Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

ALGORITHMS FOR

|:AMB MOLECULAR BIOLOGY

Data compression for sequencing data

Sebastian Deorowicz' T and Szymon Grabowski? "

Abstract

Post-Sanger sequencing methods produce tons of data, and there is a general agreement that the challenge to store
and process them must be addressed with data compression. In this review we first answer the question “why
compression” in a quantitative manner. Then we also answer the questions “what” and "how”, by sketching the
fundamental compression ideas, describing the main sequencing data types and formats, and comparing the
specialized compression algorithms and tools. Finally, we go back to the question “why compression” and give other,
perhaps surprising answers, demonstrating the pervasiveness of data compression techniques in computational

biology.

Background

In the first decade of the century, the cost of sequenc-
ing a single human genome fell from about 30 million to
about 10 thousand dollars (here and later we mean U.S.
dollars). The second generation sequencing platforms by
454 Life Sciences, Illumina, and Applied Biosystems cost
less than one million dollars [1] and are available in many
institutes. The promised third generation (3G) technology
(including Ion Torrent Systems, Oxford Nanopore Tech-
nologies, and Pacific Biosciences equipment) should be
even cheaper, which rapidly moves us closer to the day of
personalized medicine available to the masses.

In mid-2013, the world-biggest sequencing institute,
Beijing Genomics Institute, used 188 sequencers, of
which 139 were the top-of-the-line [llumina HiSeq 2000
and 2500 sequencing machines. Their total theoretical
throughput is over 1.2 Pbases per year, which is equiva-
lent to about 3 PB of raw sequencing read files. Including
the additional output space for mapping to the reference
genomes, the total amount of necessary storage is on the
order of 10 PB per year. The statistics of high-throughput
sequencers in the world (http://omicsmaps.com) show
that the storage necessary for the instruments’ output is
in the range 50—-100PB per year. Kahn [2] presents the
genomic data growth until 2010, pointing out that the
progress in computer hardware lags behind.

*Correspondence: sgrabow@kis.p.lodz.pl

TEqual contributors

2|nstitute of Applied Computer Science, Lodz University of Technology, £6dz,
Poland

Full list of author information is available at the end of the article

() BiolVled Central

Interestingly, recently the Million Veteran Program
(MVP), led by the US Department of Veterans Affairs, was
announced. With at least 30-fold coverage (100 bp reads)
the number of reads per genome sample will be about
1 billion [3]. This means about 250 PB of raw data (in
FASTQ format) in total, when the sequencing program is
finished (the enrollment of volunteers is expected to last 5
to 7 years).

Those numbers are very large, but we need to remem-
ber that they refer to July of 2013. As can be seen in
Figure 1, the cost of sequencing a single base has been
halving roughly every 8 months in 2008—-2013, while the
cost of hard disk space has been halving every 25 months
in 2004-2013. Even if the most recent NHGRI data sug-
gest some stagnation (see also the comment [4]), it may be
a temporary slowdown, as 3G instruments are becoming
available (PacBio RS and Heliscope).

On the other hand, the prices of low-end hard disks
are rather misleading, since the amount of data necessary
in sequencing projects is so huge that data centers are
much better places to store the files. The growing popu-
larity of cloud storage can be attributed to several reasons.
Generally, data management may be cheaper if run by
IT professionals (not always available in smaller centers,
like hospitals), centralization may reduce data replication
costs, and access to really huge repositories (at least of
terabyte scale) is easier or even only possible with large
arrays of disks. The disk drives in large storage arrays are
usually enterprise-class ones of increased reliability and
better performance, so they are several times more expen-
sive than standard (SATA) HD drives. Taking these factors
together we should not be surprised that storing a file in a

© 2013 Deorowicz and Grabowski; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://omicsmaps.com

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

Page 2 of 13

50 : : : 50
20 Amazon transfer ; H g0 : /_/? 20
doubling time 44 months 5] —
10 I KU DO Lt 7 M
5 g 5

5 [Hard {iISK doubling fme 25 months] | ¢ el o ©

= 2 B 2 —

3 1 \ : w0 ° =y 8

U): AR P e a g o

S 05 (doubling I e 0 " A 05 2

D)

Qo =] }{ \ 2

s 02 | doubling time 84 months | 02 2

) 4

o 041 . ‘\ : E— R ?

= o i Ko

% 0.05 [Amazon storage | 005 5

§ 0.02]im : 002 2

- H o

e 0.01 |-+ { doubling time 8 months 0.01 §

s 0005 &

> [0}

I »

S yo 0.002

n s <2 0.001

= /l——! doubling time 19 months _ﬂ Sequencing| i~ 0.0005
,0/0/ °
0.0002
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Year

Figure 1 Trends in storage, transfer, and sequencing costs. The historic costs of low-end hard disk drives were taken from http://www.jcmit.
com/diskprice.ntm. They had been halving every 12 months in the 1990s and around 2000-2004. Then, the doubling time lengthened suddenly, to
about 25 months. The real costs of sequencing, taken from the NHGRI Web page [5], reflect not only reagent costs like some studies show, but also
include labor, administration, amortization of sequencing instruments, submission of data to a public database, etc. The significant change in
sequencing costs around 2008 was caused by the popularization of the second generation technologies. The prices of the Amazon storage and
transfer reflect the real market offers from the top data centers. It is interesting that the storage costs at data centers drop very slowly, mainly
because the costs of blank hard disks are only a part of the total costs of maintenance. The curves were not corrected for inflation.

large data center may cost about 5-10 times more than on
a plain HD; this is the price we pay for ubiquitous access
to reliable data collections.

What is more, these files must be transferred over the
Internet, which is not free. One of the largest data centers
and cloud computing centers are Amazon S3 and Amazon
EC2. Their charges for storage has been halving every
84 months and the charges for transfer has been halv-
ing every 44 months in 2006-2013. In January 2013 the
real cost of sequencing human-size genome (according to
NHGRI data) was about 5,700 dollars, while the cost of
one-year storage at Amazon S3 and 15 downloads of raw
reads and mapping results (225 GB of reads with 30-fold
coverage and 500 GB of mapped data) was close to 1,500
dollars®.

The trends show clearly that the costs of storage and
transfer will become comparable to the costs of sequenc-
ing soon, and the IT costs will be a significant obstacle
for personalized medicine, if we do not face this problem
seriously.

When choosing the compression algorithm to apply (if
any), one should consider the specific use of the data. Two,
in a sense extreme, scenarios are: (i) the data are to be
transferred over a network (and then decompressed), (ii)
the data are to be accessed in real-time, either in a sequen-
tial or random fashion. Let us take a closer look at both.
In the case (i), a reasonable cost measure is the time to

compress the given data (preferably using some “standard”
computer), transfer it, and decompress on the receiver
side. Concerning sequencing reads (FASTQ), it is possible
to obtain (at least) 4.5-fold compression at about 30 MB/s
both compression and decompression speed, on a single
CPU core. Let us assume a link speed of 50 Mbit/s and that
the input files have 450 GB in total. Without any compres-
sion the files will be transferred in exactly 20 hours. On the
other hand, the compression, transfer and decompression
times sum up to about 10.5 hours. Even if a faster con-
nection is available (when the gain diminishes), we note
that the compression and decompression may also be sped
up (using threads or separate processes to utilize multi-
ple CPU cores, and also by overlapping the compression,
transfer and decompression phases). We point out that the
ratio of 4.5, used in this example, is rather modest; signifi-
cantly more is possible with lossy compression and also for
some other biological data types (like genome collections).

Let us now estimate the monetary savings for trans-
ferring (downloading) these files from Amazon S3. The
transfer charge depends on the volume of data, but let
us assume 9 cents/GB. Without compression, we will pay
40.5 dollars for downloading these 450 GB of data, but
only 9 dollars if compression is applied.

The case (ii) is somewhat different, as the choice of
the compression method is rather constrained. To our
knowledge, the most successful, in terms of efficiency

http://www.jcmit.com/diskprice.htm
http://www.jcmit.com/diskprice.htm

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

and flexibility, storage system for biosequences was pre-
sented by Steinbiss and Kurtz [6]. Their GtEncseq solu-
tion accepts several common sequence formats (FASTA,
GenBank, EMBL, FASTQ), compresses the input, pro-
vides fast random access to FASTA data, stores metadata,
etc. Accessing single bases from random locations is not
much slower than from the uncompressed equivalent rep-
resentation, with over 3 million queries per second. In
case of FASTQ, however, extracting a single read from
an arbitrary location is not that fast, as it takes, e.g.,
more than 100 us, which is less than the access time
of a hard disk drive, but not necessarily faster than the
SSD. A space-time tradeoff exists, so this time may be
reduced, but consequently compression ratio drops quite
severely. Anyway, if only sequential access to FASTQ is
needed (which is often the case), GtEncseq may be a good
choice.

As new large-scale sequencing projects are frequently
announced (the mentioned MVP project is probably the
most ambitious at the moment), the storage concerns
are of high priority. It is no wonder then that many
ideas of selective storage (or lossy compression) are dis-
cussed in the community (cf. [7,8]). While we agree that
some forms of lossy compression seem to be a neces-
sity, the radical approach of discarding old data (in the
hope of reproducing them later, when needed) raises
major methodological doubts, as far as research appli-
cations are considered. More precisely, discarding raw
data is hazardous, since their reproduction later will
not be exact, due to inherent “randomness” in sequenc-
ing process, even if the same hardware and possibly
identical procedure are used. This clashes with one of
the main principles of the scientific method, which is
reproducibility.

The area of data compression techniques in compu-
tational biology has been surveyed by Giancarlo et al.
[9,10], with more focus on the theory and data compres-
sion applications in sequence analysis than storage and
indexing of data from high-throughput technologies. One
aspect of data compression in genomics, index structures
for sequencing data, is thoroughly discussed by Vyverman
et al. [11]. We hope our review complements earlier
efforts by paying attention to versatile applications of data
compression in the age of data flood in bioinformatics.

The paper is organized as follows. The next section
contains a brief introduction to widely used data compres-
sion algorithms. The section “Sequencing data” outlines
the popular compression techniques and file formats to
store various bioinformatics data: base calls annotated
with quality scores, genome alignment data, single and
multiple genome data. Making data smaller is not only
for reducing their space and facilitating their distribu-
tion, as it is reflected in the name of the next section,
“Beyond storage and transfer” Here, applications of data

Page 3 0f 13

compression ideas in indexing, read alignment and other
vital problems are discussed. The last section concludes.

Data compression in brief

Compression techniques are the traditional means of han-
dling huge data. Those methods reduce the space for
storage and speed up the data circulation (e.g., among
research institutes). With its origins yet in the 19th cen-
tury and first theoretical works just after the WW2,
nowadays data compression is used almost everywhere
as the amount of stored and transmitted data is huge.
There are several major concepts that are used in com-
pression programs, but the two mentioned below are the
most important in bioinformatics. Here we give only a
very short description of them, with more details in the
Additional file 1 or the monograph [12].

The Huffman coding [12,13], invented in 1952, is a
statistical method, which assigns a sequence of bits (a
codeword) to each alphabet symbol. The codewords are
of different length, and in accordance to the golden rule
of data compression, rarer symbols are represented by
longer codewords. The given sequence is then encoded
by replacing each symbol with its corresponding code-
word. What makes Huffman coding important is its opti-
mality, i.e., no other code leads to a shorter encoded
sequence.

In 1977-78 Ziv and Lempel [12,14] invented dictio-
nary methods. They process the sequence from left to
right and encode possibly long repetitions of consecu-
tive symbols as references to the already compressed part
of data. Such an approach allows for higher compression
ratios than sole Huffman coding as it looks for another
type of redundancy, common not only in natural language
(e.g., repeating word phrases), but also in multiple genome
sequences or overlapping sequencing reads. Even better
results are possible with combining dictionary methods
and Huffman coding. The very popular gzip program
serves as a successful example.

The Burrows—Wheeler transform (BWT) [12,15] is a
more recent compression idea, that has become highly
popular in bioinformatics. The pure BWT is not a com-
pression method, it only permutes the input sequence, but
it can be used to construct highly efficient compressors
(bzip2, combining the BWT with Huffman coding and
other techniques, is a well-known representative). This
transform is also a basis of some sequence indexing tech-
niques that are used to search a genome in many tools
(more on this will be covered in the “Beyond ...” section).
The key idea of BWT is to permute the input sequence
in such a way that symbols are grouped by their neigh-
borhood, i.e., the symbols that are followed by the same
symbols are close after the permutation, even if they were
far in the original sequence (see also the Additional file 1
for a BWT example).

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

Sequencing data

Raw sequencing data

The raw reads from sequencing are usually stored as
records in textual FASTQ format. Each record is com-
posed of a read ID, base calls, and quality scores for all
base calls [16]. These files are often compressed with gzip,
to obtain about 3-fold size reduction. While significant,
such a gain is not quite satisfactory. A better choice is
to use a FASTQ-dedicated compressor, e.g., DSRC [17],
which shrinks the data about 5 times. The algorithm finds
overlaps in the base calls from the reads placed at very
long distances in the file (in Ziv—Lempel fashion), as well
as takes care of various ID format conventions. It also
uses multiple statistical models to better compress qual-
ity values by the Huffman coding. In particular, quality
scores in different read positions are compressed in dif-
ferent models (i.e., based on different statistics) because
it is well-known that the quality deteriorates towards
the read end, hence this design improves the prediction
of the scores. DSRC is quite fast, as it compresses at
30—40 MB/s speed, and handles alphabets of size beyond
5 (IUPAC ambiguity codes) as well as variable-length
reads.

Most newer proposals [18,19] focus mainly on compres-
sion ratio and either the speeds are of secondary impor-
tance or are not examined at all. For example, the solution
by Bhola et al. [18] follows essentially the same direction
as DSRC, but handles also approximate and palindromic
repeats. The byproducts are compressed with an adaptive
arithmetic coder [12]. While the reported compression
ratios are usually higher than the DSRC’s by a few percent,
it is unclear if the solution can be scalable. Remarkably,
doubts are expressed by the authors themselves.

A more radical attempt to improve compression ratio
is to group the reads with suffix-prefix overlaps close
together. Unfortunately, the algorithms following this line
[20,21] are not fully functional tools, e.g., they ignore the
read IDs and quality scores, and achieve processing speeds
on the order of 1 MB/s or less. A more interesting solution
along these lines, SCALCE [22], is a FASTQ preprocessor
helping to improve the compression ratio with gzip twice.

As argued earlier, the rapid growth of data from
sequencing experiments demands even better compres-
sion ratios, and switching to a lossy mode seems to be the
only chance for a breakthrough [23]. The natural candi-
dates for lossy compression are quality scores. It has been
shown [22,24-26] that rounding the quality scores to a few
values (instead of about 60) can be acceptable. E.g., the
fraction of discrepant SNPs grows slowly with diminishing
number of quality scores in Illumina’s CASAVA package
[27] while the benefit in compression is clear®. On the
other hand, some (re)assemblers ignore these data [23], so
if the reads are to be processed by such tools, the qual-
ity scores can be removed. Another option is to use the

Page4of 13

scores to prefilter the reads and discard the ones with
unacceptably low quality.

SeqDB [28] is a notable exception from the shown
tendency. Here the focus was put on compression and
decompression speed, not compression ratio. On a
machine with 12 CPU cores SeqDB reaches the speeds of
about 500—-600 MB/s ([28], Section 4.4), but the compres-
sion ratio is at best at gzip’s level.

Recently, two very interesting algorithms were pre-
sented. One of them is Quip [29], which uses higher-
order modelling [12] with arithmetic coding in its more
“traditional” mode, and also an assembly-based approach
in its stronger mode. The idea is to form contigs from the
first (by default 2.5 million) reads, which then are used
as a reference for the following reads. The compression
improvement due to this idea is moderate however, so
the standard mode (faster and using half of the memory)
seems to be more practical, with compression significantly
better than DSRC and 10 MB/s to 20 MB/s compression/
decompression speed.

In [30] two FASTQ compressors were presented. Now
we briefly describe the more interesting of them, Fqz-
comp. It achieves better compression ratios thanks to a
carefully chosen context mixing model® and other original
ideas. Fqzcomp belongs also to faster solutions, (partly)
due to multi-threading. In the same paper, yet another
strong FASTQ compressor was tested, SeqSqueezel
(described only in [30]). This algorithm, also based on
context mixing, is sometimes even better than Fqzcomp
in respect of compression ratio, but its compression and
decompression speed is less than 1 MB/s.

In Table 1 we compare the existing tools for compress-
ing sequencing data. They belong to four different kinds
described in the following four subsections. We did our
best not to miss any relevant tool for which the sources
or (at least) binary executables for a popular operating
systems were available. There are several reasons why
we do not present experimental (comparative) tests of
the presented tools. They are, in the order of decreasing
importance:

(1) limitations of many tools (e.g., accepting sequences
with only the ACGT or only ACGTN alphabet,
support for fixed-width reads only, assumptions on
the ID format in FASTAQ files, restriction to only
selected fields of the SAM format);

(if) significant problems with running some of the
existing tools (which we have experienced in earlier
work, on FASTQ and genome collection
compression);

(iif) not quite compatible outputs (e.g., DSRC for FASTQ
supports random access, which cannot be turned off,
while many others do not, hence comparing
compression ratios of these tools cannot be fully fair);

Table 1 Summary of the most important compressors of sequencing data

Software Implementation Website Lossless/ Ambig. Var. Speed of Ratio Random Methods Remarks
name availability lossy codes length compr./ access
src code / binaries / libs reads decompr.
Compressors of raw sequencing data
gzip C++/ many / many WWW.GZip.org yes/no yes yes moderate / very high low no LZ, Huf
bzip2 C/many / many www.bzip.org yes/no yes yes low / high low no BWT, Huf
7zip C, C+4/many / many www.7-zip.org yes/no yes yes low / very high moderate no LZ, AC
BWT-SAP [21] CH+/—/C++ github.com/BEETL/BEETL yes/no yes no low / low moderate no BWT, PPM FASTA only
DSRC [17] C++/Lin, Win/ C++, Pyt sun.aei.polsl.pl/dsrc yes/ no yes yes high / high moderate yes LZ, Huf
Fgzcomp [30] C/Llin/— sourceforge.net/projects/ yes/yes no yes high / moderate high no @Y
fazcomp/
G-SQZ [31] C++/Lin/— public.tgen.org/sqz yes/no no no high / moderate low yes Huf
Kung-FQ [19] C#/Win/ - quicktsaf.sourceforge.net yes/ yes no no moderate / moderate moderate no AC, LZ, RLE
Quip [29] Cc/-/- cs.washington.edu/ yes / no no no high / high high no M. models, AC
homes/dcjones/quip
ReCoil [20] CH+/—/C++ github.com/BEETL/BEETL yes/no no no very low / high moderate no BWT, PPM FASTA only
SCALCE+gzip [22] C4++/-/- scalce.sourceforge.net yes/ yes no no moderate / high moderate no AC, LZ, Huf
Seq-DB [28] C++/-/- https://bitbucket.org/ yes/ yes no no very high / very high low yes AC, LZ, RLE
mhowison/seqdb
SeqSqueezel [30] C/Lin/ — sourceforge.net/p/ yes/ no no yes very low / ver low high no M
ieetaseqsqueeze/wiki/
Home/
Compressors of reference genome alignment data
gzip C++/ many / many WWW.gZip.org yes/no yes N/A low / very high low no LZ, Huf
bzip2 C/many / many www.bzip.org yes/no yes N/A low / high low no BWT, Huf
7z C, C++4/many / many Www.7-zip.org yes/no yes N/A low / very high moderate no LZ, AC
BAM [32] C+4/ many / many samtools.sourceforge.net yes/no yes N/A moderate / high moderate yes LZ, Huf
CRAM [33] Java/ many / Java www.ebi.ac.uk/ena/about/ yes/ yes yes N/A moderate / moderate moderate yes Huf, Gol, diff.
cram_toolkit
Quip [29] C/-/- cs.washington.edu/ yes/no no N/A high / high high no M. models, AC
homes/dcjones/quip
SAMZIP+rar [34] -/~ www.plosone.org/article/ yes/ no yes N/A moderate / high moderate no RLE, LZ, Huf

info:doi/10.1371/journal.
pone.0028251

§Z/1/8/3ua1u02/610°qow e mmm//:d1y

57:8 '€10¢ Abojoig ipjndajoyy Jof swyiLiob)y 1{smogqelsy pue zo1moload

€1 4o g abeq

www.gzip.org
www.bzip.org
github.com/BEETL/BEETL
sun.aei.polsl.pl/dsrc
sourceforge.net/projects/fqzcomp/
sourceforge.net/projects/fqzcomp/
public.tgen.org/sqz
quicktsaf.sourceforge.net
cs.washington.edu/homes/dcjones/quip
cs.washington.edu/homes/dcjones/quip
github.com/BEETL/BEETL
scalce.sourceforge.net
https://bitbucket.org/mhowison/seqdb
https://bitbucket.org/mhowison/seqdb
sourceforge.net/p/ieetaseqsqueeze/wiki/Home/
sourceforge.net/p/ieetaseqsqueeze/wiki/Home/
sourceforge.net/p/ieetaseqsqueeze/wiki/Home/
www.gzip.org
www.bzip.org
samtools.sourceforge.net
www.ebi.ac.uk/ena/about/cram_toolkit
www.ebi.ac.uk/ena/about/cram_toolkit
cs.washington.edu/homes/dcjones/quip
cs.washington.edu/homes/dcjones/quip
www.plosone.org/article/info:doi/10.1371/journal.pone.0028251
www.plosone.org/article/info:doi/10.1371/journal.pone.0028251
www.plosone.org/article/info:doi/10.1371/journal.pone.0028251

Table 1 Summary of the most important compressors of sequencing data (Continued)

Compressors of single genome sequences

gzip C++/many / many WWW.gZip.org yes/ no yes N/A moderate / very high low no LZ, Huf

bzip2 C/many / many www.bzip.org yes/ no yes N/A low / high low no BWT, Huf

7z C, C++/ many / many WWw.7-zip.org yes/ no yes N/A low / very high moderate no LZ, AC

dna3 [35] C/-/- people.unipmn.it/manzini/ yes/ no no N/A low / low moderate no LZ, PPM
dnacorpus/

FCM-M [36] C/-/- ftp://www.ieeta.pt/~ap/ yes/ no no N/A very low / very low moderate no M. models
codecs/

XM [37] Java/many / Java ftp.infotech.monash. yes/ no yes N/A very low / very low moderate no M. models, AC
edu.au/software/
DNAcompress-XM

Compressors of genome collections

gzip C++/ many / many WWW.gZip.org yes/ no yes N/A low / very high very low no LZ, Huf

bzip2 C/many / many www.bzip.org yes/ no yes N/A low / high very low no BWT, Huf

7z C, C++/ many / many Www.7-zip.org yes/no yes N/A low / very high high no LZ, AC chr-

ordered

ABRC [38] C4++/Lin, Win / C++ www2.informatik.hu- yes/ no yes N/A high / very high very high yes LZ, Huf
berlin.de/~wandelt/
blockcompression/

GDC [39] C++/Lin, Win / C++ sun.aei.polsl.pl/gdc yes/ no yes N/A high / very high very high yes LZ, Huf

GReEn [40] Cc/-/- ftp://ftp.ieeta.pt/~ap/ yes/ no yes N/A high / high high no M. models, AC
codecs/

GRS [41] C/Lin/- gmdd.shgmo.org/ yes/ no yes N/A moderate / low high no LCS, Huf
Computational-Biology/
GRS/

RLZ [42] C++/-/- WWW.genomics.csse. yes/ no yes N/A moderate / very high high no LZ, Gol
unimelb.edu.au/product-
rlizphp

Abbreviations used in the table: src—source codes, libs—Tlibraries, Lin—Linux, Win—Windows, Pyt—Python, exe—binary executables, AC—arithmetic coding (a statistical coding method [12]), CM—context mixing for
arithmetic coding [12], diff—differential coding (paradigm: store only changes between sequences), Gol—Golomb (a statistical coding method [12]), Huf—Huffman, LCS—longest common subsequence (a measure of
similarity of sequences [43]), LZ—an algorithm from Ziv-Lempel family, M. models—Markov models [12], PPM—prediction by partial matching (an efficient general-purpose compressor [12]). “Ambig. codes” means the

ability to compress DNA symbols other than {A, C, G, T, N}. “chr-ordered” for 7z and genome collections means that the input (human) genomes were split into chromosomes and ordered according to them before the actual

compression. In this way several chromosomes fit the 7z LZ-buffer which is beneficial for the compression.

$2/1/8/3ua1u02/610°qow e mmm//:d1y

578 ‘€10¢ Abojoig ipjndajojy 104 swyiioby 1SMogels) pue zJImo1o3d

€1 Jo 9abeq

www.gzip.org
www.bzip.org
people.unipmn.it/manzini/dnacorpus/
people.unipmn.it/manzini/dnacorpus/
ftp://www.ieeta.pt/~ap/codecs/
ftp://www.ieeta.pt/~ap/codecs/
ftp.infotech.monash.edu.au/software/DNAcompress-XM
ftp.infotech.monash.edu.au/software/DNAcompress-XM
ftp.infotech.monash.edu.au/software/DNAcompress-XM
www.gzip.org
www.bzip.org
www2.informatik.hu-berlin.de/~wandelt/blockcompression/
www2.informatik.hu-berlin.de/~wandelt/blockcompression/
www2.informatik.hu-berlin.de/~wandelt/blockcompression/
sun.aei.polsl.pl/gdc
ftp://ftp.ieeta.pt/~ap/codecs/
ftp://ftp.ieeta.pt/~ap/codecs/
gmdd.shgmo.org/Computational-Biology/GRS/
gmdd.shgmo.org/Computational-Biology/GRS/
gmdd.shgmo.org/Computational-Biology/GRS/
www.genomics.csse.unimelb.edu.au/product-rlz.php
www.genomics.csse.unimelb.edu.au/product-rlz.php
www.genomics.csse.unimelb.edu.au/product-rlz.php

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

(iv) different targets (by design, some of the tools are
supposed to be run on a commodity PC, while others
require powerful servers, or never were tested on
mammalian-size data, since it would take days or
even weeks. For example, many top single genome
sequence compressors work at the rate of several
Kbase/s only, on a standard computer).

Reference genome alignment data

The reads are usually assembled or reassembled. De novo
assembling is the most challenging, but resequencing, in
which the reads are aligned to some reference genome, is
much cheaper and thus widely used.

The results of mapping the reads onto the reference
genome are usually stored in the SAM/BAM format [32].
SAM files augment the reads data with mapping quality
and several other fields. BAM is a gzip-like compressed
binary equivalent of textual SAM and is about 3—4 times
smaller. Due to the additional data SAMs are more than
twice as large as FASTQ files.

The reads in SAM files are mapped to a known ref-
erence genome and the differences between the reads
and the reference sequence, resulting from variation and
sequencing errors, are small. Thus, it is efficient to rep-
resent the base calls of a read as the mapping coordinate
and the differences. These reads are usually ordered by
the mapping coordinate and thus the coordinates can be
stored in a differential manner, which results in a sequence
of small and thus well compressible numbers. The old-
est scheme [44] for compressing mapping data with the
described idea cannot however be considered mature,
since quality scores are ignored and there is no support for
unaligned (i.e., those that failed to map onto a reference)
reads.

Fritz et al. [33] handle both aligned and unaligned
reads. The aligned reads are stored basically as described
above together with the quality scores. To obtain better
compression ratios, the authors advocate using a lossy
mode and refrain from storing some quality scores, e.g.,
the ones related to perfectly matched positions. To com-
press the unaligned reads (usually 10-40% of raw reads)
better, they propose to build some artificial reference
sequences. To this end, unmapped reads from many sim-
ilar experiments are processed by an assembler to obtain
contigs, built only for the compression process. Finally,
the remaining sequences are matched to the bacterial and
viral databases. Some of the byproducts in the algorithm
are encoded with the Huffman (or other) codes. Most
of the described techniques, excluding artificial reference
as well as bacteria and viral sequences, are implemented
in the CRAM compressor. In a highly lossy setting, it
can produce archives smaller by an order of magnitude
than corresponding BAM files. Similar approaches for
compressing reads by mapping them onto an reference

Page 7 of 13

genome are used in SlimGene [25] and SAMZIP [34]
algorithms.

Generally the use of a reference sequence can help a
lot for the compression ratio but we should remember
that a reference might not be available in some cases,
e.g., for metagenomic datasets or for organisms with high
polymorphism [20].

The most recent SAM compressor [45], apart from
highly configurable lossy compression settings, introduces
a novel idea to exploit common features of reads mapped
to the same genomic positions. Quip [29], published
slightly earlier, is not as flexible as CRAM and works only
losslessly. However, if aligned reads in the SAM or BAM
format and a reference sequence are given, it wins with
CRAM in compression ratio and needs less memory to
operate.

The tabix program [46] is a more general solution, pop-
ular in sequencing centers. It was designed to allow fast
random access to compressed (gzip-like) textual files, in
which the data are stored in rows containing tab-delimited
values. The basic idea is to sort the input rows accord-
ing to the sequence name and coordinate. Then the file
is split into a series of blocks of maximum size of 64 KB.
These blocks are compressed. Finally, an index to support
random access queries is built.

Single genome sequences

Raw and annotated sequencing data are nowadays the
greatest challenge for storage and transfer today. Never-
theless, consensus DNA sequences (e.g., complete bac-
terial genomes) used to be historically the first object
of compression in bioinformatics. In a sense, however,
the genome sequences for a single individual are almost
incompressible. If the sequence contains only the symbols
A, G, G, and T, then the trivial 2 bits per symbol encoding
is often more efficient than a general-purpose compressor,
like gzip!

Specialized DNA compressors appeared in mid-1990s,
but most solutions from the literature are impractically
slow. For example, one of the strongest of them, the
highly-acclaimed XM [37], can squeeze a genome up to
about 5 times, but compression speed of the order of
20 KB/s on a modern machine is clearly disappointing.
Some other notable compressors in this area are dna3
[35] and FCM-M [36]. The standard input format for
genome sequences is FASTA, in which the file starts with a
single-line description, followed by lines of sequence data.

Collections of genome sequences

As said, a single genome in its compact encoding (2 bits
per base) seems almost incompressible. However, large
repositories with thousands of individual genomes of the
same species are just behind the corner. These genomes
are highly similar to each other (e.g., human genomes

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

have more than 99% of their content in common [47]),
so a collection can be very efficiently compressed. Dic-
tionary methods, from the LZ family, constitute the most
obvious and actually most successful approach, consid-
ering high-speed decompression with moderate memory
requirements. The compression phase is more demand-
ing, both in time and space, because the repetitions
(matches) in a collection of genomes are typically giga-
bytes apart. For these reasons, most general-purpose LZ-
style compressors (e.g., gzip, rar) are useless for those
data, and a few years ago the first specialized algorithms
emerged.

In their seminal work, Christley et al. [48] compressed a
single human (James Watson’s) genome, but with the vari-
ation data relative to a reference genome being provided.
Variation data were comprised of single nucleotide poly-
morphisms (SNPs) and so-called indels, i.e., insertions
or deletions of multiple nucleotides. Additionally, they
used a readily-available SNP database. The assumed sce-
nario, augmented with standard compression techniques,
made it possible to represent the whole human genome
in about 4 Mbytes only. Recently, Pavlichin et al. [49] fol-
lowed the lines pioneered in [48], compressing the JW
genome to 2.5 MB, with very similar average results on
1092 human genomes from the 1000 Genomes Project.
The introduced novelties are partly biologically-inspired,
e.g., making use of the tag SNPs characterizing haplo-
types. In another recent achievement, Deorowicz et al.
[50] compressed the variant call files from 1092 diploid
H. sapiens (1000 Genomes Project) and 775 A. thaliana
(1001 Genomes Project) individuals, together with a vari-
ant database, squeezing the former collection to about 432
MB and the latter to 110 MB (which translates to 395 KB
and 142 KB per individual, respectively).

Other research did not assume access to a knowledge
base (i.e., a reference genome), hence most of them did
not yet achieve the mentioned levels of compression. Most
of these works [39,40,42,51] encode one of the genomes
in a collection with simple means, spending about 2 bits
per base, and then apply very efficient differential LZ-
like encoding for the remaining genomes. The pioneering
algorithm of this kind, RLZ [42,52], looks for LZ-matches
in the reference genome (the one encoded naively, with
2 bits per base), and encodes their positions compactly,
with reference to the previous match. This handles typ-
ical differences in genomes of the same species (short
insertions or deletions, SNPs) in an efficient manner. Such
an approach is successful: the related compressor, GDC
[39], obtains in its strongest mode the compression ratio
of 1,000 for relatively encoded genomes in a collection
of 70 human individuals, with decompression speed of
150 MB/s. The key ideas in GDC include looking for
long approximate matches in the whole collection and the
Huffman coding.

Page 8 of 13

Some of the specialized compressors (GDC, LZ-End
[53]) allow for fast access to an arbitrary substring of
the compressed collection. Unfortunately, this comes at a
price: some loss in compression ratio (which still remains
competitive, though).

Yet another differential genome compressor was pre-
sented by Wandelt and Leser [38]. Implementation-wise
its original trait is searching for matches via a compressed
suffix tree [54] (in blocks). This solution reaches the com-
pression ratio of about 400 for the collection of 1000
human genomes. The match-finding speed of a parallel
implementation is rather high (85 MB/s with large blocks).
The real bottleneck is, however, building the compressed
suffix tree.

Interestingly, also 7zip, a well-known advanced general-
purpose LZ compressor, achieves quite competitive
results, but for mammalian-size genomes the collections
must be reordered by chromosomes, otherwise it can-
not find inter-genome LZ-matches and its compression
then is not much better than gzip’s. This behavior can be
explained by its LZ-buffer limited to 1 GB, which is less
than the size of, e.g., the human genome. On the other
hand, chromosomes are already small enough and several
of them fit its buffer.

Currently, public repositories often store large genomes
as variant databases (e.g., in VCF format). This ten-
dency should help significantly in developing new efficient
compression algorithms, since all input sequences are
perfectly aligned and the (otherwise hard and resource-
consuming) task of finding repetitions in data becomes
almost trivial. Thus, we expect the work by Christley et al.
[48], Pavlichin et al. [49] and Deorowicz et al. [50] to be
only the first steps in this direction.

Beyond storage and transfer
So far, we have discussed how compression can alleviate
the burden of storing and transmitting various genomic
data. It can, however, help in less obvious aspects as well.
One prominent example is de novo assembly for second-
generation sequencing technology, based on the de Bruijn
graph [55], where hundreds of GB of RAM could be
needed with standard methods. Applying succinct data
structures allowed to decrease the memory usage by an
order of magnitude, and a whole assembly pipeline of a
human individual was run in about 36 GB of RAM [56].
The nodes in the de Bruijn assembly graph are all distinct
strings of some length k (e.g., 25) from given data, and
edges between them exist if two nodes have a suffix-prefix
overlap of length k — 1. The idea of Conway and Bromage
[56] was to perceive the set of edges for given data as a sub-
set of the full graph and to use (existing) succinct subset
encoding techniques, supporting fast access. Representing
this subset with naive means would be impossible because
of typically quadrillion-edge scale of the full graph. On the

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

other hand, standard approaches to the de Bruijn assem-
bly graph construction are plagued with pointers (location
addresses in the memory), which are dominant part of the
data structure in RAM.

Compact data structures not always make use of
“typical” compression techniques (like statistical coding or
LZ-matches), yet they serve the same purpose, which is
(in the currently discussed application) reducing the
memory requirements for building or querying a large
graph. The Bloom filters [57], the well-known idea
for compact approximate subset representation, were
recently used with success for the de Brujin graph con-
struction [58,59]. In particular, the work of Salikhov et al.
[59] is a refinement of the technique of Chikhi and Rizk
[58]. Their graph built for 564M human reads of length
100 bp using k = 23 occupies only about 2.5 GB. Another
succinct (but not exactly compression) technique was pro-
posed by Ye et al. [60]. They store only a small subset
of the observed k-mers as nodes, with their neighboring
chains of bases as edges. Some care is taken to remove
low-coverage edges, which normally result in tips, loops
or bubbles in the assembly graph, undesirable in the graph
for a few reasons, including very high memory require-
ments. The compact structure of SparseAssembler from
the cited work was built in less than 2 hours for the human
chromosome 14 with the peak memory use of 3 GB. The
memory requirement for the whole human genome was
below 30 GB. While the result from [59], cited above,
seems clearly better, they are not directly comparable,
unfortunately, due to different coverages and used values
of k.

An alternative to the de Bruijn graph is the assembly
string graph [61], not working on k-mers, but requiring
fast and memory efficient algorithms for the computa-
tion of suffix-prefix overlaps of arbitrary length among
reads. In a string graph, as opposed to the de Bruijn
graph, each path represents a valid assembly of the reads
(because the reads are not “decomposed” into many inde-
pendent k-mers). Although this approach seems harder, in
the SGA string assembler [62] error correction and assem-
bling were performed with satisfactory accuracy on 125
Gbp of human genome reads using 54 GB of memory.
This was achieved thanks to a compressed data struc-
ture, the FM-index [63], which will be mentioned also
later. Interestingly, another practical string graph assem-
bler, Readjoiner [64], which can process 115 Gbp short
reads dataset in 52 GB of RAM, does not make use of com-
pressed data structures, but its space effectiveness comes
from an ingenious partitioning approach applied to the
array of a relevant subset of all suffixes of all reads. Read-
joiner also confirms that compact data structures may be
fast because of locality of accesses to data.

Another compression example concerns data indexing.
Computational biology is mostly about data analysis,

Page 9 0of 13

which in turn involves pattern search. If the data over
which patterns are sought do not change over time, we
talk about a static scenario. This is quite common, e.g., an
already sequenced genome of a given individual is usually
not updated for a long period. In such a case it may be
worth to build an index structure for given data since its
construction time, even if significant, is likely to be paid
off during multiple subsequent pattern searches. A classic
text indexing data structure is the suffix tree (ST) [43]. It is
powerful and useful, but unfortunately requires up to 28n
bytes of space, where 7 is the sequence length. Thus, it is
hard to store an ST in the main memory even for a sin-
gle mammalian genome. The compressed index idea is to
support all (or main) functionalities of its classic counter-
part (e.g., returning the locations of all occurrences of the
pattern in the text), but using much less space. The area
of compressed indexes, initiated only around 2000, has
been marked by tens of significant papers [65]. Unfortu-
nately, those “general-purpose” text indexes are not a good
choice for a collection of genomes of individuals of the
same species. In these cases, LZ-based indexes are much
more efficient in removing the specific (and very large)
redundancy. Several works with LZ-style indexes designed
for genomic data appeared in the recent years. Most of the
solutions for the exact [66-68] and approximate pattern
search [69] are rather theoretical as for only some of them
implementations are available.

The Burrows—Wheeler transform (BWT) is used with
huge success for mapping sequencing reads onto a ref-
erence genome, almost making the classic, g-gram-based
approach, obsolete (for example, an interesting represen-
tative of the latter approach, Hobbes [70], is very fast but
also uses large amount of memory). Some of the most
important genome alignment algorithms, Bowtie [71,72],
BWA [73], BWA-SW [74], SOAP2 [75], and GEM [76],
make use of the FM-index [63] or another compressed
index based on the BWT, occupying as little as about 2
GB for a human genome (with the exception of GEM,
requiring usually from 3 GB to 6 GB). For more infor-
mation on BWT and FM-index, see the Additional file 1.
These aligners also belong to the fastest ones. All of them
(Bowtie only in version 2) support ungapped and gapped
alignments and all of them are multi-threaded to make
use of multi-core CPUs. Using BW T for gapped alignment
is cumbersome, and this is why Bowtie2 [72] and GEM
combine it with dynamic programming, a classic compu-
tation technique boasting its flexibility and tolerance for
large gaps and affine gap penalties. An important issue for
compressed indexes is the working space needed during
their construction, as standard BWT computation algo-
rithms require at least 5# bytes of memory. Lightweight
algorithms for BWT computation [77,78] appeared rel-
atively late, yet the Kérkkainen’s method [77] is already
implemented in Bowtie.

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

A special case of mapping sequence reads to genomes
concerns RNA-Seq experiments, in which a ‘snapshot’ of
RNA molecules in the cell is sequenced. The RNA-Seq
[79] is a relatively new approach that proved highly suc-
cessful especially for determination of gene expression.
The main problem here is that we must deal with reads at
exon-exon boundaries (without the introns present in the
reference genome), so spliced mappings must be looked
for, which is unusual for standard DNA reads mapping.
Some mappers for this problem also make use of the
FM-index, e.g., TopHat [80] and CRAC [81]. A compre-
hensive list of RNA-Seq mapping approaches can be found
in [82].

The FM-index searches for a pattern finding its suc-
cessive letters, from right to left, which can be called
backward extension of a string. Recently, Li [83] pre-
sented a simple modification of the FM-index for
forward-backward extension of DNA strings. His de novo
assembler, fermi, shows that the assembly based variant
calling can achieve an SNP accuracy close to the stan-
dard mapping approach, being particularly strong in indel
calling.

It is worth noting that BWT-based alignment can be
implemented on a massively parallel graphics process-
ing unit (GPU). Recent tools SOAP3 [84] and SOAP3-dp
[85], being about an order of magnitude faster than their
CPU-based counterparts, are prominent examples.

One could ask if the FM-index, or another compressed
index, is useful for searching DNA strings in a genome,
e.g., given as FASTA input. The answer is positive; thanks
to the small alphabet the search times (the count query,
in which we return the number of matches only) of the
FM-index, in the best current implementation, may be
comparable with the suffix array ([86], Table Six and
Seven). The space use, however, is only about 0.3# (in con-
trast to 5# needed by the suffix array). On the other hand,
the locate query, in which the positions of all matching
substrings are returned, is at least an order of magnitude
slower, and needs some extra space.

In some cases, however, searching directly in the com-
pressed data may be faster than in the straightforward rep-
resentation. Loh et al. [87] compress a sequence database
so that if an inserted sequence is similar enough to one
from the database, it is represented as the reference plus
a list of differences (edit script). The search algorithm
they propose, based on BLAST, takes care of the differ-
entially encoded sequences, and only rarely requires to
bring them back to their “full” form. Their Compressive
BLAST / BLAT algorithm was found to be about 4 times
faster than classic BLAST / BLAT tools [88,89]. Other
examples where data compression reportedly speeds up
processing concern the k-mer counting task, especially
in I/O-constrained scenarios ([90], Table Two—Four). We
note that reading compressed input is nowadays a con-

Page 10 0of 13

venient feature of many tools (e.g., de novo assemblers
Velvet [91] and ABySS [92]), but not always it brings
improvements in speed.

Compression methods were used also for other pur-
poses, in which the goal was not the reduction of space
or processing speed-up, but rather better understanding
of genomic data. Cao et al. [93] used the XM algorithm
[37] to align eukaryotic-size genomes in a few hours on a
workstation. The idea is to teach the expert models on one
of the sequences and use the knowledge to properly align
the second one by measuring the information content
and the mutual information content of the sequences.The
resulting aligner is shown experimentally to be superior
(atleast in quality, not in speed) to conventional alignment
methods based on character matching.

Bhaduri et al. [94] proposed a somewhat related idea of
using a compression algorithm from the LZ family to fil-
ter low-complexity reads in a project on identification of
nonhuman sequences, such as viruses, in deep sequencing
datasets.

A measure of sequence similarity, that is both accurate
and rapidly computable, is highly desirable. Ferragina et al.
[95] advocated that classic alignment methods do not
scale well for huge data. They focus on the Universal Simi-
larity Measure (USM) [96]. As USM is rather a theoretical
concept, the authors experiment with its three approx-
imations based on data compression. They validate the
possibility of using these approximations for classification
of sequences by UPGMA and NJ methods.

Freschi and Bogliolo [97] proposed a lossy compres-
sion scheme to eliminate tandem repeats from a sequence.
Thanks to that, no repeat masking is necessary before
performing pairwise alignment of sequences.

Conclusions

Data deluge in computational biology has become a fact.
A vast majority of gathered data is “temporary” in nature
and could be discarded as soon as the analysis is done. The
problem is, however, that current sequence analysis algo-
rithms are imperfect, and storing lots of data only in the
hope to squeeze out more of them in the future is a rea-
sonable strategy. To put it in other words, lossy storage is
an interesting option for bioinformatics, but it should be
used judiciously.

The variety of genomic data formats implies the need
for specialized compression algorithms better than the
general-purpose standards, like gzip and bzip2. Suc-
cinct representation is not everything; decompression
time or rapid access to arbitrary data snippets may mat-
ter even more, so they should be taken into account
in algorithmic design. Sometimes even more enhanced
functionalities are welcome. Fast search directly in the
compressed data is an example. More efficient compres-
sion diminishes the costs of not only local data storage

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

and transfer, but also of data center services. The latter
should bring the vision of ubiquitous cloud computing
closer.

Let us make two predictions at the end. First, we note
that some objects of interest in computational biology,
like a human genome, do not grow. Hence, with growing
amount of memory even in our home laptops, it per-
haps no longer pays to apply strong compression for some
tasks, if less compact but faster solutions are known. Read
alignment onto a reference genome is a prominent exam-
ple of this sort. We anticipate that in 1-2 years solutions
processing a 1 billion 100 bp reads collection in a few
hours on a PC will appear, but their main data structure
may be the good old suffix array rather than, e.g., the
FM-index.

Second, we predict that the turbulent period of new
compression ideas for sequencing data representations
will slowly give way to industry-oriented solutions, with
more stress on robustness, flexibility, ease of use, and
compression and decompression speed (in sequential and
parallel/distributed regimes). Ideas are exiting, but rou-
tine jobs require standards. We believe that powerful,
versatile and thus widely used formats in bioinformatics
will emerge soon, proving the maturity of the field.

Endnotes

2 There are, of course, many alternative cloud storage
solutions and it is hard to tell “typical” fees for storage and
transfer, as opposed to retail disk media prices which can
be monitored rather easily. As a reference, however, we
note that Microsoft Windows Azure and Google Cloud
Storage charges in the same scenario are similar (about
1,350-1,500 dollars), and all these providers charge more
for the assumed 15 downloads than for one-year storage.

b Illumina software for their HiSeq 2500 equipment
contains an option to reduce the number of quality
scores [98]. Its effect on overall sequencing is shown in a
technical support note [99].

¢ Statistical methods often encode symbols with regard
to the gathered statistics of occurrences in their
respective contexts, which are formed with, e.g., several
proceeding symbols. This approach can be made even
more sophisticated with considering several contextual
models running in parallel, in order to improve the
estimation of symbols’ probability and, in result, the
obtained compression ratio. The name of “context
mixing” refers to this approach, in which the statistics
from different contexts are “mixed” (weighted, blended).

Additional file

Additional file 1: Description of selected compression methods.

Page 11 of 13

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SD and SG contributed equally to the paper. Both authors wrote, read and
approved the final manuscript.

Acknowledgments

This work was supported by the Polish National Science Centre under the
project DEC-2012/05/B/ST6/03148. We wish to thank Agnieszka
Debudaj-Grabysz and Witold Grabysz for their constructing remarks after
reading the preliminary version of the paper.

Author details

!Institute of Informatics, Silesian University of Technology, Gliwice, Poland.
2|nstitute of Applied Computer Science, Lodz University of Technology, £6dz,
Poland.

Received: 25 April 2013 Accepted: 25 September 2013
Published: 18 November 2013

References

1. Metzker ML: Sequencing technologies-the next generation. Nat Rev

Genet 2010, 11:31-46.

Kahn SD: On the future of genomic data. Science 2011, 331:728-729.

Roberts JP: Million veterans sequenced. Nat Biotechnol 2013, 31(6):470.

Hall N: After the gold rush. Genome Biol 2013, 14(5):115.

National Human Genome Research Institute, DNA Sequencing

Costs. [http://www.genome.gov/sequencingcosts/] (accessed February

14,2013).

6. Steinbiss S, Kurtz S: A new efficient data structure for storage and
retrieval of multiple biosequences. [EEE/ACM Trans Comput Biol
Bioinformatics 2012, 9(2):345-357.

7. Kodama Y, Shumway M, Leinonen R: The sequence read archive:
explosive growth of sequencing data. Nucleic Acids Res 2012,
40(Database issue):54-56.

8. Cochrane G, Cook CE, Birney E: The future of DNA sequence archiving.
GigaScience 2012, 1(1). article no. 2.

9. Giancarlo R, Scaturro D, Utro F: Textual data compression in
computational biology: A synopsis. Bioinformatics 2009,
25(13):1575-1586.

10. Giancarlo R, Scaturro D, Utro F: Textual data compression in
computational biology: Algorithmic techniques. Comput Sci Rev 2012,
6(1):1-25.

11. Vyverman M, De Baets B, Fack V, Dawyndt P: Prospects and limitations
of full-text index structures in genome analysis. Nucleic Acids Res
2012,40(15):6993-7015.

12. Salomon D, Motta G: Handbook of data compression. London: Springer;
2010.

13. Huffman D: A method for the construction of minimum-redundancy
codes. In Proceedings of the Institute of Radio Engineers. 1952:1098-1101.

14. Ziv J, Lempel A: A universal algorithm for sequential data
compression. [EEE Trans Inf Theory 1977, IT-23:337-343.

15. Burrows M, Wheeler D: A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation 1994,
http://www.hpl.hp.com/techreports/Compag-DEC/SRC-RR-124.pdf.

16. Cock PJA, Fields CJ, Goto N, Heuer ML, Rive PM: The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/lllumina
FASTQ variants. Nucleic Acids Res 2010, 38(6):1767-1771.

17. Deorowicz S, Grabowski Szz Compression of DNA sequence reads in
FASTQ format. Bioinformatics 2011, 27(6):860-862.

18. BholaV, Bopardikar AS, Narayanan R, Lee K, Ahn T: No-reference
compression of genomic data stored in FASTQ format. In Proceedings
of the IEEE International Conference on Bioinformatics and Biomedicine.
Edited by Wu F-X, Zaki M, Morishita S, Pan Y, Wong S, Christianson A, Hu
X. Atlanta, USA: IEEE Computer Society; 2011:147-150.

19. Grassi E, Di Gregorio F, Molineris I: KungFQ: A Simple and Powerful
Approach to Compress Fastq Files. [EEE/ACM Trans Comput Biol
Bioinformatics 2012, 9(6):1837-1842.

20. Yanovsky V: ReCoil—an algorithm for compression of extremely
large datasets of DNA data. Algo Mol Biol 2011, 6:23.

vk W

http://www.biomedcentral.com/content/supplementary/1748-7188-8-25-S1.pdf
http://www.genome.gov/sequencingcosts/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

Cox AJ, Bauer MJ, Jakobi T, Rosone G: Large-scale compression of
genomic sequence databases with the Burrows-Wheeler transform.
Bioinformatics 2012, 28(11):1415-1419.

Hach F, Numanagic¢ I, Alkan C, Sahinapl SC: SCALCE: boosting Sequence
Compression Algorithms using Locally Consistent Encoding.
Bioinformatics 2012, 28(23):3051-3057.

Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation
sequencing data. Genomics 2010, 95(6):315-327.

Wan R, Anh VN, Asai K: Transformations for the compression of FASTQ
quality scores of next generation sequencing data. Bioinformatics
2011, 28(5):628-635.

Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G: Compressing
genomic sequence fragments using SlimGene. J Comput Biol 2011,
18(3):401-413.

Ochoa |, Asnani H, Bharadia D, Chowdhury M, Weissman T, Yona G:
QualComp: a new lossy compressor for quality scores based on rate
distortion theory. BMC Bioinformatics 2013, 14:187.

lllumina: Casava v. 1.8.2 Documentation. 2013. [http://support.illumina.
com/sequencing/sequencing_software/casava.ilmn]

Howison M: High-throughput compression of FASTQ data with
SeqDB. IEEE/ACM Trans Comput Biol Bioinformatics 2013, 10(1):213-218.
Jones DC, Ruzzo WL, Peng X, Katze MG: Compression of
next-generation sequencing reads aided by highly efficient de novo
assembly. Nucleic Acids Res 2012, 40(22).e171.

Bonfield JK, Mahoney MV: Compression of FASTQ and SAM format
sequencing data. PLoS ONE 2013, 8(3):e59190.

. Tembe W, Lowey J, Suh E: G-SQZ: compact encoding of genomic

sequence and quality data. Bioinformatics 2010, 26(17):2192-2194.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth, Abecasis
G, Durbin R, 1000 Genome Project Data Processing Subgroup: The
sequence alignment/map (SAM) format and SAMtools. Bioinformatics
2009, 25(16):2078-2079.

Fritz MH-Y, Leinonen R, Cochrane G, Birney E: Efficient storage of high
throughput DNA sequencing data using reference-based
compression. Genome Res 2011, 21:734-740.

Sakib MN, Tang J, Zheng WJ, Huang C-T: Improving transmission
efficiency of large sequence alignment/map (SAM) files. PLoS ONE
2011,6(12):28251.

Manzini G, Rastero M: A simple and fast DNA compressor. Softw Pract
Exp 2004, 34(14):1397-1411.

Pinho AJ, Ferreira PJSG, Neves AJR, Bastos CAC: On the representability
of complete genomes by multiple competing finite-context
(Markov) models. PLoS ONE 2011, 6(6):e21588.

Cao MD, Dix TI, Allison L, Mears C: A simple statistical algorithm for
biological sequence compression. In Proceedings of the Data
Compression Conference. Washington, DC, USA: IEEE Computer Society
Press; 2007:43-52.

Wandelt S, Leser U: Adaptive efficient compression of genomes. Algo
Mol Biol 2012, 7:30.

Deorowicz S, Grabowski Sz: Robust relative compression of genomes
with random access. Bioinformatics 2011, 27(11):2979-2986.

Pinho AJ, Pratas D, Garcia SP: GReEn: a tool for efficient compression
of genome resequencing data. Nucleic Acids Res 2012, 40(4):e27.

. Wang C, Zhang D: A novel compression tool for efficient storage of

genome resequencing data. Nucleic Acids Res 2011, 39(7):e45.
Kuruppu S, Puglisi SJ, Zobel J: Optimized relative Lempel-Ziv
compression of genomes. In Proceedings of the ACSC Australasian
Computer Science Conference. Edited by Reynolds M. Sydney, Australia:
Australian Computer Society, Inc. 2011:91-98.

Gusfield D: Algorithms on strings, trees and sequences: Computer science
and computational biology. Cambridge, UK: Cambridge University Press;
1997.

Daily K, Rigor P, Christley S, Hie X, Baldi P: Data structures and
compression algorithms for high-throughput sequencing
technologies. BVC Bioinformatics 2010, 11:514.

Popitsch N, von Haeseler A: NGC: lossless and lossy compression of
aligned high-throughput sequencing data. Nucleic Acids Res 2013,
41(1)e27.

Li H: Tabix: fast retrieval of sequence features from generic
TAB-delimited files. Bioinformatics 2011, 27(5):718-719.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Page 12 0f 13

Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang
J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC, Shago M,
Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson
KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH,
Frazier ME, Scherer SW, Strausberg RL, Venter JC: The diploid genome
sequence of an individual human. PLoS Bio/ 2007, 5(10):e254.

Christley S, Lu Y, Li C, Xie X: Human genomes as email attachments.
Bioinformatics 2009, 25(2):274-275.

Pavlichin D, Weissman T, Yona G: The human genome contracts again.
Bioinformatics 2013, 29(17):2199-2202.

Deorowicz S, Danek A, Grabowski Sz: Genome compression: a novel
approach for large collections. Bioinformatics 2013, 29(20):2572-2578.
Chern BG, Ochoa I, Manolakos A, No A, Venkat K, Weissman T: Reference
based genome compression. Publicly available preprint
arXiv:1204.1912v1 2012.

Kuruppu S, Puglisi SJ, Zobel J: Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In Proceedings of the
17th International Symposium on String Matching and Information Retrieval
(SPIRE). Edited by Chéavez E, Lonardi S. Springer-Verlag, Berlin-Heidelberg:
Springer, LNCS 6393; 2010:201-206.

Kreft S, Navarro G: LZ77-like compression with fast random access. In
Proceedings of the Data Compression Conference. Washington, DC, USA:
IEEE Computer Society; 2010:239-248.

Ohlebusch E, Fischer J, Gog S: CST++. In Proceedings of the 17th
International Symposium on String Matching and Information Retrieval
(SPIRE). Edited by Chéavez E, Lonardi S. Springer-Verlag, Berlin-Heidelberg:
Springer, LNCS 6393; 2010:322-333.

Compeau PE, Pevzner PA, Tesler G: How to apply de Bruijn graphs to
genome assembly. Nat Biotechnol 2011, 29(11):.987-991.

Conway TC, Bromage AJ: Succinct data structures for assembling
large genomes. Bioinformatics 2011, 27(4):479-486.

Bloom BH: Space/time trade-offs in hash coding with allowable
errors. Commun ACM 1970, 13(7):422-426.

Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph
representation based on a Bloom filter. In Proceedings of the 12th
International Workshop on Algorithms in Bioinformatics (WABI). Edited by
Raphael BJ, Tang J. Springer-Verlag, Berlin-Heidelberg: Springer, LNCS
7534;2012:236-248.

Salikhov K, Sacomoto G, Kucherov G: Using cascading Bloom filters to
improve the memory usage for de Brujin graphs. In Proceedings of the
13th International Workshop on Algorithms in Bioinformatics (WABI). Edited
by Darling A. E,, Stoye J. Springer-Verlag, Berlin-Heidelberg: Springer,
LNCS 8126; 2013:364-376.

Ye C, Ma ZS, Cannon CH, Pop M, Yu DW: Exploiting sparseness in de
novo genome assembly. BVC Bioinformatics 2012, 13(Suppl 6):S1.
Myers EW: The fragment assembly string graph. Bioinformatics 2005,
21(suppl 2):ii79-ii85.

Simpson JT, Durbin R: Efficient de novo assembly of large genomes
using compressed data structures. Genome Res 2012, 22:549-556.
Ferragina P, Manzini G: Opportunistic data structures with
applications. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (FOCS). Redondo Beach, California, USA: IEEE
Computer Society; 2000:390-398.

Gonnella G, Kurtz S: Readjoiner: a fast and memory efficient string
graph-based sequence assembler. BMC Bioinformatics 2012, 13:82.
Navarro G, Mékinen V: Compressed full-text indexes. ACM Computing
Surv 2007, 39:2.

Kreft S, Navarro G: On compressing and indexing repetitive
sequences. Theor Comput Sci 2013, 483:115-133.

Gagie T, Gawrychowski P, Karkkdinen J, Nekrich Y, Puglisi SJ: A faster
grammar-based self-index. In Proceedings of the 6th International
Conference on Language and Automata Theory and Applications (LATA).
Springer-Verlag, Berlin-Heidelberg: LNCS 7183; 2012:240-251.

Do HH, Jansson J, Sadakane K, Sung W-K: Fast relative Lempel-Ziv
self-index for similar sequences. In Proceedings of the Joint International
Conference on Frontiers in Algorithmics and Algorithmic Aspects in
Information and Management (FAW-AAIM). Springer-Verlag,
Berlin-Heidelberg: LNCS 7285; 2012:291-302.

Gagie T, Gawrychowski P, Puglisi SJ: Faster approximate pattern
matching in compressed repetitive texts. In Proceedings of the 22nd

http://support.illumina.com/sequencing/sequencing_software/casava.ilmn
http://support.illumina.com/sequencing/sequencing_software/casava.ilmn

Deorowicz and Grabowski Algorithms for Molecular Biology 2013, 8:25
http://www.almob.org/content/8/1/25

70.

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

International Symposium on Algorithms and Computation (ISAAC).
Springer-Verlag, Berlin-Heidelberg: LNCS 7074; 2011:653-662.

Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X: Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Res
2012,40(6).e41.

Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009, 10(3):R25.

Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie.
Nature Methods 2012, 9:357-359.

Li H, Durbin R: Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
Li H, Durbin R: Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.

LiR YuC LiY,Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 2009,
25(15):1966-1967.

Marco-Sola S, Sammeth M, Guigo R, Ribeca P: The GEM mapper: fast,
accurate and versatile alignment by filtration. Nat Methods 2012,
9(12):1185-1188.

Karkkdinen J: Fast BWT in small space by blockwise suffix sorting.
Theor Comput Sci 2007, 387:249-257.

Ferragina P, Gagie T, Manzini G: Lightweight data indexing and
compression in external memory. Algorithmica 2012, 63(3):707-730.
Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10(1):57-63.

Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.

Rivals E: CRAC: an integrated approach to the analysis of RNA-seq
reads. Genome Biol 2013, 14(3):R30.

Alamancos GP, Agirre E, Eyras E: Methods to study splicing from
high-throughput RNA Sequencing data. Publicly available preprint
arXiv:1304.5952v1.

Li H: Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly. Bioinformatics 2012,
28(14):1838-1844.

Liu C-M, Wong TKF, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X, Zhao
K, Li R, Lam TW: SOAP3: ultra-fast GPU-based parallel alignment tool
for short reads. Bioinformatics 2012, 28(6):878-879.

Luo R, Wong T, Zhu J, Liu C-M, Zhu X, Wu E, Lee L-K, Lin H, Zhu W, Cheung
DW, Ting H-F, Yiu S-M, Peng S, Yu C, Li Y, Li R, Lam TW: SOAP3-dp: Fast,
accurate and sensitive GPU-based short read aligner. PLoS ONE 2013,
8(5):e65632.

Gog S, Petri M: Optimized succinct data structures for massive data.
Softw Pract Exp 2013, doi: 10.1002/spe.2198.

Loh P-R, Baym M, Berger B: Compressive genomics. Nat Biotechnol 2012,
30(7):627-630.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215(3):403-410.

Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res 2002,
12(4):656-664.

Deorowicz S, Debudaj-Grabysz A, Grabowski Sz: Disk-based k-mer
counting on a PC. BMC Bioinformatics 2013, 14:Article no. 160.

Zerbino DR, Birney E: Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: A
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117-1123.

Cao MD, Dix TI, Allison L: A genome alignment algorithm based on
compression. BMC Bioinformatics 2010, 11(1):599.

Bhaduri A, Qu K, Lee CS, Ungewickell A, Khavari P: Rapid identification
of nonhuman sequences in high throughput sequencing data sets.
Bioinformatics 2012, 28(8):1174-1175.

Ferragina P, Giancarlo R, Greco V, Manzini G, Valiente G:
Compression-based classification of biological sequences and
structures via the universal similarity metric: experimental
assessment. BMC Bioinformatics 2007, 8:252.

Li M, Chen X, Li X, Ma B, Vitanyi PMB: The similarity metric. [EEE Trans Inf
Theory 2004, 50(12):3250-3264.

97.

98.

99.

Page 13 of 13

FreschiV, Bogliolo A: A lossy compression technique enabling
duplication-aware sequence alignment. £vol Bioinformatics 2012,
8:171-180.

lllumina: HiSeq 2500 system user guide. 2012. [http://supportres.
illumina.com/documents/myillumina/223bf628-0b46-409f-aa3d-
4f3495fe4f69/hiseq2500_ug_15035786_a_public.pdf]

lllumina: New algorithms increase computing efficiency for IGN
whole-genome analysis. 2013. [http://res.illumina.com/documents/
products/technotes/technote_ign_isaac_software.pdf]

doi:10.1186/1748-7188-8-25
Cite this article as: Deorowicz and Grabowski: Data compression for
sequencing data. Algorithms for Molecular Biology 2013 8:25.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolMed Central

http://supportres.illumina.com/documents/myillumina/223bf628-0b46-409f-aa3d-4f3495fe4f69/hiseq2500_ug_15035786_a_public.pdf
http://supportres.illumina.com/documents/myillumina/223bf628-0b46-409f-aa3d-4f3495fe4f69/hiseq2500_ug_15035786_a_public.pdf
http://supportres.illumina.com/documents/myillumina/223bf628-0b46-409f-aa3d-4f3495fe4f69/hiseq2500_ug_15035786_a_public.pdf
http://res.illumina.com/documents/products/technotes/technote_ign_isaac_software.pdf
http://res.illumina.com/documents/products/technotes/technote_ign_isaac_software.pdf

	Abstract
	Background
	Data compression in brief
	Sequencing data
	Raw sequencing data
	Reference genome alignment data
	Single genome sequences
	Collections of genome sequences

	Beyond storage and transfer
	Conclusions

	Endnotes
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

