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Abstract

Background: During spinal cord development, expression of chicken SEMAPHORIN6A
(SEMAGA) is almost exclusively found in the boundary caps at the ventral motor axon exit point
and at the dorsal root entry site. The boundary cap cells are derived from a population of late
migrating neural crest cells. They form a transient structure at the transition zone between the
peripheral nervous system (PNS) and the central nervous system (CNS). Ablation of the boundary
cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots.
Based on its very restricted expression in boundary cap cells, we tested for a role of SemabA as a
gate keeper between the CNS and the PNS.

Results: Downregulation of SemabA in boundary cap cells by in ovo RNA interference resulted in
motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal
roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are
expressed by both motoneurons and sensory neurons. Knockdown of PlexinAl reproduced the
phenotype seen after loss of SemaéA function both at the ventral motor exit point and at the dorsal
root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or SemaéD function had an
effect only at the dorsal root entry site but not at the ventral motor axon exit point.

Conclusion: SemabA acts as a gate keeper between the PNS and the CNS both ventrally and
dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus,
prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site
it organizes the segregation of dorsal roots.

Background are subdivided into long-range and short-range guidance
During development of the nervous system, axons navi-  cues. They belong to a relatively small number of protein
gate long distances to connect to their targets. Along their ~ families, the immunoglobulin superfamily of cell adhe-
trajectories they encounter a large variety of guidance cues  sion molecules [3], the Eph/ephrins [4], the netrins [5,6],
that support their navigation [1,2]. Axon guidance cues  the semaphorins [7,8] and their receptors, plexins and
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neuropilins [9,10]. More recently, morphogens such as
Wnts and Shh have also been implicated in axon guidance
[11-13].

The semaphorins comprise a large family subdivided into
eight subclasses based on structural criteria and their
expression in vertebrates or non-vertebrate organisms
[7,14,15]. Class 1 and 2 semaphorins are expressed only
in invertebrates, classes 3, 4, 6, and 7 are expressed only in
vertebrates, class 5 semaphorins are expressed in both
invertebrates and vertebrates, whereas class V consists of a
viral semaphorin. With respect to their function, soluble
class 3 semaphorins are the best characterized. They have
been shown to act mainly as repellents but, in some cases,
also as attractants for extending axons. Class 3 sema-
phorins bind to a receptor complex composed of
Neuropilin-1 or -2 and a member of the class A plexins
[10,15], although there is at least one exception to this
rule [16].

Plexins are expressed in a highly dynamic pattern during
development of the nervous system [17-20]. They are sub-
divided into four classes comprising a total of nine mem-
bers in mammals and seven members in chicken [20].
Plexins of class A and B were shown to bind to transmem-
brane semaphorins in the absence of neuropilins [21,22].
PlexinBs are receptors for class 4 semaphorins, whereas
PlexinAs were shown to be receptors for class 6 sema-
phorins [22-25]. Interestingly, transmembrane sema-
phorins have functions in axon guidance and synapse
formation that are independent of neuropilins [22]. The
long cytoplasmic tail of Sema6A contains binding sites for
Ena/VASP-like protein EVL and may, therefore, directly
regulate cytoskeletal dynamics [26]. Consistent with these
structural features, SemaG6A was suggested to act as a recep-
tor [27], similar to findings for Semala, the closest
ortholog of SemaGA in invertebrates [28]. Semala was
shown to act both as a repellent [29,30] and as an attract-
ant [31]. A receptor function for Semala was reported in
the visual system of Drosophila, where photoreceptor cells
depended on Semala for their targeting to the optic lobe
[32].

In mammals, Sema6A was shown to affect pathfinding of
thalamocortical axons [27] and to be required for cell
migration in the cerebellum [33]. The mode of action has
not been determined in these studies but, based on the
expression pattern and the analysis of the phenotypes, a
repulsive mechanism has been suggested in the latter. This
would be consistent with in vitro studies that demon-
strated a repulsive role of Sema6A on sympathetic axons
[22,34]. More recently, a repellent activity of Sema6D on
proprioceptive sensory afferents has been shown in both
mouse and chicken [25]. The targeting of proprioceptive
axons was dependent on PlexinA1l mediating the repul-
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sive activity of Sema6C/D. PlexinA1 was also shown to be
the binding partner of Sema6D in neural crest cell migra-
tion during heart development [23]. In these studies a
receptor function of Sema6D was demonstrated [24].
Thus, transmembrane class 6 semaphorins are bifunc-
tional molecules in axon guidance and cell migration.
They can act as a ligand for PlexinAs but also transmit a
signal themselves.

In vertebrates, the receptors for Sema6A in cerebellar
development have not been identified. However, in vitro
binding studies have indicated that Sema6A can bind to
PlexinA2 and A4 [22], whereas Sema6B binds to
PlexinAland A4 [22], Sema6C was suggested to bind to
PlexinD1 [35], and finally Sema6D was shown to bind to
PlexinA1l in neural crest cell migration [23,24].

Analysis of SEMAGA expression during chicken spinal
cord development revealed its restriction to the ventral
ventricular zone, the origin of oligodendrocytes, and,
most strikingly, to cells at the ventral motor axon exit
point (VMEP) and the dorsal sensory axons entry point.
Cells located at the transition zone between the PNS and
the CNS were shown to have gate keeper function [36,37].
In analogy to their function they are called boundary cap
cells (BCCs). BCCs are derived from a late migrating pop-
ulation of neural crest cells [38]. They express Krox20 and
the 1E8 antigen in addition to the more general neural
crest marker Sox10. BCCs are necessary to prevent emigra-
tion of motoneurons from the ventral spinal cord [37].
More recently, the boundary cap was identified as a source
of neural crest stem cells that give rise to glia and sensory
neurons of the dorsal root ganglion (DRG) [39-41].

Here, we show that Sema6A is required for the gate keeper
function of BCCs, as in the absence of Sema6A BCCs fail
to cluster properly at the CNS/PNS interface and, thus,
cannot prevent the emigration of motoneurons in a
PlexinA1l-dependent manner. At the dorsal root entry site
Sema6A is required for the appropriate segregation of dor-
sal roots.

Results

SEMAGA is expressed in boundary cap cells

SEMAGA shows a much more restricted expression pattern
during development of the chicken spinal cord compared
to the mouse. In contrast to the mouse, where SEMAGA
was found throughout the ventral spinal cord and in
DRGs [22], it was expressed only transiently in the ventral
spinal cord but never in DRGs in the chick. Most striking,
however, was its expression in cells at the boundary
between the CNS and the PNS (Figure 1). SEMAGA was
detectable in a ventral stream of neural crest cells at stage
19 (HH19; Figure 1a) [42]. At that time, small clusters of
BCCs identified by KROX20 [43] were seen only at the
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SEMAGA is expressed in neural crest cells that give rise to boundary cap cells. (a) Neural crest cells that give rise to boundary cap cells
express SEMAG6A while they are still migrating ventrally (HH19; arrow). Boundary cap cells start to cluster first at the VMEP. (b) Only
those cells that have formed clusters at the VMEP express the BCC marker KROX20 (arrowhead). The neural crest markers (c) SOXI10
and the (d) |E8 epitope are expressed by many neural crest-derived cell populations and are not restricted to BCCs at HH19. Note that
neither SOXI10 (open arrow in (c)), nor |E8 (open arrow in (d)) are expressed in BCCs while they are still migrating. First clusters of
BCCs next to the DREZ marked by (e€) SEMA6A expression (open arrowhead) or (f) KROX20 (open arrowhead) are detectable at lum-
bosacral levels by HH21I. At this stage, many SEMA6A-expressing cells are still migrating along the neural tube to reach the ventral BCC
cluster (arrow in (e)). (i-I) A similar situation is found at HH24. SEMA6A expression is clearly detectable in dorsal BCCs (open arrow-
head in (i); compare with (j)). (n, o) After HH30, SEMA6A expression in dorsal (open arrowhead in (n)) and ventral (arrowhead in (n))
BCCs decreased but was still visible by HH36 (o). In situ hybridizations on adjacent transverse sections of the lumbosacral spinal cord are
shown for SEMAGA (a, e, i, m-p), KROX20 (b, f, j), and SOXIO0 (c, g, k) at HH19 (a-d), HH21 (e-h), HH24 (i-I) as indicated. Sections
shown in (d, h, I) were stained for |E8 (red) and neurofilament (green). Bars are 100 pm in (a-n), 200 pm in (o), and 500 um in (p).
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VMEP (Figure 1b). Motor axons start to leave the spinal
cord shortly before the cluster of BCCs is detectable by
1E8 staining (data not shown) [37,44]. Clustering of
BCCs at the dorsal root entry site started at HH21, as vis-
ualized by KROX20 (Figure 1f). By HH24, BCC clusters
were very prominent both ventrally at the VMEP and dor-
sally at the dorsal root entry zone (DREZ; Figure 1j). BCCs
expressed SEMAGA (Figure 1a,e,i,m-0), KROX20 (Figure
1b,f,j), SOX10 (Figure 1c,gk) [45], the 1E8 antigen (an
epitope of PO; Figure 1d,h,1) [46], and Cadherin-7 (data
not shown) [47]. The SEMAGA-expressing cells were not
SOX10 or 1E8 positive while they migrated toward the
VMEP. Similarly, the expression of KROX20 was visible
only after cells had clustered. After clustering, boundary
cap cells were positive for SOX10 (Figure 1¢,g k) and 1E8
(Figure 1d,h,1). SOX10 and 1E8 were not restricted to
BCCs but were also expressed by Schwann cells associated
with the ventral roots and in DRGs. Thus, SEMAGA is the
earliest marker for cells that end up in clusters at the
boundary between the CNS and the PNS.

SemaéA is required to keep motoneurons from migrating
out of the ventral spinal cord

BCCs at the VMEP were shown to prevent the emigration
of motoneurons from the ventral spinal cord [37]. The
failure in BCC cluster formation after ablation of neural
crest cells resulted in streams of motoneurons migrating
along the axons of the ventral root. Because of the
restricted expression of SEMAGA in BCCs, we set out to
test whether Sema6A would be required for the role of
BCCs as gate keepers between the CNS and the PNS. To
this end, we used in ovo RNA interference (RNAi), our pre-
viously established method to induce loss-of-function

Figure 2
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phenotypes [48]. In ovo RNAi at HH12-14 efficiently tar-
geted neural crest cells and resulted in downregulation of
Sema6A but did not interfere with the expression of other
family members of class 6 semaphorins (data not shown).
Downregulation of Sema6A did indeed reproduce the
phenotype seen after ablation of the BCCs (Figure 2) [37].
Groups of motoneurons identified by Isl-1 staining were
found along the ventral roots in all HH25 embryos lack-
ing SemaGA function (Figure 2a). Motoneurons exiting
the spinal cord were seen, on average, in 40% of the sec-
tions from the lumbosacral spinal cord (range 25-54%).
Single motoneurons leaving the ventral spinal cord were
occasionally detected in control embryos (Figure 2b).
However, cells did not emigrate in clusters as seen after
downregulation of Sema6A, and the number of sections
that contained motoneurons along the ventral roots was
much smaller in control-treated embryos compared to
embryos lacking Sema6A function. Downregulation of
the other class 6 semaphorins, Sema6B (12%) and
Sema6D (10%), did not significantly enhance emigration
of motoneurons compared to control embryos expressing
enhanced green fluorescent protein (EGFP; 8%). SEMA6D
but not SEMAG6B was found to be expressed in BCCs (1A
and ES, unpublished observation). However, as seen for
KROX20, expression started only after clustering of BCCs.
SEMAG6D was not found in BCCs that were still migrating
(data not shown).

SemaéA is required for appropriate entry of sensory
dfferents into the dorsal spinal cord

The strong effect on motoneurons and the fact that
SEMAGA was expressed also in BCCs at the DREZ
prompted us to analyze the effect of Sema6A downregula-
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Downregulation of Sema6A in BCCs results in translocation of motoneurons out of the spinal cord. (a) In the absence of Sema6A from
BCCs, motoneurons stream out of the ventral spinal cord and migrate along the ventral roots (arrows). The open arrow points to a
motoneuron that is located in the ventral funiculus. (b) In control-treated embryos motoneurons along ventral roots or in the ventral
funiculus were rarely seen. Motoneurons were identified by Isl-1 (red). An EGFP plasmid was co-injected with the dsRNA derived from
SEMAGA. Axons were stained with an antibody against neurofilament (blue). Note that sensory neurons in the DRG (asterisk in (a, b))
are also stained by Isl-1. (c) Perturbation of SemaéB or SemaéD did not enhance the number of motoneurons in the periphery compared
to control-treated embryos injected only with the plasmid encoding EGFP. Three asterisks indicate P < 0.0001 for the comparison
between dsS6A and all other treatment groups. Values are given as mean + standard error of mean. Bar: 50 pm.
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tion on sensory afferents. Loss of Sema6A in dorsal BCCs
had a severe effect on the arrangement of dorsal roots (Fig-
ure 3). In control embryos analyzed at HH25/26, fibers
emanating from a single DRG formed, on average, four to
five well separated fiber bundles or roots that entered the
dorsal spinal cord via the DREZ. Roots derived from
neighboring DRGs were clearly segregated (Figure 3a).
This was not the case after downregulation of Sema6A in
dorsal BCCs (Figure 3b). In 71% of these embryos the
arrangement of dorsal roots and their number were
severely perturbed (Figure 3d). Furthermore, the shape of
the DRGs was more variable than in control embryos,
including many DRGs with a bell shape; that is, with a dis-
tance between the most anterior and the most posterior
fiber entering the spinal cord that was larger than the
anteroposterior size of the DRG (Figure 3e). In control
embryos these two lengths were identical, resulting in an
arc-like shape of the DRG. In addition to the embryos
exhibiting a strong phenotype, we found 18% with a weak
phenotype (Figure 3d). In these embryos no bell-shaped
DRGs were found despite the fact that the number and
arrangement of roots varied. In more than 70% of the
embryos lacking Sema6A in BCCs, we found no segrega-
tion between adjacent DRGs; that is, roots were formed by
fibers emanating from two adjacent DRGs. Only 12% of
the embryos treated with double-stranded RNA (dsRNA)
derived from SEMAGA were normal. In 58% of the con-
trol-treated embryos, DRGs and their roots were normal
(Figure 3a,d). Only 13% of them exhibited a strong phe-
notype.

Interestingly, in contrast to our findings at the VMEP,
downregulation of Sema6D resulted in a dorsal pheno-
type (Figure 3¢,d). Embryos lacking Sema6D were, over-
all, not much different from embryos lacking Sema6A. In
only 9% of the embryos were arrangement and number of
dorsal roots normal. Sixty-eight percent of the embryos
exhibited a strong phenotype, and 23% a weak pheno-
type. Downregulation of Sema6B resulted in a qualita-
tively different phenotype. Despite the fact that DRGs
exhibited a mushroom-like shape (Figure 3e), the number
and the arrangement of the roots were much less affected
(data not shown; Figure 3d).

PlexinAs, known receptors for SemabA, are expressed by
motoneurons and sensory neurons

PlexinAs were shown to act both as ligands and as recep-
tors for class 6 semaphorins [23-25]. Previously, we had
shown that the expression patterns of chicken PLEXINAs
were highly dynamic both in motoneurons and sensory
neurons [20]. Based on these analyses, all PlexinAs were
potential binding partners for Sema6A. PLEXINA1 was
expressed at high levels in the ventral spinal cord and in
DRGs at HH18 to HH22 [20] (Figure 4). PLEXINA2 was
expressed in the lumbosacral spinal cord at HH18 but was
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subsequently downregulated in motoneurons during
development. Expression in DRGs was weak between
HH20 and HH30. In contrast, PLEXINA4 was virtually not
expressed in the spinal cord at HH18 but was strongly
upregulated in motoneurons at HH22. PLEXINA4 was
also expressed in DRGs at HH22 and later stages [20].
Based on the temporal and spatial expression pattern,
none of the PlexinAs could be ruled out as a binding part-
ner for Sema6A at the VMEP and at the dorsal root entry
site. PLEXINA2 was the least likely candidate because we
focused our analysis on the lumbosacral level of the spinal
cord, where PLEXINA2 was already below detection levels
by HH20, in contrast to the thoracic level where
PLEXINA2 remained expressed.

We first knocked down PlexinAs in motoneurons using in
ovo RNAI. For each PlexinA we used two independent long
dsRNAs (see Materials and methods). Downregulation
was specific for the targeted gene (Additional file 1). Con-
sistent with its strong expression in motoneurons at the
time when they extend their axons out of the VMEP, we
found pronounced effects after downregulation of
PlexinA1l. In 34% of the sections from the lumbosacral
region that we analyzed we found groups of motoneurons
along the ventral root (Figure 5). All embryos lacking
PlexinA1 were affected and had motoneurons outside the
spinal cord in 13-52% of the sections taken from the lum-
bosacral spinal cord. Thus, the phenotype observed after
RNAIi for PLEXINA1 was qualitatively and quantitatively
comparable to the phenotype observed after RNAi for
SEMAGA (compare Figures 5a,b,e and 2a,c). Downregula-
tion of PlexinA2 and A4 had no effect on the migratory
behavior of motoneurons. The number of motoneurons
outside the spinal cord was not different from control
(Figure 5e). We counted ectopic motoneurons in 9% of
the lumbosacral sections from embryos lacking PlexinA2
or PlexinA4 compared to 8% for control-treated embryos.

Next we analyzed the effect of PlexinA downregulation at
the dorsal root entry site. In the absence of PlexinA1 and
PlexinA4 (Figure 5¢,d), we found phenotypes that resem-
bled those seen after downregulation of SemaGA and
Sema6D (Figure 3b,c). Downregulation of PlexinAl per-
turbed dorsal root formation and segregation in the vast
majority of the embryos. Only 17% of the embryos had
normal DRGs (Figure 5f). Seventy percent of them exhib-
ited a strong phenotype. Detailed analysis of the embryos
lacking PlexinA1 revealed that the phenotype was qualita-
tively different from the phenotype seen in the absence of
Sema6A. In addition to fusions of adjacent DRGs, we
found a different type of DRG shape to predominate in
embryos lacking PlexinA1. DRGs were narrower than nor-
mal and had a reduced number of roots. The distance
between the most anterior and the most posterior fiber
emanating from a single DRG was much shorter than the
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Lack of Sema6A and SemaéD in dorsal BCCs results in aberrant segregation of dorsal roots. (a) In control embryos axon bundles from
each dorsal root ganglion extend to the DREZ in a well organized manner. Roots from adjacent DRGs are segregated and they are all of
the same length (dashed bars). (b) In contrast, in embryos lacking SemabA, roots from adjacent DRGs are no longer segregated (arrow-
heads). The arrangement of roots arising from individual DRGs is strongly disorganized and roots are often formed by fibers from two
adjacent DRGs (arrowheads in (b)). (c) Similarly, roots are disorganized in embryos lacking Sema6D (arrowheads). In addition the length
of the roots varied more in the absence of SemaéD (compare dashed bars in (c)). (d) Strong phenotypes were seen in 71% of the
embryos lacking SemaéA and in 68% of the embryos lacking SemaéD. Only 3% of the embryos injected with an EGFP plasmid had a com-
parable phenotype. Downregulation of SemaéB resulted in aberrant DRG shapes and root arrangement in 30% of the embryos. (e) The
shapes of DRGs were classified as arc-like when the distance between the most anterior and the most posterior fiber emanating from the
DRG was the same as the anteroposterior diameter of the DRG; as bell-shaped when the fibers spread an anteroposterior length that
was bigger than the diameter of the DRG; and as mushroom-like when the fibers entered the dorsal spinal cord in a segment that was
shorter than the diameter of the DRG. Note that the diameter of the mushroom-like DRGs was smaller than the diameter of arc-like or
bell-shaped DRGs. Bar: 200 pum.
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The expression of PLEXINAI (PA1) and PLEXINA2 (PA?2) differs between the thoracic and the lumbosacral levels of the spinal cord.
Based on their expression pattern, none of the PlexinAs can be excluded as a binding partner for Sema6A [20]. In addition to the dynamic
changes over time, the expression of PLEXINAI and PLEXINA? differs strongly between thoracic and lumbosacral levels of the spinal
cord. PLEXINAI is strongly expressed in the ventral spinal cord at HH20, but remains to be expressed strongly only at the lumbosacral
but not the thoracic level at HH24 and HH25. Even more pronounced are the changes of PLEXINA2 expression. At HH20, expression is
detectable in lateral motoneurons only at the thoracic but not at the lumbosacral level of the spinal cord. This difference is even more
pronounced at older stages. AS, antisense probe; TH, thoracic level; LS lumbosacral level. Arrowheads indicate expression of either PAI
or PA2; open arrowheads indicate no or very weak expression. Asterisks label the hind limb to indicate that sections were taken from
the lumbosacral level of the spinal cord. Bar: 200 pum.
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Downregulation of PlexinAl results in the same phenotype as seen in the absence of Sema6A. (a, b) Motoneurons streaming out of the
ventral spinal cord identified by Isl-1 staining were only found after downregulation of PlexinA| (arrows). The open arrow points to a

motoneuron that is located in the ventral funiculus. Note that sensory neurons in the DRG (asterisk) are also stained by Isl-1. (e) Lack of
none of the other PlexinAs enhanced the number of motoneurons found along the ventral roots compared to control-treated embryos
(p = 0.0001 for the comparison between dsPA| and all other treatment groups (indicated by three asterisks); values are given as mean +
standard error of the mean; see Figure 2b). (c, d) The phenotype seen after downregulation of SemaéA in dorsal BCCs was mimicked by
both lack of PlexinAl (c) and PlexinA4 (d). The effects of PlexinA downregulation were qualitatively different, however. In the absence of
PlexinAs, the arrangement of DRGs, and not only the arrangement of their roots, was disorganized. (f) A phenotype was seen in 83% of

embryos lacking PlexinAl and in 67% of the embryos lacking PlexinA4. Bar 50 um in (a, b); 200 um in (c, d).

width of the DRG. Therefore, we qualified these DRGs as
mushroom-like (Figure 3e). Variable shapes of DRGs were
found after loss of PlexinA4 function, where 48% of the
embryos exhibited a strong phenotype. In both cases it
was sometimes not possible to identify individual DRGs,
as they were fused across spinal cord segments. In the
absence of PlexinAl, only 17% of the embryos had nor-
mal DRGs, and in the absence of PlexinA4, only 33% had
normal DRGs. Downregulation of PlexinA2 did not show
an effect on dorsal root arrangement; 60% of the embryos
were normal. Aberrant root arrangement and mushroom-
shaped DRGs were only found in 13% of the embryos.

Sensory but not motor axons are repelled by Sema6A

To get a lead on the mechanism of Sema6A function in
boundary control, we turned to an in vitro assay (Figure 6).
We wanted to assess whether Sema6A in BCCs had an

attractive or a repulsive effect on sensory and motor
axons, respectively. For this purpose, we transfected COS
cells with SEMAGA and used them as a substrate for DRG
neurons and motoneurons. We also used sympathetic
neurons as they were shown to react to Sema6A contact
with growth cone collapse [34]. Axonin-1 was used as a
control protein. We scored the behavior of axons encoun-
tering transfected COS cells as 'repulsion' when axon
failed to grow onto a transfected cell by either stopping or
turning away. The score was 'attraction' when axons read-
ily crossed from a non-transfected to a transfected COS
cell but did not cross back from the transfected to a non-
transfected cell. Axons that readily crossed from a non-
transfected to a transfected cell and back to a non-trans-
fected cell were scored as 'crossing’, or, in other words,
were considered not to be affected by the protein
expressed on COS cells. COS cells expressing EGFP were
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Axons of DRG and sympathetic neurons but not motor axons are repelled by Sema6A. (a) Upon encountering a COS cell expressing
SemabA, 53% of all DRG axons were found to react with avoidance, that is, they turned away from the cell or stopped rather than grow-
ing onto the SemabA-positive COS cell (p = 0.0002 for the comparison between S6A/Ax-1 and S6A/EGFP (indicated by three asterisks)).
COS cells expressing Axonin-1 (Ax-1) were perceived as slightly more attractive than control COS cells expressing only EGFP (p = 0.006
for S6A/Ax-1 and 0.02 for S6A/EGFP (indicated by asterisk)). (b) Motor axons were found to be indifferent to all types of COS cells. The
majority showed neither attraction nor repulsion when encountering Sema6A or Axonin-1 compared to EGFP-expressing COS cells. (c)
The majority of sympathetic axons (68%) were avoiding SemabA-expressing cells (p < 0.0001 (three asterisks)). Compared to DRG axons
and motor axons, sympathetic axons were more strongly attracted by Axonin-1-expressing COS cells (b < 0.0001 for Ax-1/S6A and Ax-
I/EGFP). This is reflected by the fact that avoidance of Axonin-|-expressing cells was significantly lower compared to EGFP-expressing
cells (b = 0.003 (two asterisks)). Similarly, axons of sympathetic neurons (SG) were significantly less attracted to SemaéA-expressing
compared to EGFP-expressing cells (p < 0.0001 (three asterisks)). Values are given as mean * standard error of the mean.

used as an additional control to measure the 'baseline
behavior' of axons growing on COS cells. As expected, few
cells reacted with repulsion or attraction to COS cells
expressing EGFP. For all types of neurons, we found that
more than 70% of the axons crossed EGFP-transfected
COS cells readily (Table 1). The behavior was different in
response to COS cells expressing Sema6A. Both DRG (Fig-
ure 6a) and sympathetic axons (Figure 6¢) avoided
SemaG6A-positive cells. The effect was stronger for sympa-
thetic neurons, where avoidance was found for 68% of the
axons compared to 53% of the DRG axons (Table 1).
Axons of motoneurons did not show a reaction to either
SemaG6A or Axonin-1 that differed from the behavior on
EGFP-expressing cells (Figure 6b). Interestingly, we found
that significantly more sympathetic axons reacted with
attraction to Axonin-1 than to control COS cells express-
ing EGFP (Figure 6¢). In conclusion, axons of DRG neu-

rons were repelled by Sema6A, whereas motor axons did
not react at all to SemaGA.

The effect of SemabA in PNS/CNS border control is caused
by a defect in BCC clustering

To gain insight into the mechanism of Sema6A function
as a gate keeper, we analyzed the formation of BCC clus-
ters in the absence of Sema6A from migrating neural crest
cells (Figure 7). BCC clusters were reduced in size or miss-
ing altogether in the absence of Sema6A and their locali-
zation along the anteroposterior and the dorsoventral
axes of the spinal cord was perturbed. The aberrant
arrangement of BCC clusters was detectable both dorsally
at the DREZ (Figure 7¢) and ventrally at the VMEP (Figure
7f). At the dorsal root entry site 1E8-positive cells were no
longer found in regular, dense clusters, as seen in control-
treated embryos (Figure 7b). Many axons were not in
close contact with BCCs in the absence of Sema6A (Figure

Table I: DRG and sympathetic axons avoid SemaéA-expressing COS cells

SemabA Axonin-| EGFP
Avoid (%) Stay (%) Cross (%) Avoid (%) Stay (%) Cross (%) Avoid (%) Stay (%) Cross (%)
DRG 533 +47 59+ 1.6 408 £ 4.7 155+25 18.3 £ 3.0 66.1 +4.2 I15.1 £2.2 9.0+ 1.2 759+ 1.7
MN 17.6 £ 4.6 95+ 2.1 729 £ 40 146 + 1.3 149 £ 2.1 70.5 £ 3.0 185+ 3.6 102 £22 71314
SG 68.0 £2.6 ENIE-N N 289 +34 29+04 3.7+ 1.1 654+ 12 145+ 1.7 149 £ 1.4 70.6 £ 3.1

COS cells transfected with SemaéA, Axonin-1, or EGFP were used as substrate for DRG, motor, and sympathetic neurons. For each condition at
least 200 axons from 2 (sympathetic) or 3 (sensory and motoneurons) independent experiments were counted. Values represent mean + standard

error of the mean. MN, motoneuron; SG sympathetic neuron.
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ventral BC cells

1E8 / NF

Clustering of BCCs is perturbed in the absence of Sema6A and PlexinAl. (a-g) Longitudinal sections of HH25 spinal cords (as indicated
by the dashed line in (2)) were stained with | E8 (red) and anti-neurofilament antibodies (green) to analyze dorsal (b-d) and ventral (e-g)
BCCs from untreated embryos (b, e) or embryos treated with dsRNA derived from SEMA6A (c, f) and PLEXINAI (d, g), respectively.
Dorsal BCC clusters in control embryos (b) were relatively homogenous in size, closely aligned with the roots, and regularly spaced. In
contrast, in the absence of either Sema6A (c) or PlexinAl (d), the size of BCC clusters was very variable and their arrangement was
highly disorganized. Many axons were not in contact with BCCs at all or only with individual cells or microclusters (open arrowheads in
(c, d)). Ventral BCC clusters were smaller than their dorsal counterparts even in control embryos (). Therefore, the effect of Sema6A (f)
or PlexinAl (g) perturbation on cluster size was less obvious. However, the absence of SemaéA and PlexinAl clearly disrupted the align-
ment of ventral BCC clusters (compare dashed lines in (e) with (f, g)). The color of the axons stained with anti-neurofilament antibodies
and visualized with an Alexa350-coupled secondary antibody was changed to green using Adobe Photoshop CS2 to get better contrast.
EGFP used to select the appropriate sections is not shown. MN, motoneurons; N, notochord. Bar 100 pm.

7¢). At the VMEP BCC clusters were smaller than their dor-
sal counterparts (compare Figure 7e and 7b). The down-
regulation of Sema6GA in ventral BCCs resulted in their
aberrant clustering along both the anteroposterior and the
dorsoventral axes.

Similarly, downregulation of PlexinA1l in sensory (Figure
7d) and motoneurons (Figure 7g) resulted in the same
aberrant arrangement of BCC clusters as seen after inter-
ference with SemaGA expression. As none of the PlexinAs
was expressed in BCCs [20] and no homophilic interac-
tion of Sema6A was found in vitro (data not shown), we
concluded that Sema6A on BCCs was necessary to recog-
nize a stop signal on sensory and motor axons. This signal
was likely provided by PlexinA1l, as axons were not deco-
rated with 1E8-positive BCCs in the absence of it (Figure
7d). In support of this hypothesis, we found binding of
AP-tagged Sema6A to both commissural and motor axons
but not to BCCs, in accordance with the expectation that
Sema6A would bind only to PlexinA-expressing cells and
not to Sema6A-expressing cells (Figure 8a).

As an alternative approach to block the interaction
between PlexinAs on motor axons and Sema6A on BCCs,
we expressed the ectodomain or full-length Sema6A in
motonel475-2875-6-162-6urons, where normally no

Sema6A is found in chick (except for a transient expres-
sion at HH26; Figure 1m). Providing Sema6A on motor
axons would prevent PlexinAl from interacting with
Sema6A on BCCs because it would compete with BCC-
derived Sema6A. BCC clusters would thus fail to form
properly due to the absence of the stop signal (Figure 8e)
and motoneurons would stream out of the spinal cord at
the VMEP just as found after either Sema6A downregula-
tion in BCCs or PlexinA1l downregulation in motoneu-
rons. This is indeed what we observed (Figure 8c).

In summary, our results support the hypothesis that
Sema6A on BCCs interacts with PlexinA1 on motor axons
to recognize the VMEP, where BCCs aggregate and cluster
to form a barrier for motor neurons but not motor axons.
If the BCC clusters fail to form properly, they cannot fulfill
this barrier function and motoneurons stream out of the
spinal cord along the ventral roots.

Discussion

Entry and exit sites of the CNS are well controlled transi-
tion areas that are permissive for axons but not for cell
bodies during development due to the presence of the
BCCs. The boundary cap is a transient structure that disap-
pears at postnatal day 6 in the rat [49]. In chicken, BCC
clusters labeled by KROX20 or SEMAGA disappear
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Figure 8

Ectopic expression of the SemabA ectodomain or full-length Sema6A in motoneurons competes with BCC-derived SemaéA binding to
motoneurons. The AP-tagged ectodomain of SemaéA binds to axons expressing PlexinAs. (a) Both commissural axons (open arrowhead)
and motor axons (arrowhead) express PlexinAs [20] and bind the Sema6A ectodomain. (b) No binding of the AP-tag alone was detecta-
ble. (c) Ectopic expression of both the ectodomain of Sema6A (not shown) and the full-length myc-tagged form resulted in motoneurons
streaming out of the spinal cord along the ventral roots (arrows). (d) Staining of the myc tag demonstrates expression of Sema6A in
motor axons (arrowhead), consistent with a competitive role of motor axon-derived SemaéA with BCC-derived SemaéA in the periph-
ery. (e) As seen after downregulation of either Sema6A in BCCs (compare to Figure 7f) or PlexinAl in motoneurons (compare to Figure
7g), ectopic expression of SemabA resulted in the aberrant formation of BCC clusters. Bar: 100 um.

between HH36 and HH40 (Figure 1). They are replaced
by a non-permissive barrier at the CNS/PNS interface con-
sisting of astrocytes and Schwann cells [36,49]. BCCs orig-
inate from a late-migrating population of neural crest cells
[38]. So far, they had been identified only after clustering
by their expression of KROX20 and Cadherin-7. A time
course of SEMAGA expression analyzed in transverse sec-
tions from the lumbosacral region of the embryonic
chicken spinal cord suggests that BCCs express SEMAGA
while they still migrate toward and cluster at the entry and

exit sites of the spinal cord (Figure 1). The confined
expression of SEMAGA in boundary cap cells together with
the striking observation by Vermeren and colleagues [37]
that ablation of BCC clusters resulted in the emigration of
motoneurons from the ventral spinal cord into the
periphery motivated us to test for a role of Sema6GA in
BCCs as a gate keeper between the CNS and the PNS.
Indeed, we found that knock-down of Sema6A resulted in
the same phenotype as ablation of the boundary cap
(compare Figure 2 to [37]). In the absence of Sema6A
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from BCCs, motoneurons left the spinal cord along the
ventral roots. This effect was specific for loss of Sema6A
function. Downregulation of other class 6 semaphorins
did not enhance the number of motoneurons found out-
side the spinal cord compared to control-treated embryos.
The fact that we could detect a phenotype of Sema6D loss
of function for the dorsal root entry site but not for the
ventral motor exit point further confirms the specificity of
our approach. Downregulation of a target gene with long
dsRNA was specific and efficient, as shown previously
[48,50]. The specificity of downregulation was also cor-
roborated by the use of dsRNA derived from a second
non-overlapping fragment of cDNA from the 3' end of
SEMAGA (data not shown).

Motoneurons leaving the spinal cord were only found
after downregulation of Sema6A, while the effect at the
dorsal root entry site was also seen after perturbation of
Sema6D function, despite the fact that SEMA6D was
expressed in ventral and dorsal BCCs. Similarly, downreg-
ulation of PlexinA1 had an effect at both the VMEP and
the DREZ; loss of PlexinA4 function had an effect only
dorsally. The phenotype observed after perturbation of
PlexinA1 and PlexinA4 differed from loss of Sema6A/6D
function, consistent with a role of class A plexins as recep-
tors for secreted class 3 semaphorins. In the absence of
PlexinA1, DRGs were misplaced along the rostrocaudal
axis and they were not clearly segregated from each other
(Figure 5). These observations are in agreement with stud-
ies reporting a role of plexin/neuropilin complexes in the

http://www.neuraldevelopment.com/content/2/1/28

restriction of neural crest migration to the anterior somite
[51,52]. Restricted migration through the anterior somite
was shown to be essential for the segmental organization
of the PNS [53-55]. Thus, in the absence of PlexinA1, not
only did dorsal roots fail to segregate properly, as seen
after loss of Sema6A function, but the arrangement of the
DRGs was also perturbed.

Based on our results, we propose a model where Sema6A
in BCCs is required for them to home in on the entry and
exit sites of the spinal cord, where they form the boundary
cap (Figure 9). PlexinA1 on axons provides the stop signal
that is recognized by Sema6A on migrating boundary cap
cells. Because we were unable to detect a homophilic
Sema6A interaction and none of the PlexinAs is expressed
in BCCs, SemaG6A is unlikely to be responsible for BCC
clustering directly, that is, by mediating cell-cell contact
between BCCs. Cadherin-7 is a good candidate for the
adhesion molecule that might be responsible for the for-
mation of tight cell-cell contacts between BCCs. Cad-
herin-7 is expressed strongly when BCCs have reached the
aggregation site but not while they are still migrating, and
it was shown to bind homophilically [47,56].

According to our model, Sema6A would act as a receptor
when expressed in BCCs and recognize PlexinA1l as a lig-
and. A receptor role for Sema6A has been suggested previ-
ously in the brain, where Sema6A was shown to be
required for the appropriate targeting of thalamocortical
axons [27]. Similarly, a receptor function for Sema6D in

B
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Figure 9

SemabA acts as a gate keeper at the VMEP by triggering the formation of BCC clusters. Our results support a model that suggests a role
for SemabA in BCC cluster initiation. (a) Motor axons leaving the ventral spinal cord express PlexinAl on their surface (yellow rectan-
gle). Boundary cap cells (blue circles) express SemabA (green rectangles), which recognizes PlexinAl on motor axons, resulting in the
accumulation of BCCs and, subsequently, in their clustering. By an unknown mechanism the BCC cluster prevents motor neurons (red
circles) but not motor axons from translocating into the periphery. (b, c) Consistent with this model, the absence of PlexinAl from
motor axons would remove the stop signal (b) and the absence of SemaéA from BCCs would remove the receptor for the stop signal (c).
In both cases, BCC clusters would fail to form properly and motoneurons would not be confined to the ventral spinal cord but migrate
into the periphery along the ventral roots. The behavior of sensory axons at the dorsal BCC clusters is more complex and cannot be fully
explained by this model.
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neural crest cell migration in heart development was
described [23,24]. A receptor function for class 6 sema-
phorins is also consistent with structural features [26].

Our model is supported by the aberrant clustering of
BCCs in the absence of either Sema6A from BCCs or the
absence of PlexinA1 from motoneurons (Figure 7). In the
absence of Sema6A, BCCs fail to recognize the exit site
marked by the first motor axons extending into the
periphery, the boundary cap fails to form correctly and, as
a consequence, motoneurons are no longer confined to
the ventral spinal cord and migrate into the periphery fol-
lowing their axons (Figure 9). The same effect is achieved
when PlexinAl is downregulated in motoneurons. In this
case motor axons are unable to provide a stop signal for
migrating BCCs. Similarly, the PlexinA1 stop signal can be
masked by expression of soluble Sema6A ectodomain or
full-length Sema6A in motoneurons. In both cases motor
axon-derived Sema6A would compete with Sema6A on
the surface of BCCs and result in the aberrant formation
of BCC clusters.

In addition to its function as a stop signal for SemaGA-
expressing BCCs, PlexinAl serves as a co-receptor together
with neuropilins for class 3 semaphorins. Sema3A was
postulated to act as a surround repellent and, thus, to
polarize growth of sensory axons during initial stages of
development [57]. Later, class 3 semaphorins were shown
to interfere with motor and sensory axon pathfinding
[2,58-64]. Their effects were mediated by binding to either
Neuropilin-1 or Neuropilin-2 associated with one of the
class A plexins as the signal transducing part of the recep-
tor.

Chicken embryos express only three PlexinAs, as the gene
encoding PlexinA3 is missing from the chicken genome
[20]. Similarly, chickens express only three class 6 sema-
phorins; an ortholog of Sema6C is not found. Therefore,
a direct comparison of PlexinA/Sema6 interactions
between mouse/human and chicken proteins is not possi-
ble. This may explain why, so far, a direct interaction
between SemaGA and PlexinAl has not been demon-
strated [25]. The repulsive activity of Sema6A was found
to be mediated by PlexinA4 [22,65]. In our in vivo assays
PlexinA4 had an effect only at the dorsal root entry but
not at the ventral motor axon exit site. In our in vitro assay,
sensory but not motor axons were repelled by Sema6A,
despite the fact that all PlexinAs were expressed by sensory
and motor neurons [20]. Sema6D was expressed in both
dorsal and ventral BCCs but had an effect only at the dor-
sal root entry zone.

Future experiments will have to elucidate the difference
between Sema6A and Sema6D in BCCs and, thus, their
different roles in gate keeping between the PNS and the
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CNS. Obviously, the mechanism differs between the ven-
tral and the dorsal transition zone. Motor axons were not
repelled by Sema6A but sensory axons were (Figure 6 and
Table 1). The reason for this discrepancy is unknown.

Conclusion

Sema6A expression by BCCs acts as a gate keeper between
the PNS and the CNS by organizing the segregation of
dorsal root entry and ventral motor axon exit sites. In both
cases Sema6A on BCCs appears to act as a receptor recog-
nizing the stop signal provided by PlexinAl on axons. As
a consequence, BCCs aggregate at the dorsal root entry site
and the VMEP. BCCs then form clusters, possibly medi-
ated by Cadherin-7, resulting in a tight barrier that pre-
vents motor neurons from streaming out of the ventral
spinal cord along the ventral roots. At the dorsal root entry
site the BCCs segregate and organize dorsal roots. Consist-
ent with these observations, SemaGA was found to be a
repellent for sensory but not for motor axons.

Materials and methods

Cloning of the chicken SEMA6A cDNA

A 728 base-pair fragment of chicken SEMAPHORINGA
obtained in a screen for axon guidance cues [50] was used
to screen a A ZAP library prepared from E14 chicken
brains [66]. Two fragments encoding the entire open read-
ing frame (ORF) were ligated and cloned into pBluescript.
For the preparation of in situ probes and dsRNA we used
mainly a fragment spanning the 5' untranslated region
and the first 300 base-pairs from the ORF. In addition, we
verified the specificity of the phenotype using a fragment
from the 3' untranslated region. The alignment of these
fragments with SEMAG6B and SEMAG6D did not result in
any significant similarity.

To obtain a soluble AP-tagged ectodomain of Sema6A, the
sequence corresponding to the ectodomain of chicken
Sema6A (amino acids 1-604) was amplified and inserted
into the APtag-2 vector [67]. COS7 cells were transiently
transfected with the Sema6A ectodomain-containing plas-
mid using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA). After transfection cells were washed with phosphate-
buffered saline (PBS) and grown for 4 days in MEM and
1% fetal calf serum. The supernatant was collected and
centrifuged as described in [68]. Binding of AP-tagged
Semab6A to cryosections was carried out as described in
[69]. Full-length Sema6A with a myc tag was expressed
under the control of the B-actin promoter. The plasmid
was injected at a concentration of 1 pg/ul into the central
canal of the spinal cord of E2.5 embryos followed by elec-
troporation of the ventral spinal cord. The embryos were
sacrificed at E5 and analyzed.
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Preparation of in situ probes and dsRNA

Probes for in situ hybridization and dsRNA were produced
from expressed sequence tags (ESTs) obtained from Gen-
eservice Ltd [70]. The ESTs used were: ChEST225N10
(SEMAPHORINGD), ChEST53D13 and 666016
(PLEXINA1), ChEST128L21 and 297D11 (PLEXINA2),
ChEST1014M19 and 202014 (PLEXINA4). For
SEMAPHORINGA the cDNA fragment mentioned above
was used. For SEMAGB a cDNA fragment was cloned using
RT-PCR because no ESTs were available. Total RNA was
prepared from HH30 (stage 30 chicken embryos accord-
ing to Hamburger and Hamilton [42]) spinal cords. Ran-
dom and oligo dT-primed first-strand cDNAs were
generated using Superscript Il reverse transcriptase accord-
ing to the manufacturer's instructions (Invitrogen). A 656
base-pair fragment for SEMAGB was amplified using the
antisense primer 5'-CCCATGTCGTTCITGCAC-3' and the
sense primer 5'-ATCCAGCGCATCCTCAAG-3'. The result-
ing PCR fragments were cloned into the TOPO TA cloning
vector (Invitrogen) using EcoRlI restriction sites (Gemayel
et al., in preparation). We carefully compared and selected
sequences to avoid overlapping stretches that could
potentially interfere with RNAi specificity. In fact, off-tar-
get effects or unspecific knock-down of related family
members were never detected in our approach with long
dsRNA, most likely because the concentration of each
small interfering RNA produced in a given cell by Dicer is
extremely low, with a theoretical maximal concentration
of about 1 nM or less [48,50].

In situ probes for the detection of KROX20 and SOX10
mRNA were derived from ESTs 738N7 and 477F10,
respectively. Plasmid DNA was linearized using restriction
enzymes Notl, EcoRI, Xbal, HindIll, or Asp718 (all from
Roche, Basel, Switzerland) to prepare either digoxigenin-
labeled in situ probes [20] or dsRNA [48] by in vitro tran-
scription as described previously.

In ovo RNAi

In ovo RNAIi was used to knock down genes of interest as
described previously [48]. In brief, fertilized eggs were
windowed on the second day of incubation to get access
to the embryo. Embryos were staged according to Ham-
burger and Hamilton [42] at the time of injection. A solu-
tion containing the dsRNA (200-300 ng/ul) and a
plasmid encoding EGFP under the control of the B-actin
promoter (50 ng/ul) was injected into the central canal of
the spinal cord of HH12-14 embryos to efficiently trans-
fect neural crest cells and motoneurons [71]. The lum-
bosacral region of the spinal cord was electroporated with
5 pulses of 18 Volts and 50 ms length with a 1 s interpulse
interval. Eggs were sealed and put back into the incubator
until embryos reached the desired stage. Embryos were
sacrificed at HH25 for the analysis of motoneurons and at
HH25/26 for the analysis of dorsal roots.

http://www.neuraldevelopment.com/content/2/1/28

Tissue preparation

For analysis of phenotypes, embryos were sacrificed, evis-
cerated and fixed in 4% paraformaldehyde in PBS for 60'
to 120' depending on the age. Embryos were rinsed in PBS
and subjected to cryoprotection or used directly for
whole-mount staining as detailed below. For immunohis-
tochemistry and in situ hybridization, the cryoprotected
tissue was frozen in isopentane on dry ice and cut into 25
pm thick sections. In situ hybridization was carried out as
detailed previously [20]. For immunohistochemistry, the
staining protocol described earlier [72] was used. Anti-
bodies were diluted in blocking buffer (10% fetal calf
serum in PBS). For permeabilization of the tissue, sections
were incubated for 1' in 0.1% Triton-X-100. The antibod-
ies used were: monoclonal antibodies 1E8 recognizing PO,
40.2D6 recognizing Isl-1, and 9E10 recognizing the myc
tag (all from the Developmental Studies Hybridoma
Bank, University of lowa, lowa City, IA) Furthermore, we
used rabbit anti-neurofilament (Millipore, Billerica, MA),
and a FITC-labeled goat anti-GFP antibody (Rockland,
Gilbertsville, PA). Secondary antibodies were: goat anti-
mouse IgG Cy3 (Jackson ImmunoResearch Newmarket,
Suffolk, UK), goat anti-rabbit Alexa350, and goat anti-rab-
bit Alexa488 (both Invitrogen/Molecular Probes,
Carlsbad, CA).

Neurofilament staining of whole-mount embryos

For whole-mount staining, embryos were sacrificed at
HH25/26, fixed as described above and transferred to 24-
well plates. Tissue was permeabilized in 1% Triton/PBS
for 1 h at room temperature, rinsed in PBS, and incubated
in 20 mM lysine in 0.1 M sodium phosphate (pH 7.3) for
another hour. After rinsing thoroughly in PBS, embryos
were incubated in blocking buffer (10% fetal calf serum in
PBS) for at least two hours before the anti-neurofilament
antibody (RMO270 from Zymed/Invitrogen, Carlsbad,
CA, diluted 1:1,500) was added for 48 h at 4°C. Incuba-
tion with the secondary antibody (goat anti-mouse IgG
Cy3, 1:250) was for 12 h. EGFP was visualized with a
FITC-labeled goat anti-GFP antibody. Embryos were
rinsed thoroughly and dehydrated in a graded series of
methanol before transfer to benzyl benzoate/benzyl alco-
hol (2:1).

Quantification of the phenotypes

Experimental embryos and control-treated embryos that
were injected and electroporated with the plasmid encod-
ing EGFP only were sacrificed at HH25/26. Tissue prepa-
ration, cutting and staining was as detailed above. From
each embryo lumbosacral sections were analyzed by an
observer who was blind to the treatment group. Sections
were classified into groups containing either 0-1, or more
than one Isl-1-positive cell along the root. All sections that
contained EGFP and the ventral roots were analyzed and
scored. The percentage of sections per embryo containing

Page 14 of 17

(page number not for citation purposes)



Neural Development 2007, 2:28

more than one motoneuron outside the spinal cord was
calculated.

For the analysis of the phenotype at the dorsal root entry
site, embryos were sacrificed at HH25/26 and stained with
RMO270 and goat anti-mouse IgG Cy3 as whole-mounts
as detailed above. For the analysis of the segregation of
DRGs and dorsal roots, a dissection microscope equipped
with fluorescence optics (Olympus SZX12) was used. Sin-
gle fibers crossing to the adjacent DRG or irregular spacing
was considered a weak phenotype. When roots were
formed by sensory axons emanating from two DRGs or
when the DRGs were fused, the embryo was scored as hav-
ing a severe phenotype. For statistical analysis, we used
two-way ANOVA with Bonferroni correction. Values rep-
resent mean =+ standard error of the mean.

In vitro assay

COS7 cells grown on 8-well LabTek slides were trans-
fected with pcDNA3.1 vectors containing myc-tagged
SEMAGA, myc-tagged AXONIN-1, or farnesylated EGFP
(Invitrogen) as a control using Lipofectamine 2000 (Inv-
itrogen). Sensory and sympathetic ganglia were dissected
from HH26 or HH35 embryos. Motoneurons were
obtained from the ventral halves of spinal cords dissected
from HH26-28 embryos. Single-cell suspensions were
obtained by digestion of ganglia and ventral spinal cord
junks with trypsin followed by trituration. Per well,
25,000 DRG or sympathetic neurons or twice as many
motoneurons were plated. DRG and sympathetic neurons
were cultured in serum-free medium containing 20 ng/ml
nerve growth factor (NGF) (see [73] for details). Motone-
urons were cultured in MEM containing 5% fetal calf
serum, N3, and 1 mM sodium pyruvate. Neurons were
grown on transfected COS cells for one (DRG, sympa-
thetic neurons) or two days (motoneurons) before fixa-
tion in 4% paraformaldehyde for 30 minutes at room
temperature and staining with the 9E10 antibody (Devel-
opmental Studies Hybridoma Bank) to detect successfully
transfected cells and rabbit anti-neurofilament to stain
axons.

Cultures were analyzed and the behavior of axons
encountering a transfected COS cell was classified as
avoidance if an axon stopped or turned away from a trans-
fected cell, or as attraction if an axon failed to leave the
surface of a transfected cell. We chose Axonin-1 as a con-
trol protein because it was shown to promote axon out-
growth of sensory neurons [73,74]. In addition, Axonin-1
was shown to be required for pathfinding of nociceptive
afferents [75] and axons of dorsolateral commissural neu-
rons [48,76] but not for extension of commissural axons
[77].
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Downregulation of the targeted PlexinA was specific. For each PlexinA we
used two different cDNA fragments to produce long dsRNAs for gene
silencing (see Materials and methods for details). As shown qualitatively
by in situ hybridization (a-c, e-g, i-k) and quantitatively by analyzing
intensity levels for the three PlexinAs with Image] 1.38x (m) downregu-
lation of the targeted PlexinA was specific. Downregulation of PLEXINA1
(PA1; a-d) resulted in a reduction of PA1 expression in motoneurons
(arrowhead in (a)). Pattern and expression levels of PA2 (b) and PA4 (c)
were not changed. EGFP expression from a co-injected plasmid indicates
the electroporated half of the spinal cord (d). Similarly, silencing of PA2
(e-h) resulted in changes of the PA2 expression pattern in motoneurons
(arrow in (f)) on the electroporated side (see (h)) but the expression of
PA1 (e) and PA4 (g) were not altered. Targeting PA4, which is very weak
at HH25, further reduced expression of PA4 in motoneurons (arrowhead
in (k)) on the electroporated side (1) but had no effect on the expression
of PA1 (i) and PA2 (j). The quantification of the signal intensity is shown
in (m). Similar levels were obtained for all PlexinAs. Three or four differ-
ent embryos were analyzed per condition using at least ten sections. Spe-
cific downregulation was 24.9 + 5.7% for PA1, 26.8 + 5.5% for PA2,
and 25.9 + 2.1% for PA4. Values are shown + standard deviation. P <
0.0001 indicated by three asterisks. Note that the section shown in (f)
was taken from the thoracic level. AS, antisense probe.
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