Ilo in the superficial
dorsal horn, whereas non-peptidergic nociceptive axons
project to deeper layer IIi. In Runx1-knockout mouse,
non-peptidergic axonal projection displays dorsal shift to
layer I/1lo [34].

Thus, Runx1 controls a battery of genes that are associated
with the generation of non-peptidergic nociceptive neu-
rons. The findings that both Runx3 and Runx1 play criti-
cal roles in distinct sensory neurons suggest that Runx
factors are involved in the evolution of sophisticated sen-
sory systems in higher vertebrates.

Upstream/downstream genes

The upstream signals and transcriptional regulation of
RUNX genes have been studied in non-neuronal tissues
[37]. However, only limited studies have addressed this
issue in the nervous system. Both Runx3 and Runx1 genes
contain Brn-3a binding sites in their 5'-upstream regions,
suggesting that Runx3 and Runxl are candidate down-
stream targets of Brn-3a, a well characterized transcription
factor in sensory neurons [38,39]. Microarray studies have
shown decreased levels of Runx1 and Runx3 transcripts in
the sensory neurons of Brn-3a-knokout mice [40,41].
Kramer et al. [25] investigated the putative upstream sig-
nal of Runx1/Runx3 in DRG neurons. Plausible candidates
are TrkC/TrkA signalling and the basic helix-loop-helix
transcription factors Ngn2/Ngnl; however, a genetic
study has excluded these possibilities [25]. Ginty and col-
leagues [42] investigated the roles of NGF and the Ret
receptor in DRG neurons. In Ngf-Bax compound knock-
out DRG, TrkA neurons are hypotrophic although de novo
Runx1 expression is unaffected [42]. However, Runxl
expression is not maintained to the neonate stage and the
expression of all putative Runx1 target genes is altered
[42]. Thus, NGF signalling is essential for sustained
expression of Runxl1. In Ret conditional knockout DRG,
Runx1 expression is normal but a part of Runx1 target
genes are affected, suggesting the GFR/Ret dependent
transcriptional regulation by Runx1 in DRG neurons [42].
Although this study placed Runx in a pivotal position in
developmental signalling cascades, the upstream signal-
ling event(s) still remains elusive.

On the other hand, how does Runx1l/Runx3 regulate
downstream transcriptional cascades? In DRG neurons,
TrkC is a critical signalling receptor involved not only in
the control of cell survival, but also in axon path-finding
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and fate determination of proprioceptive DRG neurons
[32,43,44]. Therefore, it is natural to infer that trkC is a
transcriptional target of Runx3 [17]. However, unbiased
computational analysis suggested that a cis-regulatory ele-
ment exists in the gene locus of TrkB, rather than in the
gene locus of TrkC [45]. This was unexpected because trkB
is expressed in neurons of an alternative sensory fate,
TrkB+TrkC- neurons [43]. The strategy "to repress alterna-
tive traits" appears to be a common feature in neuronal
lineage commitment [46]. At the molecular level, kB
possesses a conserved cluster of Runx binding sites that
function as a silencer of the trkB promoter in cultured
DRG neurons [45]. In Runx3 knockout DRG, derepression
of trkB seems to be a crucial event, influencing lineage
commitment [25,45], and, eventually, resulting in drastic
behavioural consequences [16,17].

Runx protein works both as an activator and repressor,
depending on the molecular context [47]. The finding that
Runx3 represses (kB raises a question as to the identities
of its partner molecules in the transcriptional repressor
complex. The function of Runxl as a transcriptional
repressor has been widely studied [48,49]. A plausible
candidate in the context of DRG is the Groucho corepres-
sor. In motoneuron fate specification, Groucho-mediated
repression is a common mechanism for homeodomain
proteins containing the EH1 domain [46]. Runx proteins
have the evolutionarily conserved VWRPY carboxy-termi-
nal motif, which is considered to be critical for Groucho
binding/function [50,51]. Yarmus et al. [52] generated
mice in which Runx3 lacks these amino acids. Surpris-
ingly, VWRPY knockout mice displayed the normal devel-
opment in DRG neurons, though they showed the
phenocopy to Runx3 knockout mice in dendritic cells
[52]. The results suggest that Runx3 represses trkB through
a Groucho independent mechanism. Recently, Ma and his
colleagues [53] investigated the significance of the VWRPY
motif of Runxl in DRG neurons. Runxl c¢DNA, which
lacks the VWRPY coding sequence, was knocked into the
native Runx1 locus in delta446 mice [54]. In the delta446
mice, derepression of Mrg class G-protein-coupled recep-
tor genes was observed, suggesting that Mrg genes are
repressed by a Groucho-dependent mechanism (Figure
1c) [53]. Interestingly, two putative target genes that are
repressed by Runx1, trkA and CGRP, were unaffected in
the delta446 mice [53]. These results suggest that Runx1
represses target genes through either a Groucho-depend-
ent or an independent mechanism in DRG neurons.

Chen et al. [34] indicated that Runx1 controls nearly all
known marker genes critical for nociceptive functions.
Such global control by Runx over the transcription land-
scape is also observed in other physiological functions,
such as hematopoietic stem cell formation (Runx1) and
osteoblast maturation (Runx2). How this unique tran-
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scription factor has such a huge influence on many differ-
ent transcriptional cascades remains a challenging
question.

Other neurological phenotypes of RunxI/Runx3 knockout
mice

Stifani and his colleagues [22,23] have worked on the
neurological phenotypes of the Runx1l knockout mouse
other than those arising from defects in DRG neurons.
They analysed the cranial sensory neurons as well as
cholinergic branchial and visceral motor neurons of hind-
brain at an early embryonic stage [22]. The expression of
Runx1 was restricted to post-mitotic neurons, and disrup-
tion of Runxl resulted in massive neuronal apoptosis
[22]. In contrast to this finding, Runx1 is expressed in the
proliferating neuronal progenitors/precursors of olfactory
receptor neurons (ORNs) [23]. Runx1 drives the cell cycle
in ORN progenitors through transcription repression of
the cyclin dependent kinase inhibitor p21 [23]. Unlike
DRG, they did not observe any changes in the lineage
markers in the neurons examined (cranial, hindbrain and
olfactory), indicating that Runx1 has distinct functions in
different types of neurons [22,23].

The study of the neurological function of Runx3 other
than in DRG is very limited. Levanon et al. [17] reported
that TrkC+ neurons in the trigeminal ganglion survive in
contrast to DRG neurons in Runx3-/- mouse. Most Runx3
knockout mice of the C57/B6 strain die within one day
after birth [9,16]. The main cause of death may be starva-
tion, as little milk is found in the stomachs of these mice
[9]- As this is probably related to the pups being unable to
swallow milk, it is interesting to note that Runx3 is
strongly expressed in cranial ganglia, including the glos-
sopharyngeal ganglion [16,17]. It is possible that Runx3 is
essential for the functional glossopharyngeal system
(swallowing), suggesting the critical roles in developmen-
tal cranial neurons.

Conclusion

Although the roles of Runx in neural development have
just begun to be investigated, studies in gene knockout
mice indicate that the roles of Runx in the nervous system
are as important as its roles in other, non-neuronal tis-
sues. However, a number of open questions should be
addressed in the future. First, upstream signalling cascades
remain elusive. The mRNA expression and protein synthe-
sis for Runx1/Runx3 are tightly regulated and DRG is one
of the tissues in which Runx1/Runx3 display their highest
protein levels among the entire body; how do DRG neu-
rons achieve such a high protein level for Runx1/Runx3?
Second, the molecular bases of tissue specificity are largely
unknown. Runx1 and Runx3 are highly homologous but
they control the development of distinct subpopulations
of sensory neurons. In particular, Runx1+ neurons and
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Runx3+ neurons project axons into totally different target
tissues; how is this specificity achieved? Third, transcrip-
tional regulation is not the only determinant of DRG neu-
rogenesis. Ectopic synthesis of TrkC receptor per se
influences the lineage commitment of DRG neurons [44],
while Runx3 plays a crucial role in TrkB/TrkC status
[25,45]. It is likely that Runx and neurotrophin status are
closely related to each other. How this cross-regulation is
carried out is a challenging question. Finally, since all
three Runx proteins have common features, some of the
knowledge about Runx function in oncology, haematol-
ogy, immunology and bone biology is likely to be appli-
cable to neuroscience as well, particularly at the molecular
level [53].
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