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Abstract

Background: Mechanosensory information gathered by hair cells of the fish lateral-line system is
collected by sensory neurons and sent to the ipsilateral hindbrain. The information is then
conveyed to other brain structures through a second-order projection. In the adult, part of the
second-order projection extends to the contralateral hindbrain, while another part connects to a
midbrain structure, the torus semicircularis.

Results: In this paper we examine the second-order projection from the posterior lateral-line
system in late embryonic/early larval zebrafish. At four days after fertilization the synaptic field of
the sensory neurons can be accurately targeted, allowing a very reproducible labeling of second-
order neurons. We show that second-order projections are highly stereotyped, that they vary
according to rhombomeric identity, and that they are almost completely lateralized. We also show
that the projections extend not only to the contralateral hindbrain and torus semicircularis but to
many other brain centers as well, including gaze- and posture-controlling nuclei in the midbrain, and
presumptive thalamic nuclei.

Conclusion: We propose that the extensive connectivity observed in early brain development
reveals a basic scaffold common to most vertebrates, from which different subsets are later
reinforced in various vertebrate groups. The large repertoire of projection targets provides a
promising system to study the genetic encoding of this differential projection capacity.

Background

The sensory input measured by vertebrate mechanosen-
sory hair cells is hair deflection, yet this input can convey
information about a number of different stimuli, such as
sound waves, angular acceleration of the head, body
movement, or posture. The process by which sensory
transduction translates into perception depends on the
structure of the sense organ as well as on the distribution
of sensory information to specific brain centers through
second- (and third-) order projections. Here we examine
the second-order projection of a particular set of sensory

organs, the mechanosensory organs of the lateral-line sys-
tem, in the zebrafish embryo.

In amniotic vertebrates, hair cells are restricted to the
inner ear where they mediate audition and vestibular pro-
prioceptive functions. In fish and amphibians, mechano-
sensory hair cells are also present in another sensory
system, the lateral line. The lateral-line system is closely
related to the inner ear in terms of its placodal origin, pro-
jection to the dorsal hindbrain and cytoarchitecture, and
was initially thought to underly some sort of auditory
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function (reviewed in [1,2]). The available evidence sug-
gests, however, that the lateral-line system provides a
sense of 'distant touch' that allows fish to perceive their
surroundings within a radius of the order of their own
body length [3]. This peculiar sense is involved in a large
variety of behaviors, ranging from school swimming [4]
and the ability to swim against current flow [5,6] to prey
detection [7] and/or predator avoidance [8].

The lateral-line system comprises a set of discrete sense
organs, the neuromasts, which are distributed on the head
and body in species-specific patterns. Individual neuro-
masts can be either superficial, with the hairs protruding
from the epidermis into the surrounding water, or they
can be embedded in canals [9,10]. The neuromasts on the
head form the anterior lateral-line system (ALL), while
those on body and tail form the posterior system (PLL).

In adult fish, PLL sensory neurons have their cell bodies in
a cranial ganglion located posterior to the ear and they
project ipsilaterally to the 'medial octavo-lateral nucleus'
of the hindbrain. This nucleus receives afference not only
from the PLL but also from the ALL and from the inner
ear. There is segregation of the afference, however, such
that the most ventral part of the nucleus receives afference
from the inner ear, the medial part from the ALL and the
dorsal part from the PLL [11,12].

The second-order projection from the medial octavo-lat-
eral nucleus has been described in the adult of several fish
species (reviewed in [12]). It comprises a commissural
projection to the contralateral nucleus, where it is presum-
ably involved in the comparison of ipsi- and contralateral
inputs, and an ascending projection to a large midbrain
nucleus, the torus semicircularis. This projection is bilat-
eral with contralateral predominance. A minor compo-
nent of the second-order projection extends to the deep
layers of another midbrain structure, the optic tectum.

The torus semicircularis is the major target of lateral-line
and inner ear information in bony fish. Third-order pro-
jections from the torus then convey the information to
higher centers, such as the optic tectum, the thalamus and
hypothalamus (reviewed in [12]). A midbrain structure
homologous to the torus semicircularis is found in all ver-
tebrates, for example, the inferior colliculus of mammals,
which is also a major target of auditory information.

Information about lateral-line projections at the end of
embryogenesis is much more limited. The first-order pro-
jection from the PLL has been described in six-day-old
zebrafish larvae [13]. PLL axons bifurcate upon entering
the hindbrain and send one branch anteriorly and the
other posteriorly, much as in the adult. The projections
from the ALL and PLL are separate yet closely apposed,
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with ALL axons extending ventral to PLL axons [14]. In
this paper we examine the second-order projection of the
PLL in four-day-old zebrafish. There is no precise bound-
ary between embryonic and larval development in this
species. Hatching occurs anytime between two and four
days after fertilization, and feeding does not begin until
day five, yet organogenesis is complete at two days. Thus,
four-day-old fish are at the transition between late embry-
ogenesis and early larval life.

The analysis of second-order projections at this early stage
was undertaken for three major reasons. First, early devel-
opmental stages could reveal relatively simple patterns of
connections that may later be blurred due to subsequent
expansion and plasticity. Further, the transparency of the
early embryo alleviates the need to reconstruct from serial
sections and may, therefore, give a more comprehensive
view of the connectivity scaffold. Second, much knowl-
edge has recently accumulated about the genetic control
of hindbrain development and regionalization, opening
the prospect that the gap between genetic program, brain
wiring and behavior may somehow be bridged. Third,
examining how and where the information provided by
the lateral-line ganglion is processed in the brain may
help us understand how this information impinges on
behavior and may also give clues about how our own
processing of auditory and vestibular information
evolved.

Results

First-order projection of the posterior lateral line in four-
day-old embryos

Axons from the PLL ganglion enter the hindbrain just pos-
terior to the otic vesicle [13]. They bifurcate soon after
they enter the hindbrain and form an anterior and a pos-
terior branch. In order to better define the antero-poste-
rior range of the projection, we labeled the PLL sensory
neurons in the islet-GFP line, where hindbrain motor
neurons provide convenient landmarks for rhombomeres
[15]. Specifically, trhombomeres 2 and 3 (r2 and r3) can
be identified by the motor nuclei of the trigeminal nerve,
r4 by the exit of the facial nerve, 16 by the motor nucleus
of the facial nerve, and 17 by a smaller nucleus that com-
prises the caudal efferent nucleus of the lateral line system
[16].

The central projection of the PLL sensory neurons in four-
day-old zebrafish is presented Figure 1a (lateral view) and
Figure 1b (dorsal view). The hindbrain is not tubular any-
more at this stage but is wider anteriorly, due both to ante-
rior expansion of the hindbrain's width and to the
presence of the otic vesicle. Combining lateral and dorsal
views of several preparations, we conclude that the axons
bifurcate at the level of r6 and extend from r1 anteriorly to
17/8 posteriorly, that is, over the entire length of the hind-
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brain. The width of the projection is rather constant
except for a tapering at its anterior and posterior ends.

Motor nuclei appear dorsal to the PLL projection in Figure
1a, although the projection extends in the alar plate and
the motor nuclei belong to the basal plate. This apparently
dorsal position of the motor nuclei is due to the V-shaped
structure of the hindbrain, whereby the basal plate
becomes largely medial while the alar plate becomes
mostly lateral (Figure 2a,b). As previously reported [14],
the projection from the ALL extends along the projection
from the PLL, just ventral to it (Figure 2¢c). The two projec-
tions are found in a fibrous region (dotted line in Figure
2a) that is itself ventral to the bulk of the alar plate cell
bodies (Figures 2a and 4a).

When single neuromasts are marked with Dil, two neu-
rons are usually labeled. When seen in dorsal view, the
two axons turn out to follow separate courses in the hind-
brain and to surround a region where all synaptic boutons
are confined (Figure 3a). Both axons and the boutons are
essentially in the same plane. The same holds true when
the nerve itself is labeled: many more neurons are marked,
but their axonal arbours remain as precisely confined as
when only one neuromast is labeled (Figure 3b). This fea-
ture allows us to precisely define the terminal field of the
PLL sensory neurons.

Second-order neurons

Second-order neurons must necessarily be in direct con-
tact with the terminals of the sensory neurons. In order to
specifically label the second order neurons, we first
injected Dil in the PLL nerve to label the synaptic field of
the afferent neurons. We then injected Dil precisely
within this field to label the second-order neurons. Due to
the intense brightness generated by the injection it is not
possible to examine this region in whole mount embryos,
and we relied on thick vibratome sections to examine the
distribution of cell bodies and major tracts (Figure 4).
Even on sections the intensity of fluorescence makes the
region of Dil application appear much larger than it really
is (see legend to Figure 4).

The dye injected in the PLL synaptic field labels a large
number of ipsilateral neurons located dorsal to the injec-
tion site. The cell bodies extend over a large dorso-lateral
region, possibly encompassing most of the alar plate (Fig-
ure 4). Thus, the segregation between the ALL, PLL and
inner-ear regions of the medial octavo-lateral nucleus
reported in adult fish has not yet manifested at this early
stage. Another clear difference from the adult situation is
that the PLL and ALL synaptic fields form adjacent
neuropils that are separate from and ventral to the
'nucleus'.

http://www.neuraldevelopment.com/content/1/1/4

The second-order neurons that pick up the dye injected in
the PLL synaptic field extend commissural neurites (pre-
sumably axons) to the other side of the hindbrain. Two
commissures are labeled, one slightly dorsal to the other.
The dorsal one probably corresponds to the inner arcuate
fibers described in the adult zebrafish brain and com-
prises contralaterally projecting fibers. The more ventral
one corresponds to the ventral commissure (commissura
ventralis thombencephali) and comprises fibers that
project to higher contralateral nuclei ([12] and see
below).

In addition to the ipsilateral neurons, a much smaller
number of contralateral neurons are also labeled (Figure
4). Contralateral neurons tend to have their cell bodies
located laterally (Figures 4 and 5a) and they extend a web
of neurites (presumably dendrites) within the contralat-
eral synaptic field (Figure 5b). They send their axons into
the labeled synaptic field through a dorsal commissure
(Figure 5b), and are probably symmetrical to the second-
order neurons that project contralaterally through the
dorsal commissure. Indeed, two closely associated dorsal
fascicles are seen in Figure 5b, possibly due to simultane-
ous pioneering of the dorsal commissure from the two
sides. Since contralateral neurons take up the dye through
their axonal terminals rather than through their dendrites,
they are not truly second-order neurons and will be con-
sidered together with other back-projecting neurons (see
below).

We conclude that there are at least two populations of sec-
ond-order neurons that extend dendrites into the synaptic
field: those that project along the dorsal commissure to
the contralateral side, and those that project along the
ventral commissure and anteriorly to higher brain centers
(Figure 5).

Second-order projection to higher brain centers: torus and
tectum

Out of 42 experiments, 38 resulted in the labeling of a
well-defined contralateral projection to the midbrain (Fig-
ure 6a,b). This projection was named LT (lateral-line to
torus) for reasons given below. The fibers form a tight
bundle that corresponds to the 'lateral longitudinal fasci-
cle' [17]. The four remaining injections revealed no pro-
jection at all except weak commissural fibers for two of
them, and a small cluster of posterior neurons for the
other two.

In order to identify the target of the LT projection, we per-
formed serial vibratome sections. Fine fibers can be seen
to enter the torus semicircularis, one of the few nuclei that
are easily observed under Nomarski optics in the early
brain (Figure 6d). The bulk of the arborization extends
along, rather than within, the nucleus (Figure 6¢,e), sug-
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Central projection of PLL sensory neurons in an islet-GFP background, as seen (a) laterally and (b) dorsally. Rhombomere
positions are based on the morphology of the various motor nuclei, particularly trigeminal in r2 and r3, facial in r6, and in r7
the small lateral line caudal efferent nucleus [33]. The exit of the facial nerve in r4, barely visible in (a), provides an additional
landmark. Dil has been injected in the PLL nerve (PLLn). The cell bodies of the sensory neurons are gathered in the PLL gan-
glion (PLLg). Their axons enter the hindbrain posterior to the otic vesicle (ear) and bifurcate at the level of ré (site of bifurca-
tion marked by a thick arrow in both panels). They extend anteriorly to the level of rl and posteriorly to the level of r7. The
red and green images were taken at different focal planes. In this and in all following figures the dashed line indicates the sagittal
plane and the scale bar is 20 microns.
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Transversal sections of the afferent projection. At the level of r3—r4, the PLL projection extends at the lateral edge of the hind-
brain, while the basal-plate derived motor neurons are present near the midline. Based on (a) autofluorescence and (b) the
Nomarski image, the afferent projection extends within a neuropilic region (dotted line). (c) At a slightly more anterior level,
the PLL projection labeled with Dil (red) and the ALL projection labeled with DiO (green) are apposed yet segregated. Due to
the thickness of the vibratome section (100 micorns), the same section also comprises the ALL ganglion (ALLg) and shows
contaminating labeling of the hindbrain surface (asterisks) close to the site of DiO injection.

gesting that axo-dendritic contact may take place in a
neuropil that is adjacent to the nucleus rather than within
the nucleus itself. We conclude that the LT branch corre-
sponds to the projection from the lateral-line nucleus to
the torus semicircularis previously described in adult
forms of other fish and amphibian species. This projec-
tion is well developed in zebrafish at four days after ferti-
lization.

Out of 25 high-quality LT projections, we found 21 where
1 or 2 fibers escape from the torus and climb dorsally (Fig-
ure 7A; the AM projection present in the figure will be dis-
cussed below). The four cases where we did not find LT
fibers extending dorsally were all cases of posterior injec-
tions (15 or 15/6). As the torus is overlaid by the optic tec-
tum, we assumed these climbing fibers might invade
tectal territory. In order to better document this result, we
examined sections. Climbing fibers were easily detected in
all cases, albeit in very small numbers (two or three fib-
ers). They were observed to extend very widely in the deep
layers of the tectum (Figure 7b,c).

Among the 38 projections that showed a contralateral LT
branch, only 8 showed some labeling of the ipsilateral LT
branch. The labeling was either weak (four cases) or very
weak (four other cases). This may be an underestimate, as
in one case we observed in sections ipsilateral fibers that
we had not detected in the whole mount. It is nevertheless

obvious that there is a massive prevalence of contralateral
fibers. We did not observe ipsilateral LT fibers climbing to
the tectum.

Specificity of the LT projection

We attempted to evaluate to what extent Dil injected into
the PLL synaptic field extends to nearby synaptic fields.
The projection from ALL neuromasts is closely apposed to
that from PLL neuromasts (Figure 2¢). If Dil injected in
the PLL synaptic field leaked into the just underlying ALL
synaptic field, one would expect to find back-labeling of
ALL sensory neurons. This was indeed observed but in
only 13 out of 31 preparations; furthermore, 5 of the 13
positives were extremely weak. This indicates that the
uptake of Dil is largely or entirely confined to the PLL syn-
aptic field. Thus, we conclude that any branch that we
consistently observed very likely arises from neurons that
extend neurites within the PLL synaptic field. Such neu-
rons are presumably direct targets of PLL sensory axons
(see below for the possibility that some of them would
correspond to modulatory innervation from other brain
centers).

Since little is known about the second-order projections
that extend anteriorly from hindbrain nuclei, it seemed
possible that the establishment of a projection to the torus
might be a general property of hindbrain neurons. In
order to have a quick check for this possibility, we did a
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Figure 3
Dorsal aspect of the first-order PLL projection. Dye injection was done either in (a) a single neuromast, resulting in the spe-
cific labeling of the two neurons that innervate this neuromast or (b) in the PLL nerve, resulting in the labeling of many PLL
sensory neurons. In both cases the axons outline a well-defined and compact synaptic field. The projection in (b) was observed
in an islet-GFP background, allowing us to identify rhombomeres.
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small set of labelings where we targeted the injection out-
side of the primary lateral line projection, more medially,
at a distance equal to the width of the projection. In three
out of five cases we observed a peculiar bilateral projec-
tion that is very different from the LT projection (Figure
8a). We know too little of early brain neuroanatomy to
guess what this projection may correspond to, yet the
result clearly suggests that the LT projection is not a gen-
eral feature of all hindbrain neurons.

Other second-order projections: variations along the
antero-posterior axis

In addition to the LT projection, which was consistently
labeled in nearly all cases, we also observed other compo-

nents, some of which were contralateral while others
appeared bilaterally symmetrical. The results of a first set
of 12 experiments suggested that the pattern of the sec-
ond-order projection was different when Dil was applied
to more anterior or to more posterior regions of the PLL
synaptic field. In order to quantify this effect we per-
formed a further set of 31 injections in an islet-GFP back-
ground, which allowed us to determine the rhombomeric
position where Dil was injected.

The positional identification of the site of injection is
somewhat imprecise due to three factors. First, the site of
injection is very lateral in the hindbrain, while the rhom-
bomere-specific motor nuclei are more medial (Figure
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Distribution of second-order neurons. A vibratome section at the level of the site of Dil injection (asterisk) reveals a large
number of ipsilateral cell bodies, a more limited number of contralateral cell bodies, and two commissures connecting the left
and right lateral line nuclei. The impression of massive spread of Dil is due to the saturation effect of scattered fluorescent
light; a lower exposure reveals that the injection was confined to a much smaller region than the white blob in the figure. In this
and all subsequent figures, the left PLL synaptic field has been labeled with Dil (in those cases where the injection was on the
right, the figures have been inverted to simplify the perception by the reader).

1b), leading to some uncertainty about the lateral
domains of successive rhombomeres. Second, the dorso-
ventral level of the projection also differs somewhat from
that of the motor nuclei, so that parallax effects may alter
the matching. Finally, the position of the motor nuclei rel-
ative to rhombomere boundaries has not been precisely
defined.

In spite of the uncertainties, however, injection sites can
be associated to a given rhombomere or inter-rhombo-
meric region with reasonable confidence. We estimate

that we cannot be wrong by much more than half a rhom-
bomere. This confidence is reinforced by the labeling of
commissural axons projecting to the contralateral side. In
all cases only one or a few commissures were prominently
labeled, corresponding to the site of injection. The rhom-
bomeric identity of commissures can be independently
assessed in relation to motor nuclei and in some cases to
motor nerves (for example, the facial motor nerve that
corresponds to r4). The overall match between the assign-
ments of thombomeric identities based on the injection
site, and those based on the major commissures labeled
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Dorsal aspect of the commissures as seen at three focal levels. From dorsal to ventral: contralateral neurons labeled after
injection of Dil in the left PLL synaptic field (a) have their cell bodies located at a dorsal level, and (b) send their axons along a
dorsal commissure and their dendrites invade the contralateral synaptic field. Ipsilateral neurons extending their axon to the
contralateral hindbrain nucleus presumably use the dorsal commissure as well (b). (c) Other ipsilateral neurons send their
axons through more ventral commissures and form the LT branch. All images (a-c) are composites of two consecutive focal

planes within an extended Z-series.
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The LT branch extends to the torus semicircularis. (a, b) As seen dorsally in whole-mount embryos, the LT projection
courses anteriorly and laterally at a level slightly ventral to the ventral commissures, and turns abruptly upon reaching its target
(see also Figures 7 and 12). In (a), the dotted line indicates the approximative plane of the vibratome section shown in (c-e). (c)
In this section, the terminal arbor of the LT projection is seen to extend along the torus semicircularis, (d) which is easily
delineated under Nomarski optics. (c, €) Fine fibers from the LT arbor extend into the torus.
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Figure 7

A few fibers escape from the LT projection and climb into the optic tectum. (a) Dorsal stereo-view of a whole-mount embryo
(to be seen with crossed eyes). The lettering has been adjusted to correspond to the dorso-ventral level of the corresponding
features; thus, the arrows that point to the climbing fibers will appear much more dorsal to 'AM’, whereas 'LT' will appear
slightly ventral to 'AM'". (b, c) Climbing fibers seen in a vibratome section. The outline of the tectum in (b) has been drawn
based on the autofluorescence pattern seen under blue exciting light (c), which reveals fibrous material (neuropil) as opposed

to cell bodies (nuclei).
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Other posterior projections. (a) A projection that was observed in three out of five cases when the site of injection was delib-
erately out of the PLL synaptic field, slightly medial to it. (b) Overall view of the projection resulting from injections in the pos-
terior region of the synaptic field, illustrating the LT projection and posterior medial (PM) projection. (¢, d) The PM projection
extends through the ocular motor complex (oculomotor and trochlear nuclei) and arborizes both posterior (arrow in (c)) and
anterior to this cluster.
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by Dil, was very good. In 24 cases where commissures
could be readily assigned to specific trhombomeres, there
were 10 perfect matches between the rhombomeric assig-
nation of injection site and commissures and 14 shifts of
half a rhombomere (for example, the injection site being
assigned to r2-r3 while the major commissures would sit
flatly within r3). In most cases of discrepancy (11 out of
14) the commissures suggest a slightly more anterior
rhombomeric position than the one assigned to the site of
injection.

Figure 9 presents a summary of the data arranged accord-
ing to the position of the injection. Given that commis-
sures are closer than the sites of injections to the motor
nuclei that were used as rhombometic markers, we
ordered the cases according to commissural position (col-
umn 1). There would be no significant difference if the
data were arranged according to the positions assigned to
the sites of injection (column 2). Columns 3 to 9 repre-
sent the various components that we identified, including
the contralateral LT projection that was present in nearly
all cases (column 8). The last columns assess the labeling
of back-projecting neurons from the contralateral side
(column 9), of afferent neurons from the ALL (column
10), and the overall quality of the preparation (column
11). The results demonstrate that the second-order projec-
tion is not the same when one injects Dil in the posterior
(upper part of Figure 9) or in the anterior (lower part)
region of the synaptic field. The same pattern is observed
whether the injection is confined to the PLL synaptic field
or whether it extends into the ALL synaptic field (column
10), suggesting that, first, the various branches truly
belong to the PLL second-order projection, rather than
being due to inadvertent labeling of a different system,
and second, the second-order projection of the ALL is
largely similar to that which we describe for the PLL.

The projection that corresponds to more posterior injec-
tions is characterized by the presence, in addition to the
LT branch, of a second contralateral branch (provisionally
called PM for 'posterior medial') as shown in Figure 8b.
Injections in more anterior regions reveal two bilateral
projections, a medial one (AM for 'anterior medial') and a
lateral one (AL for 'anterior lateral'), as shown Figure 10a.
The contralateral PM and AM branches follow the same
tract and their arbours overlap extensively. They were
therefore assigned the same column in Figure 9. We will
consider them separately, however, because there are clear
differences between them, for example, only the AM pro-
jection shows bilaterality and commissural fibers. In only
2 out of 25 cases did we observe a projection with mixed
features, that is, presence of a strong PM branch typical of
the more posterior injections as well as of very weak con-
tralateral AL and AM branches typical of the more anterior
injections (Figure 9, lines 8 and 9). We conclude that the

http://www.neuraldevelopment.com/content/1/1/4

two patterns of projections are segregated along the
antero-posterior axis of the hindbrain.

Based both on the site of injection and the commissures,
we assign the posterior pattern to r5 and r6 and the ante-
rior pattern to rl-r4. Within the rl1-r4 domain we
observed that AM projections are stronger for more ante-
rior injection sites, but the differences are not large
enough to decide with certainty whether there are discon-
tinuities at thombomeric boundaries or whether there is a
continuous trend from r4 to r1. Our impression, however,
is that one can distinguish projections corresponding to
r1-12 (AM as strong or stronger than LT) from those that
correspond to r3-r4 (AM weaker than LT, ALi barely
detectable). Thus, there could be three types of PLL sec-
ond-order projections corresponding to r1-12, r3-r4 and
r5-16. An analysis of vestibular pathways in larval frogs
has revealed a similar organization where rhombomeres 1
and 2 contribute bilateral ascending projections while
rhombomeres 5 and 6 contribute only a contralateral
ascending projection [18].

Second-order projection from posterior levels: the PM
branch

The PM branch follows a medial course that corresponds
to the medial longitudinal fascicle and arborizes in the
midbrain at about the same A/P level as the LT branch
(Figure 8b). The PM branch was observed in 12 out of 14
successful injections in the posterior synaptic field, and
was, in all cases, strictly contralateral. It often presents a
small arborization followed at a more anterior level by a
larger arbour with small lateral extensions (Figure 8c).
Based on the analysis of sections under Nomarski optics,
and on the description of the zebrafish embryonic brain
by Mueller and Wulliman [19], we hypothesized that the
PM branch might terminate in the vicinity of the ocular
motor nuclei (oculomotor and trochlear). To test this
hypothesis we examined the relationship of the PM
arbour to the midbrain motor nuclei as visualized in the
islet-GFP line. The PM branch extends right through the
oculomotor-trochlear complex (Figure 8d). The small
posterior arbour (Figure 8c, arrowed) lies just posterior to
the nuclei and the larger arbour lies anterior to them (Fig-
ure 7b). It seems likely, therefore, that the PM projection
is mostly concerned with providing lateral line informa-
tion to the oculomotor system.

In mammals, the medial longitudinal fascicle is involved
in the connection between vestibular and oculomotor
nuclei, and is responsible for the maintenance of gaze.
The PM branch may perform a similar function in fish.
The similarity between lateral-line and vestibular second-
order projections raises the possibility that the lateral-line
system may perform unexplored proprioceptive functions
in addition to its better-known role in the analysis of the

Page 12 of 27

(page number not for citation purposes)



Neural Development 2006, 1:4 http://www.neuraldevelopment.com/content/1/1/4

AJP level ipsi proj. contra proj. miscell.
©r | mi cLln | ALL | qual
5p 6a r5-6 + +
5a 5p + - +
5a5p | r5-6 + - +
5p r5-6 - = +
Sabp |[r5 i + - +
5a r5 + + +
4a5p |r5 St + + +
5a5p |r4-5 + + (1) +
4p rd-5 + + () | +
most | r4-5 () | (&) + (%) . X
3adp [r34 | + + | £ | & | + - + | +
3p r3-4 + () ? | =+
3a3p |r34 @ | & + - -+
3a 3p r3 =t + +
3a3p |[r3 17 + - +
3a r3 + + | =
2p 3p r3 -+ + + +
2p r2-3 + - +
2a3a |r2-3 + + + +
2a 3a r2 4 + _ +
2a r2-3 (%) - - +
2a r2 ek + - +
2a r2 ! + + +
la2p |r2 + + = +
1ip 2p ri + + - +

Figure 9

Patterns of second-order projection in islet-GFP embryos. The position of injection was assessed in relation to the rhom-
bomere-specific motor nuclei and was independently evaluated for the position of the commissures (column 1) and of the
focus of Dil (column 2). Columns 3 to 5 show the strength of the various ipsilateral branches of the projection; columns 6 to 9
correspond to the contralateral branches. The presence of the various projections has been color-coded; the intensity of the
color reflects the strength of the branch: weak, moderate or strong. Note that column 6 corresponds to two overlapping com-
ponents, one that is typical of the anterior pattern (AM, green) and one that is typical of the posterior pattern (PM, red; see
text). Column 9 (cLLn) shows labeling of the contralateral synaptic field and presence of contralateral cell bodies, column 10
(ALL) indicates labeling of nerves of the (ipsilateral) anterior lateral line, and column | | assesses the overall quality of the prep-
aration. In addition to these 25 preparations, 2 were of low quality but displayed characteristic patterns: LT and PM for an
injection in r5 and LT and AL for an injection in r3. Two other preparations did not display any of the components listed in Fig-
ure 9 nor did they show commissural labeling, suggesting that the injection site must have been slightly out of the PLL synaptic
field.
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Figure 10

Projections from the anterior PLL synaptic field. (a) The ipsi- and contralateral anterior medial projections (AMi, AMc) course
through well-defined symmetrical tracts, the MLF (median longitudinal fascicle), and extend very dense commissural fibers. In
contrast, the anterior lateral fibers (ALi, ALc) are but loosely fasciculated (arrows). (b) The AM projection extends through
the ocular motor nuclei and overlaps partly with the PM projection but it differs from the latter in being bilateral with commis-
sural connections, and in extending further anteriorly and laterally. (c¢) The commissural fibers do not invade the contralateral
projection but stop sharply at its boundary (arrows)
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external water flow. Canal neuromasts would indeed be
ideally adapted to provide such information, and the
canals themselves, being quite isolated from the sur-
rounding water except for the presence of occasional or
terminal pores, may be more akin to the semicircular
canals of our inner ear than to water wave detectors.

In most fish species (though not in the zebrafish) there is
a prominent canal line running along each flank, so
prominent indeed that it is easily seen with the naked eye.
Because of their alignment along the antero-posterior axis
of the animal, a comparison of the inputs from the left
and right PLL canal lines would provide extremely accu-
rate information about angular velocity in the horizontal
plane (yaw). This may endow the fish with the capability
to build precise memories of their courses in conditions of
low ambient light or of no visual landmarks. Interestingly,
the blind cavefish Astyanax is able to build a spatial map
of its surroundings such that it reacts when a particular
landmark is displaced relative to other landmarks, even
when the distance between two landmarks is such that it
cannot possibly perceive both at the same time [20]. These
experiments were done in relatively shallow arenas where
orientation relies only on yaw and not pitch. Whether the
same holds true in the vertical direction, and whether
canal lines on the head provide similar information about
pitch, is not known.

Second-order projection from anterior levels: AM branches
The pattern of branches that is associated with the anterior
region of the synaptic field is more complex than that
associated with the posterior region (Figure 10a). It com-
prises four bilaterally symmetrical branches: two medial
branches (AMi and AMc on the ipsilateral and contralat-
eral sides, respectively) and two lateral branches (ALi and
ALc). The intensities of the different branches in different
embryos are not always correlated (Figure 9), suggesting
that they are formed by different neurons. In most cases,
fibers belonging to adjacent projections intermingle in
such a way that it is not possible to tell whether a specific
fiber emanates, for example, from the ipsilateral ALi or
AM.i. Likewise the AM branches on the two sides (AMi and
AMc) are connected by a very extensive web of commis-
sural neurites, such that it is impossible to tell whether
one specific fiber belongs to the the ipsilateral or contral-
ateral component. In spite of these uncertainties, the AM/
AL branches present a few robust and interesting features.

The AM branches follow the median longitudinal fascicle
much as the PM branch does and their arbour overlaps
largely with that of the PM projection. Their arbours
extend anteriorly and laterally much beyond the PM
branch (Figure 10b), however, making it unlikely that
their input would be entirely confined to the ocular motor
nuclei. They also differ qualitatively from the PM branch
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in being bilaterally symmetrical and in extending com-
missural fibers (Figures 9a and 14). Based on the descrip-
tion of the embryonic brain by Mueller and Wulliman
[19], a major target of the AM projection is probably the
so-called nucleus of the medial longitudinal fascicle
(nMLF) in the diencephalon.

The nMLF provides one of the two major outputs from the
brain to the spinal cord (the other being the reticulo-spi-
nal neurons of the hindbrain). Its precise function in the
control of body movements is not known yet, though it
has been shown that its cells are activated upon gentle tap-
ping of the fish's head, and that it can to some extent sub-
stitute for the reticulospinal system in the so-called
'escape reaction' [21]. The lateral line input to this center
is highly organized and lateralized (see below), indicating
an elaborate processing of lateral line (and presumably
other) sensory information. This suggests two levels of
motor control by lateral line input: the very fast loop
through the reticulospinal neurons, most prominently the
Mauthner cells, which mediates the escape response and
is, therefore, an emergency response, and a more elabo-
rate but slower processing through the nMLF.

Lateralization of AM branches

Ipsilateral and contralateral AM branches are almost
invariably present together (N = 24), with no discernable
lateral prevalence. In 15 out of 24 cases the intensity of the
labeling was similar on the two sides of the midline and
out of the remaining 9 cases it was stronger on the contral-
ateral side in 5 embryos (and stronger on the ipsilateral
side in the other 4, of course).

Notwithstanding the almost complete correlation
between the AM on the two sides, an examination of the
best defined projections suggested that the ipsilateral
component is slightly more dorsal and extensive than the
contralateral component. In order to evaluate this differ-
ence we examined sections of several brains. It appears
that, even though the general target area is the same on
both sides, the distribution of fibers within this area is
indeed different on the two sides (Figure 11a). In order to
substantiate this impression we superimposed the left side
on the right side for four different projections; in all cases
we observed an almost complementary organization of
the projection on the two sides of the midline (illustrated
for two cases in Figure 11b,c).

In one exceptional case we observed a strong labeling of
the ipsilateral but not of the contralateral AM (Figure
10c). This embryo revealed that the commissural fibers do
not invade the contralateral projections: rather, they stop
rather abruptly at the edge, confirming that there is a
sharp partitioning of the information from the two sides
of the body. In another, less spectacular case, we observed
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Figure 11

Lateralization of the AM branches. (a) Transversal section through the arborization of the AM branches reveals that the ipsilat-
eral projection is very dense in the mediodorsal region of the target area, while the contralateral projection extends more ven-
trally within the same area. (b, c) This difference was emphasized by superimposing the ipsilateral half of the section (colored
in red) over the contralateral one (colored in green) for sections of two different embryos. As expected, the LT branch is
mostly green, consistent with its contralateral predominance. In (b), the ALi branch happens to be more labeled than ALc and
appears, therefore, in red.

the reciprocal situation where the contralateral AM projec-  Because of the intermingling it is not possible to ascertain
tion could be seen to send commissural fibers up to, but ~ whether these fibers emanate from the AL or AM, but our
not within, the ipsilateral AM field. impression is that they are more likely to belong to the AL

branch. Some of these escapers extend dorsally (Figure
AL branches 12), while others extend ventrally (Figure 13) and others

The AL fibers are more sparse than the AM fibers and do  escape anteriorly.

not seem to follow any major tract (Figure 10a). Indeed,

they are but loosely fasciculated, contrary to the other = The dorsally directed fibers terminate in a region that is
components of the second-order projection (LT, PM, AM).  anterior to the tectum (Figure 12), most probably the pre-
They extend lateral and slightly ventral to the AM  tectum [19]. A detailed analysis of high-quality prepara-
branches, but they intermingle with the latter in the most  tions revealed that dorsally directed fibers are very often
anterior part of their projection. Due to this loose fascicu-  associated with the contralateral AL (in 11 out of 16 prep-
lation it is sometimes possible to follow individual fibers. ~ arations) but not with the ipsilateral AL (1 doubtful case
Those few cases show that at least some of the ipsilateral ~ out of 13 preparations).

and contralateral AL fibers emanate from different neu-

rons. In contrast, the ventrally directed fibers are associated
with the ipsilateral AL (or AM) in 8 out of 13 good prepa-
Some fibers escape from the region where AL and AM fib-  rations, but never with the contralateral AL or AM. Due to

ers intermingle, at the rostral end of the AM projection.  optical distortions, this region is less easy to visualize
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Dorsal extensions of the ALc branch. Stereo-view of a whole mount embryo illustrating the dorsal fibers emanating from the
ALc. Lettering emphasizes the dorso-ventral level of the corresponding features, as in Figure 7. When seen with crossed eyes,
this view will reveal two fibers climbing from the tip of the ALc projection, slightly anterior to the fibers that extend from the
LT projection into the tectum (labeled 'LT to tectum'). The ALc fibers do not reach a level as dorsal as the LT fiber ramifica-

tion, consistent with a target in the pretectal region of the embryonic brain.

properly in whole mount preparations than the midbrain
and hindbrain, and we relied on vibratome sections both
to confirm the asymmetry between ipsilateral and contral-
ateral ventral projection and to identify the target region.
This revealed the presence of at least two well-defined ven-
tral branches of the ALi (Figure 14).

One branch extends ventrally and laterally and arborizes
extensively near the so-called 'migrated portion of the
posterior tuberculum' (M2). This region will give rise to
the preglomerular nuclei in the adult brain [19]. Interest-
ingly, the lateral preglomerular nucleus is the major adult
target of the third-order projection sent out by the torus
semicircularis. A second branch extends ventrally and
more medially, and a few fibers cross the midline to the
contralateral side. This branch is closely apposed to the

major diencephalic nucleus of the fish brain, the posterior
tuberculum.

Finally, the anteriorly directed fibers also seem to follow
slightly different courses on the two sides as seen in whole
mount preparations. This impression was confirmed by
examining cross-sections at the level of the optic chiasma
(Figure 15). The ipsilateral branch courses along the tha-
lamic eminence, a region that is thought to give rise to the
entopeduncular nucleus located at the junction between
diencephalon and telencephalon [19]. Intriguingly, the
posterior entopeduncular nucleus is, in amphibians, the
second major target of the ascending projection sent by
the lateral line region of the torus semicircularis [22].
Unfortunately, little is known about the connectivity of
this nucleus in adult fish. The contralateral fibers course at
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Ventral extension of the ALi branch. Stereo-view illustrating the fibers that extend ventrally from the ALi. One fiber extends
ventral to the AMi projection, and more ventral extensions are also observed at more anterior levels.

a more dorsal level that probably corresponds to the ven-
tral thalamus, another target of the ascending projection
from the torus semicircularis in amphibians [22].

Back-projections from higher brain regions

In addition to the second-order neurons that collect the
information coming from the PLL axons, injections in the
PLL synaptic field should also label neurons from other
brain centers that send their axons back to, or very close
to, the PLL synaptic field. (for example, to modulate its
activity or contribute to signal processing). As mentioned
above, we often observed contralateral cell bodies that
most likely correspond to back-projecting (or reciprocally
projecting) hindbrain neurons. Contralateral cell bodies
were readily detected in 21 out of 40 good preparations.
They extend dendrites over the entire extent of the contral-
ateral PLL synaptic field. Contralateral neurons were

observed after injection at any antero-posterior level, and
they always sent their axons within the corresponding
commissure(s), suggesting that this type of neuron is
present at all antero-posterior positions.

Since the contralateral neurons are probably symmetrical
to the ipsilateral second order neurons projecting contral-
aterally, one might expect to have a similar labeling of
both neuronal populations, yet contralateral cell bodies
were observed in only about half of the preparations (21/
40). One straightforward explanation could be that the
axons from contralateral neurons do not terminate within
the sensory synaptic field but at some short distance, such
that they are less likely to take up the dye. In support of
this explanation, we observed that the number of contral-
ateral cell bodies correlates well with the density of neur-
ites in the contralateral synaptic field, but not with the
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Figure 14

Ventral extension of ALi. Transversal section cut at the level of the commissural fibers (dotted line in Figure 10a). Two promi-
nent ventral extensions are observed. A medial extension is adjacent to (and crosses) the posterior tuberculum (PT), a tha-
lamic derivative. A more lateral extension arborizes in the M2 area. This region will form the preglomerular nuclei, the major
diencephalic target of third-order lateral line projection in the adult. The outline of the major nuclei (dotted line) is based on
autofluorescence, which reveals fibrous material (neuropils) as opposed to cell bodies (nuclei).

number of ipsilateral cell bodies or intensity of ipsilateral
labeling (Figure 9, column 9).

We did not observe cell bodies in more anterior regions of
the brain, yet it seems likely that there is some feedback
from higher brain regions onto the PLL nucleus. Since
hindbrain contralateral neurons seem to project near to
but not within the PLL synaptic field, we thought that
axons from higher brain centers may be similarly con-
fined to a region some distance away from the PLL synap-
tic field. In a few cases we injected larger quantities of Dil
to increase the probability of labeling neurons that would
back-project near to, but not within, the PLL synaptic
field.

Large injections of Dil did not result in the labeling of new
types of projections, nor in more complex patterns: we
recognized the same projections that were documented in
the previous sections and they still segregate according to
the anterior or posterior site of injection in the primary

synaptic field. We did, however, observe labeling of ante-
rior cell bodies (Figure 16). Two types of neurons were
labeled: some have their cell bodies in a very anterior and
dorsal position (Figure 16a,b). Based on the position of
the dorsal AL extensions on the contralateral side, this
region may correspond to the hypothetical 'griseum tec-
tale' of Mueller and Wullimann [19]. A second population
of back-projecting neurons has their cell bodies close to
the postotic commissure and sends neurites across the
commissure (Figure 16c¢). Both types were strictly ipsilat-
eral, and always in limited numbers.

Discussion

Discussion and interpretation of our observations has
been included in the previous sections, and Figure 17
summarizes our results. Here we want to concentrate on
four unexpected aspects of our results: first, the surprising
richness of the early connectivity in the embryonic brain,
compared to that previously reported for adult brains; sec-
ond, the organization of nuclei and neuropils; third, the
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A

Figure 15

Anterior extensions of ALc and ALi. (a) Transverse section of the head at the level of the optic chiasma. The injection in the
PLL synaptic field extended to the ALL synaptic field such that ALL neuromasts and nerves are also labeled (ALL). (b) Position
of the labeled fibers in relation to the major forebrain subdivisions, based on the autofluorescence pattern (green). Since the

thick section is subjectively seen from the front, the injection site appears on the right side of this figure (left side of the fish).
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Figure 16

Anterior neurons projecting back to the hindbrain. (a) Transverse section revealing the overall pattern at the level of the pos-
totic commissure. A large amount of Dil was injected, resulting in the back-labeling of ALL neurons on the ipsilateral side as
well as of central neurons at the midbrain-forebrain boundary. (b) Higher magnification revealing fibers that follow the post-
optic commissure. Since such fibers are only observed when back-projecting neurons are labeled, we believe that they belong
to the latter. (c) Detail of the same preparation cleaned with the 'Rapid Deconvolution' program of IPLab (see Materials and
methods) to enhance the cell bodies of the back-projecting neurons. Also present on the contralateral side of this section is a
fiber of ALc extending dorsally, possibly into the pretectum, as well as the anteriormost branchlet of a LT fiber that extends
into the optic tectum.
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lateral asymmetry of the PLL second-order projection; and
fourth, the functional significance of the connections that
we have identified.

Exuberance?

The richness of early connectivity that we report in this
paper might give an impression of exuberance [23]. Exu-
berance is thought of as an early, immature developmen-
tal stage of uncontrolled neuritic growth. This exuberance
is assumed to be called to order sooner or later through
processes related to neural activity, such that many fewer
connections are observed in the adult than at early devel-
opmental stages.

In the case of the PLL, the late embryo reveals many more
second-order ascending projections than have been
reported in the adult of other fish species examined so far,
supporting the general idea of early 'exuberance’. Yet the
projections that we observe are extremely reproducible
and well-defined. It is crucial, therefore, to know what the
targets of this early 'exuberant' stage are. There are, unfor-
tunately, obvious limitations to our identification of tar-
get areas. Brain nuclei are not well individualized in four-
day-old fish (with a few exceptions such as the torus sem-
icircularis). For example, it has been observed that tyro-
sine hydroxylase producing cells of the ventral thalamus
and posterior tuberculum appear contiguous in five-day-
old embryos, even though they are spatially well sepa-
rated in adult brain [24]. Thus we have mostly relied on
the tentative assignation of major brain subdivisions pro-
posed by Mueller and Wullimann in their atlas of the early
zebrafish brain [19].

The putative targets that we could assign to the various
branches of the second-order projection correspond sur-
prisingly well to known adult targets of the third-order
projectionthat arises from the lateral-line region of the
torus semicircularis. This includes the deep layers of the
optic tectum (Figure 7) and the future preglomerular
nucleus (Figure 14). We also find thalamic targets that do
not seem to be used in adult fish but have been docu-
mented as targets of the torus semicircularis in amphibi-
ans (putative entopeduncular nucleus and ventral
thalamus; Figure 15).

We find branches to the oculomotor nuclei that resemble
the ascending vestibular projection common to all verte-
brates. Although we cannot rule out that this part of the
projection is a contamination that actually belongs to the
vestibular and not to the PLL projection, we think that this
explanation is very unlikely. The first-order projection
from the inner ear extends ventral to the projection from
the ALL, which itself extends ventral to that of the PLL
[12]. Since the ALL was retrogradely labeled in less than a
third of the cases, it is difficult to imagine that the dye
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would have spread to the inner ear projection in all cases.
Yet we observed branches extending to the oculomotor
nuclei in all cases where we injected in 12 and 13, making
us confident that this part of the projection truly corre-
sponds to the PLL. In addition, we observed that the pro-
jection to the oculomotor nuclei further extends to the

region of the nMLF, as reported in mammals but not in
adult fish.

The extensive connectivity that we observe in four-day-old
fish may be interpreted in two ways. One possibility is
that there is indeed a substantial amount of uncontrolled
exuberance, and that the difficulty in defining prospective
nuclei at this early stage makes it all too easy to find
homologies where there are none. The other, more attrac-
tive possibility is that the embryonic brain reveals a prim-
itive, general-purpose connective scaffold or blueprint
that has been strongly conserved among vertebrates and
from which subsets of connections may have been
selected for further development in different families. This
would be similar to the remarkable conservation of pio-
neering central nervous system connectivity [25] or of the
embryonic peripheral nervous system pattern [26] in
widely divergent insects, even though the conserved pat-
terns are modulated and used for very different purposes
later in development.

Organization of the early brain: nuclei and neuropils

We observed in several cases that projecting fibers extend
to neuropilic regions rather than into nuclei. The separa-
tion between nuclei and neuropils is apparent in the hind-
brain already, as the fibers from the anterior and posterior
lateral line extend ventral to the medial octavo-lateral
nucleus. The second-order LT fibers arborize along rather
than into the torus semicircularis, and the PM fibers
extend around the oculomotor nuclei. This is in contrast
to the situation in adults, where projecting fibers usually
end up within their target nuclei.

The change from larval to adult patterns could be due to a
progressive extension of the projecting fibers into the
nuclei, as could be the case with the LT projection (Figure
6). Alternatively, one could imagine that, after the second-
order neurons have extended their dendrites into the syn-
aptic field, their nuclei translocate to end up within this
field. A similar process of nuclear translocation has been
demonstrated to account for the major morphological dif-
ference between arthropod and vertebrate motor neurons
[27]. This would also explain how the second-order neu-
rons of the PLL are interspersed with other neurons (pre-
sumably ALL and inner ear second-order neurons) in the
early brain, yet become segregated in distinct regions of
the medial octavolateral nucleus in the adult.
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Figure 17

Summary of the various branches described in this paper and of their putative origins and targets. Contralateral projections
within the hindbrain have been omitted for clarity. The various projections have been color-coded as in Figure 9. Uncertainties
over the target regions are described in the results. M2: migrated portion of the posterior tuberculum (will give rise to the
preglomerular nucleus, a major target of the third-order pLL projection in fish). PT: posterior tuberculum, the major dien-
cephalic center in fish. TE: thalamic eminence, the putative origin of the entopeduncular complex (a major target of third order
PLL projection in amphibians). Rhombomeres r3 and r4 are shown to send only a LT (yellow) branch; the data presented in
Figure 9 suggest that they also send AM and/or AL (green) branches but to a minor extent.
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Our data also suggest that there is a substantial level of
organization of the sensory neuropil in the hindbrain of
four-day-old fish. The afferent projections of the ALL and
PLL are apposed yet clearly segregated (Figure 2c) [14].
The contralateral (reciprocal) second-order neurons do
not project within the PLL synaptic field but at some close
distance. The same is true for diencephalic neurons that
send descending projections to the hindbrain: their axons
seem to terminate further away from the PLL synaptic
field, since they can be labeled only with more massive
injections of dye. Connectivity is usually described in
terms of nuclei, and not in terms of synaptic fields (for
example, [22]). There is no doubt that injecting dyes
within nuclei is a useful way to study the overall connec-
tivity of the brain. Our data suggest, however, that this
approach may not be optimal to follow the flow of infor-
mation. Injections within synaptic fields may provide
more accurate information about this flow, at least at early
developmental stages where the segregation between
neuropils and nuclei appears more prevalent than in the
adult.

Lateralization

All levels of the lateral line projection are massively later-
alized. The primary projection is entirely ipsilateral, while
the second-order projection to the torus semicircularis is
almost entirely contralateral. Thus, the information from
the lateral line will end up mostly in the contralateral
torus. The visual information goes directly to the contral-
ateral tectum. Visual and lateral-line information will,
therefore, end up in adjacent regions of the contralateral
midbrain.

The tectum is one of the major integrative centers of the
fish brain, one that is 'exquisitely designed for integrative
orientation tasks' [17]. It is, therefore, not surprising that
its sensory input should correspond to the same half of
the animal (be it ipsilateral or contralateral). Lateraliza-
tion of the brain may then affect coordinately various
aspects of behavior. For example, it is known that the
exploratory visual behavior of fish relies mostly on the
right eye, that is, on information arriving on the left tec-
tum [28]. In the blind cavefish Astyanax, exploratory
behavior most likely relies on lateral line information. In
this species, exploratory behavior involves exposing the
right side of the fish to new stimuli or objects [29], such
that the relevant information is again sent to the left mid-
brain.

In contrast to the prominent lateralization of the LT pro-
jection, the anterior branches seem more bilaterally bal-
anced. This resembles the situation in frogs, where the
projection from vestibular to oculomotor nuclei is bilat-
eral forthombomeres 1 and 2, and contralateral for rhom-
bomeres 5 and 6 [18]. Upon closer examination, however,
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we observed that all components of the second order pro-
jection differ between the ipsi- and contralateral sides. The
AM branches follow similar courses on the two sides of
the brain, and their major target is the same on either side,
but the distribution of second-order axons within this
area is almost complementary between the two sides.
Likewise, the AL branches are, to a large extent, symmetri-
cal, yet the ipsilateral one projects ventrally to compo-
nents of the diencephalic posterior tuberculum, while the
contralateral ones project dorsally to the pretectum (or a
nearby region). Finally, the fibers that extend anteriorly
also follow parallel courses on the two sides of the brain
but the ipsilateral one courses along the thalamic emi-
nence, while the contralateral one follows a slightly more
dorsal course along the ventral thalamus.

The central connectivity of fish is often described as
largely bilateral. Lateral prevalence is limited and variable
from one species to another. Our observations do not fit
easily with this view. Not only do we observe almost com-
plete lateralization in the second-order projection of the
lateral-line system, but we also reported previously an
almost complete lateralization of the efferent control of
the lateral line organs [30]. The discrepancy could be due
to at least two reasons. First, zebrafish might be unusually
lateralized; second, embryonic connectivity might be
unusually lateralized. The first explanation sounds some-
what unlikely but cannot be dismissed altogether. The sec-
ond explanation would imply that, far from being
exuberant, the connectivity of the embryonic central nerv-
ous system is, on the contrary, very tightly controlled. The
variable bilaterality of the adult connections could then
be a later addition to a stereotyped, completely lateralized
scaffold of projections. Interestingly, it has been reported
that there is a large increase in bilaterality of the vestibulo-
ocular projection between larval and juvenile turbot [31].
This increase has been correlated to eye migration during
metamorphosis of the flatfish [31], but our observations
of the early zebrafish brain suggest that increased bilater-
ality may be a general feature of post-embryonic develop-
ment.

Function

The analysis of PLL connectivity is complicated by the
unexpected segregation of nuclei and neuropils, such that
the projection fibers do not end up within nuclei, but in
their vicinity. In the case of the torus semicircularis this
poses no real problem since a small part of the arboriza-
tion is seen to enter this nucleus (Figure 6), and there are
abundant data showing that the torus is indeed the major
target of second-order PLL projection. The situation is
more complex in other regions, since we have no way to
decide from our data which of the adjacent nuclei is the
target of projecting fibers.
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Given the many restrictions to the analysis of the data, we
will nevertheless propose some general interpretation of
our results, progressing from posterior to anterior levels.
The reciprocal connection between the left and right syn-
aptic fields most likely serves to compare the information
from the left and right sides of the body, a computation
that may be useful whenever a fast comparison between
left and right inputs is essential (such as in rheotaxis or in
the escape response). It seems likely in this context that
the contralateral input would be inhibitory and would
specifically impinge on the subset of second-order neu-
rons that are involved in this comparison.

The projection to the torus semicircularis has been the
object of much analysis, in particular the extent of segre-
gation between lateral-line and inner ear projections, and
will not be discussed further. Suffice to say that this pro-
jection is a robust aspect of vertebrate midbrain connec-
tivity and plays an important role in the processing of
auditory information in tetrapods. The existence of a few
branches of the LT projection that extend directly to the
deep layers of the tectum is interesting, since these fibers
provide an early connection between lateral line and vis-
ual centers. As such they may play an important role as
pioneers for the later, massive connection between torus
and tectum. Alternatively, but not exclusively, such an
early input may play a role in the patterning of the deep
layers of the tectum, thereby ensuring the proper targeting
of later fibers connecting torus to the tectum.

The projection to the eye motor nuclei and to the nMLF
has not been reported previously. Given the prevalence of
this component in the vestibular projections in mammals,
its importance in the zebrafish embryo suggests that the
lateral line system may provide vestibular-like informa-
tion, as discussed in the results. The projection to the
nMLF provides a direct link to the motor system, since this
nucleus has a direct output to the spinal motor neurons.
The implication of this nucleus in the escape reaction has
been discussed above (Results). Interestingly, in mam-
mals this nucleus also receives indirect input from the ves-
tibule and is involved in gaze maintenance through a
control of neck muscles. Given that neck appeared rela-
tively late in vertebrate evolution, it seems likely that the
mammalian circuit relaying vestibular information to
neck motor neurons is a specialized adaptation of an
older, more general system that relayed lateral line (and
possibly vestibular) information to body motor neurons.

We also observed direct second-order projections to dien-
cephalic parts of the brain, something that had not been
reported previously. Most of these projections course
through the poorly defined AL path and include only few
fibers, but they are reproducibly observed. Some of them
may prefigure third-order projections from the torus to
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diencephalic centers. For example, the main thalamic tar-
get of the torus semicircularis is the lateral preglomerular
nucleus. This nucleus arises from the migrated part of pos-
terior tuberculum (M2) which is a target of the second-
order projection in the embryo. More unexpectedly, the
ipsi- and contralateral anterior branches of AL are
apposed to two brain regions that will be the major targets
of the diencephalic projection from the torus in amphibi-
ans. This may indicate that vertebrates share a program for
building a general-purpose scaffold for the processing and
integration of mechanosensory information. Modulation
of this processing network may result from the withdrawal
of specific parts of this primitive scaffold, or alternatively,
from maintenance at such a low level as to become virtu-
ally undetectable in the adult, when other components
are massively increased during larval growth.

Conclusion

We have shown that the second-order PLL projection can
be reproducibly visualized in the early zebrafish brain,
and that it is highly stereotyped and highly lateralized. It
comprises a major branch to the torus semicircularis and
a minor branch to the deep layers of the optic tectum as
previously described in adult fish. It also comprises a
number of branches that have not been reported so far.
Some of the new branches are directed to regions that may
correspond to targets of the third-order projection in adult
fish or amphibians, or to targets of the ascending vestibu-
lar projection in fish or in mammals. We propose that the
second-order PLL projection in the zebrafish embryo
reveals most or all of a general-purpose scaffold from
which subsets of elements will be specifically suppressed
or reinforced in various groups of vertebrates later in
development, accounting for the known differences in
connectivity between the major vertebrate groups.

Materials and methods

Fish

Zebrafish (Danio rerio) were obtained from Singapore
through a local company, Antinea (Montpellier, France),
and maintained in standard conditions [32]). Embryos
were obtained from pairs of adult fish by natural spawn-
ing and raised at 28.5°C in tank water. Ages are expressed
as days after fertilization (daf). The islet-GFP line [15] was
obtained from Dr H Okamoto.

Injections

Four-day-old zebrafish were fixed overnight at 4°C in 4%
paraformaldehyde in phosphate buffered saline (PBS)
and kept at 4°C in PBS. Individual fish were mounted on
a coverslip in a drop of 0.7% agar in PBS. The coverslip
was secured to a slide with a tiny drop of agar and the lat-
eral line nerve was visualized under Nomarski optics
using a 40x long-distance water-immersion objective on a
fixed-stage Zeiss (Oberkochen, Germany) Axioscop
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microscope. Dil (Molecular Probes, now part of Invitro-
gen, Carlsbad, California, USA) was used at 2 mg/ml in
dimethylformamide and was applied with a 1.2 mm OD
capillary drawn on a Narishige (Tokyo, Japan) electrode
puller (two-step pulling to obtain a short tip of about 30
Mohms resistance). lontophoretic injection into the nerve
was driven by a WPI electrometer (Sarasota, Florida,
USA). DiO (Invitrogen, Carlsbad, California, USA; 2 mg/
ml in dimethylformamide) was pressure-injected using 5
ms pulses from a PicoSpritzer (Intracel, Shepreth, UK).
The capillary used for DiO injection was drawn as before
but had its tip broken just before injection. Coverslips
with injected embryos were transfered to wells and kept in
PBS at 4°C overnight. The embryos were then examined
for labeling of the projection in the hindbrain, and re-
embedded in 0.7% agar on another coverslip, dorsal side
up. The coverslip was again secured to a slide with a tiny
drop of agar, and the first-order projection was visualized
under fluorescence. An electrode pulled as above was
inserted laterally and Dil was injected within the synaptic
field. The embryo was again kept overnight at 4°C in PBS
and examined the next day for second-order projection.

Microscopy

All examinations were done on a Nikon (Tokyo, Japan)
Microphot microscope fitted with a Princeton Instru-
ments (Trenton, New Jersey, USA) Pentamax camera,
using mostly a Nikon 20x, 0.5 NA objective (occasionally
10x, 0.3 NA or water-immersion 40x, 0.55 NA objec-
tives). Results were recorded as Z-stacks with steps of 2 to
10 micrometers, depending on the objective. The Prince-
ton Pentamax camera, Uniblitz shutter (Vincent Associ-
ates, Rochester, New-York, USA) and ASI (Eugene,
Oregon, USA) focusing stage were controlled by the IPLab
3.6 (Scanalytics, now part of Becton Dickinson, Franklin
Lakes, New Jersey, USA) software running on an Apple
(Cupertino, California, USA) G4 computer. Further
processing of the figures (contrast adjustment, superposi-
tion of Dil and GFP images) was mostly done with IPLab
3.9 and, to a minor extent (final adjustments), with
Adobe Photoshop running on an Apple G5 computer. In
some cases (Figures 2, 53, 7a,b, 8a and 13) the relevant
features from consecutive images were combined using
Adobe Photoshop. In Figure 1, the red (Dil) and green
(islet-GFP) images correspond to different, non-consecu-
tive levels of the Z-stack. The stereo pictures of Figures 6a
and 12a,b were obtained by light deconvolution of the
original Z-stack using the 'Rapid Deconvolution' program
of IPLab, followed by slanted brightest-pixel projection
using the '3D Projector' program. Figure 15c¢ was also
treated with the 'Rapid Deconvolution' program.
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