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Abstract

Background: In structural biology, similarity analysis of protein structure is a crucial step in studying the
relationship between proteins. Despite the considerable number of techniques that have been explored within the
past two decades, the development of new alternative methods is still an active research area due to the need for

high performance tools.

Results: In this paper, we present TS-AMIR, a Topology String Alignment Method for Intensive Rapid comparison of
protein structures. The proposed method works in two stages: In the first stage, the method generates a topology
string based on the geometric details of secondary structure elements, and then, utilizes an n-gram modelling
technique over entropy concept to capture similarities in these strings. This initial correspondence map between
secondary structure elements is submitted to the second stage in order to obtain the alignment at the residue
level. Applying the Kabsch method, a heuristic step-by-step algorithm is adopted in the second stage to align the
residues, resulting in an optimal rotation matrix and minimized RMSD. The performance of the method was
assessed in different information retrieval tests and the results were compared with those of CE and TM-align,
representing two geometrical tools, and YAKUSA, 3D-BLAST and SARST as three representatives of linear encoding
schemes. It is shown that the method obtains a high running speed similar to that of the linear encoding
schemes. In addition, the method runs about 800 and 7200 times faster than TM-align and CE respectively, while

maintaining a competitive accuracy with TM-align and CE.

Conclusions: The experimental results demonstrate that linear encoding techniques are capable of reaching the
same high degree of accuracy as that achieved by geometrical methods, while generally running hundreds of

times faster than conventional programs.

Background

Today, biologists are faced with rapidly growing
amounts of unknown sequence and structure data
related to protein databases. Taking advantage of effi-
cient analysis tools, biologists are highly motivated to
derive biological insights from these biomolecules.
Sequence comparison tools are commonly used to
determine the similarities between proteins with a high
degree of similarity, whereas structure comparison
methods are essentially utilized to highlight the evolu-
tionary relationships among proteins. Additionally,
scientists consider the biological role for these macro-
molecules as being strongly dependent on their 3D-
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structure, which has attracted their interest to employ
accurate and reliable structure comparison tools with
respect to such molecules.

Considering the large amount of unknown data which
exists in structural biology, efficient powerful tools are
needed to investigate, analyze and classify the properties
and functionalities of this data. Furthermore, several
tools are available for structural analysis and comparison
of biological data. The lack of a universal measurement
standard for the evaluation of these methods has per-
suaded biologists to use different tools and scoring func-
tions in their inquiries. This diversity has provided
facilities for biologists to extract their required informa-
tion for query data more efficiently.

In the structure comparison problem, determining the
structural alignment of a protein pair is a fundamental
step. The simplest case of the problem occurs when an
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initial correspondence map between the residue pairs is
provided by a sequence alignment procedure. However,
providing this initial correspondence map is not possible
for protein pairs with low sequence identity. Thus, the
methods generally involve comparisons without any
prior specified correspondence between residues. There-
fore, there is a problem finding the optimal alignment
of two structures in unbounded dimensions known as
NP-hard [1]. Many algorithms have been developed
using heuristic strategies to compare geometrical coordi-
nates of the C, backbone atoms in order to find the
best optimal correspondence between residue pairs. The
techniques include distance matrices comparison
(DALI) [2], vector alignment of secondary structure
alignment (VAST) [3], combinatorial extension (CE) [4],
matching molecular models obtained from theory
(MAMMOTH) [5], secondary structure matching (SSM)
[6], dynamic programming on TMy.,. rotation matrix
(TM-align) [7], genetic algorithm for non-sequential
gapped protein structure alignment (GANGSTA) [8]
and many others ([9-12]). Several comprehensive
reviews and evaluation of the methods have been
reported in literatures ([13-15]).

In order to overcome the complexity of the structure
comparison problem and the difficulties of searching a
large structure database, existing methods commonly pro-
ceed to represent protein structure in a summarized form.
Recently, various methods have been explored to model a
3D-structure of protein in a linear 1D-sequence, in which
known sequence alignment tools like FASTA [16], BLAST
[17] or other language modelling techniques are employed
to capture structural similarities among proteins. The
methods include protein structure modelling in a set of
topology strings (TOPSCAN) [18], hidden Markov model
derived structural alphabet (SA-Search) [19], representing
discrete internal angles of protein backbone as a sequence
(YAKUSA) [20], kappa-alpha (x, o) plot derived structural
alphabet and BLOSUM-like substitution matrix (3D-
BLAST) [21], Structural similarity search by Ramachan-
dran codes (SARST) [22], structure-to-string translator
and a hash table to store n-grams (Lajolla) [23] and pro-
tein structure representation as a bag-of-words of back-
bone fragments (FragBag) [24]. Linear encoding
techniques adopted from these methods commonly reduce
running time of the algorithms as they run hundreds of
times faster than geometrical methods like CE [21,22].
Additionally, sequence-based schemes are more relevant
to be extended for use in multiple structure alignment,
fold recognition and genomic annotation studies [22].
However, 3D-structure conversion into 1D-sequence leads
to lose some of the structural details of proteins. Conse-
quently, these methods obtain lower alignment accuracy
when compared to highly accurate geometrical search
tools. Accordingly, it is a challenging task to develop an
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algorithm with which the speed advantage of linear encod-
ing techniques with regard to their competitive alignment
accuracy can be gained.

Recently, a novel text modelling approach has been
developed by this group [25] in which the structural
comparison and alignment of biomolecules can be car-
ried out. The algorithm summarizes protein 3D-struc-
ture in a textual sequence and applies a cross-entropy
concept over n-gram modelling in order to capture
similarities between protein sequences. Considering the
fruitful results of this method in terms of accuracy and
running speed, an extension of the approach, hereby
named TS-AMIR, is introduced to be used for second-
ary structure modelling in a topology string with the
ultimate goal of developing a structural protein align-
ment tool. TS-AMIR is a simple and fast method with
comparable accuracy to state of the art programs.

Methods

The TS-AMIR algorithm works in two stages. In the
first stage, a correspondence map is made between sec-
ondary structure elements of two compared structures
using text modelling techniques. The procedure makes a
topology string based on the geometry of the secondary
structure elements of each structure followed by the
application of the n-gram modelling technique to find
the best matching condition between two structures.
The second stage uses a heuristic step-by-step algorithm
to make an alignment at the residue level by calculating
a rotation matrix derived from applying the method sug-
gested by Kabsch [26,27]. Detailed explanations of the
method are described in the following sections.

Secondary structure modelling in a topology string

In order to reduce the complexity of the structure com-
parison problem, the methods most commonly use a
simplified representation of the protein backbone struc-
ture. The secondary structure constitutes the backbone
of a protein which is essentially made of highly regular
substructures of o-helices and B-strands. Having sec-
ondary structure elements (SSEs) of a protein extracted
from its PDB file, TS-AMIR summarizes SSEs in a
topology string based on the direction of each SSE vec-
tor in 3D-space. To do this, each SSE is represented as
a vector by rssg = 1y, - 1, [28] where:

rp = (0.74r; + 17 + Tis2 + 0.7471;,3)/3.48,

e = (0.74rj_3 + 1j_5 + 1j_; + 0.741})/3.48 &
for helices and
rp = (ri+7i01)/2, @

re=(rj1 +1j)/2
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for strands (indices i and j denote the first and last
residues in each element). Then, each SSE vector is
encoded to a letter within a string based on the sign of
its x, ¥ and z components as shown in Table 1. In addi-
tion to the SSE vectors, the method also assumes inter-
mediate vectors between the end and start points of two
consecutive SSE vectors respectively. These inter-SSEs
vectors, represented as dashed vectors in Figure 1,
reflect the relative position of each SSE vector with
respect to its previous and next SSE vectors in 3D-coor-
dinates in the topology string. Accordingly, the spatial
locations of secondary structure elements are modelled
in the topology string in which each letter denotes an
SSE vector or inter-SSEs vector. Figure 2 shows a typical
example for secondary structure modelling in the topol-
ogy string.

Text similarity measurement by n-gram modelling

Having secondary structure modelling done in a topol-
ogy string, a language modelling technique can be used
to compare the strings in order to achieve an initial
match between two protein structures. Several kinds of
language modelling techniques have already been used
to capture similarities among biological sequences. Mar-
kov chains are considered as the most fundamental
approach used in language modelling and protein
sequences similarity measurement [25,29]. In this
model, the existence of a word wy at a location k in an
input text depends upon its #n previous words wy_,...,
Wwiz. Due to the simplicity of the concept, the so called
n-gram modelling has been used most often in formal
linguistics studies [29]. Moreover, entropy is a useful
concept accounting for quantifying the information in a
textual sequence and making a connection with prob-
abilistic language modelling. As described by Bogan-
Marta et al. [29], entropy estimation indicates how a
specific protein sequence is well predicted by a given
model. To compare two sequences, cross-entropy mea-
sure is the relevant tool, where n-gram model is firstly
made by counting the words of one sequence in the

Table 1 Defined labels for secondary structure vectors

Vector type

Direction* Strand Helix Inter-SSEs
Xx>X; > 0, y>y; >0, 2>2; >0 A | Q
XoX; > 0, y>y; >0, 252; <0 B J R
XoX; > 0, y>y; <0,2>2; >0 C K S
XoX; >0,y <0, 2,2, <0 D L T
XoX; <0, ¥y >0, 22 >0 E M u
XoX; <0, y>y; >0, 2r2; <0 F N \%
XoX; <0, y>y; <0,2r2; >0 G O W
XoX; <0, y>y; <0,252; <0 H p X

* (X1, Y1, 1) and (xy, Y2, Z5) denote start and end points of SSE vectors.
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x-x,>0, y,-y,<0, z,-2,<0

Figure 1 Secondary structure elements representation as
vectors in 3D-space. Dashed vectors represent inter-SSEs vectors.

training phase, and then, the predictability of the second
sequence is measured in the recall phase via formula:

H(X,Py) = — an P(w]') log(2 + Py (wien|w} "))
1 — 3)
==y Z _ Count(w!) 1og(2 + Py (wisn|w!™"))

where the variable X is in the form of n-gram repre-
sented by w} = {w;, Wi,1, ..., Win—1} ranging over all the
words of the first sequence. The summation runs over
all the possible n-gram words w!, and N is the number
of n-grams. The term P (w}]) results from the word
count within the first sequence via Count(w!). More-
over, the conditional probability in the summation

a) SSEs of 1a0f:A PDB chain

HXJUGTAQHXJTOWOXJQPRMUO

b) SSEs Topology string generated for 1a0f:A PDB chain

Figure 2 A typical example for secondary structure modelling
in a topology string.
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relates the n-th element of an n-gram with the preced-
ing n-1 elements, which can be computed by counting
the words of the second sequence and having the model
estimated:

P(wisnw]™") = Count(wi.n)/Count(w!'™") (4)

Moreover, the term 2 is added to the logarithm func-
tion in formula 3 in order to prevent loss of data when
all the words are counted once and the conditional
probability becomes zero.

The sequence comparison method models both
sequences in the n-gram form, and also utilizes cross-
entropy tool to measure their similarity via the formula:

D(s4, Si) = [H(X;, Pyy,) — PS| (5)

where PS is the perfect score using the first sequence
as reference and model sequences. S, and §; also denote
the first and second sequences respectively. As a result,
the lower value of D (S,, S;) indicates the higher similar-
ity of the compared sequences. In order to cope with
big differences in the length of two compared sequences,
the technique considers the protein with lower length as
the query protein.

The above introduced cross-entropy measure is used
to compare the topology strings of two proteins result-
ing in finding the initial overlap between two structures
according to a task described below.

Secondary structure matching using topology string

The 3D-coordinates of any pair of protein structures are
available in an arbitrary relative orientation, in which
the matched parts may not correspond in two struc-
tures. Accordingly, the structure comparison methods
need coordinates with independent representation of the
structures making them comparable. In order to obtain
an initial match between two structures, our method
applies an algorithm with respect to the scheme intro-
duced by Martin [18]. Figure 3 is the algorithm which
has been developed for matching SSEs using topology
strings. To this end, the topology string of the query
protein is permuted by rotating its structure 90 degrees
around the x, y and z axes (line 2 in Figure 3). For each
rotation around an axis, letters of the topology string
are replaced according to Table 2. Therefore, 24 differ-
ent secondary topology strings are created. Then, the
above introduced cross-entropy measure is utilized to
compare these 24 permuted topology strings of the
query protein with the topology string of the reference
protein, with which the most similar strings are chosen
(lines 4-8 in Figure 3). In sequel, identical n-gram words
of the two topology strings are marked as matched in
an iterative procedure accounting for the decreasing size
of n-grams starting from m (chosen empirically 6) down
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Input: Structure information of query and reference proteins.

Output: Matched SSEs list among query and reference proteins.

Let Q and R as Query and Reference proteins, respectively.

Let TSqand TS, as Topology String of Query and Reference proteins, respectively.
Let P as an array of 24 permuted topology strings.

TSq ¢ MakeTopologyString (Q)
P = MakePermutedSequences(TSg)
TSk & MakeTopologyString (R)
PS=H (TSg TSg)  // Perfect Score
fori=1to 24 do

D[i] = |H(TSq, TSg) - PS|
end for
i=Min (D)
for n-gram = n down to m do
10. for each W, e TS; do
11. if not matched (W) then
12. Begin
13. j =Search (W, TSg)
14. if j > 0 then MarkSSEsMatched (W, W))
15. end if
16. end for
17. end for

WP NOY A WN P

Figure 3 The algorithm for secondary structure matching using
topology strings.

to the basic size of an n-gram (chosen at 3) (lines 9-17
in Figure 3). Figure 4 represents the SSE matching pro-
cedure for two sample secondary topology strings.

In addition to the above procedure to match the iden-
tical words of two topology strings, the method makes
another effort to match SSEs with semi-adjacent vectors,
where they are different in the sign of only one of the x,
y and z components. This can be done by making a
group of semi-adjacent letters for each defined letter in
Table 1. Table 3 represents this grouping scheme for
the letters of strand type of SSEs. In this table, for
example, the letter F is marked as semi-adjacent for the
letters B, E and H. Similar groups of letters can be
made for the helix and inter-SSE vectors.

Structure alignment at the residue level

The procedure introduced above for matching the SSEs
provides the alignment map at the residue level. The
map is submitted to a heuristic algorithm which utilizes
the rotation matrix of Kabsch method [26,27] in an

Table 2 Permutations on SSEs direction labels based on
90 degree rotation around axes

Strand Helix Inter-SSEs
Old ABCDEFG [IJKLMNO QRSTUVW

H P X
Rotate 90° around BDACFHE JLIKNPM RTQSVXU
X G O W
Rotate 90° around EAGCFBH MIOKNJP UQWSVRX
y D L T
Rotate 90° around EFABGHC MNIJOPK UVQRWXS
z D L T




Razmara et al. Algorithms for Molecular Biology 2012, 7:4
http://www.almob.org/content/7/1/4

Query 24 permuted Reference Topology String
protein Topology strings protein
1SAR:A 1 ISOUBVHRA

2 MWPVARDQE
3 NXLREQCUF
LRNXCWESD

1I2F:A BUHXJSCWESHSA | —

12 KTPWAUFQC 1GMR:B KTPWAUHQA

24

> KTPWAUFQC
KTPWAUHQA

<€

LRNXCWESD
BUHXJSCWESHSA <€

Figure 4 An example for matching topology string of two
reference proteins with 24 permuted topology strings of query
protein.

iterative procedure over selected pairs of residues. The
following steps are done until the convergence of the
alignment is fulfilled:

1) For each pair of the matched SSEs, put the start
and end residues as temporarily aligned pairs in the
alignment list. Then, compute and apply the rotation
matrix to achieve an initial overlap between two
structures.

2) For each pair of the matched SSEs, find #n neigh-
boring residues (# is chosen 3 for strands and 4 for
helices [6]) having minimum distance, put them in
the alignment list, and then, extend the alignment to
the ends of the elements.

3) For unaligned residues between the aligned resi-
dues in the previous step, find contact pairs as
defined by Krissinel and Henrick [6]. In this defini-
tion, two atoms A and B of chains 1 and 2 are con-
sidered as a contact pair if their distance is less than
the distance between A and any other residues of
chain 2 and also the distance between B and any
other residues of chain 1. Start with the shortest
contacts, extend the alignment to the rest of the

Table 3 Semi-adjacent letters defined for Strand SSE
vectors

A B C D E F G
H * * *
G * *
E * *
E *
D * *
C *
B *

Page 5 of 11

less than
do = 1.24y/Ly — 15— 1.8[30]. (do is a distance
parameter to normalize distances and make the
score independent of the protein size where Ly is
the length of the shorter protein).

4) Make and apply the rotation matrix based on the
aligned pairs of residues in the alignment list.

5) Repeat steps 2, 3 and 4 until the rotation matrix
converges.

residue pairs having a distance

In order to look for the next mapping residues in step
3, the method applies a recursive task considering a lin-
ear gap penalty. Moreover, in this procedure, a pair of
residues could not be aligned if they belong to different
secondary structure types.

Obviously, the alignment quality depends on the con-
tradictory requirements of obtaining a higher length of
alignment and a lower RMSD. TM;oe [30] is a reason-
able single measure to assess the alignment quality by
making a balance between the alignment length and
accuracy according to the following formula:

1 b d; 2
TMyore = M 1/1 6
score “x[Lq 2 / “Uoayr,—15-18) } (6)

where L, and L are the length of the alignment and
query protein respectively, and d; is the distance
between i-th pair of aligned residues. As described by
Zhang and Skolnick [7], TMgcore always has a value
between [0,1] where the higher value is better. Accord-
ingly, we used TM;¢oe in order to investigate the align-
ment optimality, with which the optimal gap penalty is
chosen. To this end, we used a randomly selected data-
set of 1000 protein structures to test the alignment
quality in different gap penalties based on evaluation of
the TMgcore-

Results

The above introduced algorithm, called TS-AMIR, was
implemented in Microsoft Visual C++ using MS-Win-
dows XP. This section reports the results of experiments
in order to assess the performance of the method. The
method was subjected to different datasets and its out-
puts were compared with CE [4] and TM-align [7]
representing two powerful geometrical methods and
YAKUSA [20], 3D-BLAST [21] and SARST [22] as three
well-known linear encoding methods.

Determination of optimal n-gram size

In order to determine the optimal size of n-gram in the
SSEs sequence matching procedure and to balance its
accuracy and sensitivity against computational efficiency,
an accuracy index of similarity database search was
adopted from Receiver Operating Characteristic (ROC)
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curves [31]. The index indicates true positive versus
false positive rates in the ROC- curve for different initial
sizes of the n-gram model. The goal is to obtain values
where the true positive rates reach 1 or a very close
value to 1, for a very small rate of the false positives.
The experiment used a set of 90 proteins carefully
selected from the SCOP database belonging to All
Alpha, All Beta, Alpha and Beta and Alpha+Beta cate-
gories with less than 40% sequence identity, having
more than 7 SSEs [32]. Moreover, the SCOP classifica-
tion database was considered to be the gold standard.

Table 4 shows the values of true positive versus false
positive rates for different initial sizes of the n-gram
adopted in the SSEs sequence matching procedure. As
shown in this table, the method reaches to the optimal
true positive rate in the case of 6-gram while its false
positive rate is very low. Conducting large sizes of n-
grams yields approximately the same accuracy where it
increases the computational cost. Accordingly, the 6-
gram model seems to be the optimal initial n-gram size
for the SSEs sequence matching procedure. As men-
tioned in the methods section, this procedure conducts
a decreasing size of n-grams to match SSEs sequences.

Optimization of the alignment at the residue level

The procedure for the alignment at the residue level
requires the optimization to choose an optimum gap
penalty. This optimization is based on two contradictory
criteria including the length of alignment and RMSD.
Therefore, TM,..r Was used as a balance between these
measures to evaluate the quality of the alignment in this
experiment. The test uses a randomly selected set of
1000 protein structures from the PDB with less than
40% sequence identity. In order to choose the optimal
gap penalty, all-against-all structural alignment was per-
formed at the following gap penalty values {-1.0, -2.0,
-3.0, -4.0, -5.0, -6.0}, and the TM,.,.. was calculated for
each alignment.

Figure 5 shows the average TMq,,. Obtained at differ-
ent gap penalty values. In this figure, a higher TMg ore
value indicates a higher degree of precision and/or
length in the alignment. As shown in the figure, increas-
ing the negative gap penalty yields a higher TM;¢o.e On
varying gap penalties ranging from -1.0 to -3.0. Based
on the figure, the optimal gap penalty value is -3, where
for the higher values, the TM;.,,. decreases slightly.

Table 4 Accuracy index adopted from Receiver Operating
Characteristic (ROC) curve

3-gram 4-gram 5-gram 6-gram
TPR* 0437 0.523 0.852 0.982
FPR* 0.129 0.103 0.053 0.024

* True Positive Rate (TPR) and False Positive Rate (FPR)
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Figure 5 Average TM,.,. Obtained at different gap penalties.

Indeed, the high gap penalty values prevent the align-
ment from extending along the protein structure, and
yet the low value yields numerous gaps in the alignment
with a low biological significance. Accordingly, the value
of -3.0 seems to be the optimal gap penalty value in our
experiment.

Additionally, we used the above dataset to test the
optimality of the alignment procedure. The experiment
was run by choosing different initial sets of fragments to
make and apply a rotation matrix based on the align-
ment procedure. There are only 58 (=6%) items with an
alternative choice for initial fragment with a difference
less than 0.01. Accordingly, the procedure is deemed
sufficient based on the fast convergence of the rotation
matrix after 3-4 repetitions.

Benchmark study

The benchmark study was performed using a set of 200
non-homologous protein chains collected from the PDB
by Zhang and Skolnick [7] with a pair wise sequence
identity of less than 30%. The structures in the dataset
are subject to comparison in an all-against-all approach
by TS-AMIR and the results are compared with those of
the CE, TM-align and 3D-BLAST programs. The results
of CE and TM-align were taken from the literature [7].
A summary of the alignment results is represented in
Table 5 including the averages over all 200 x 199 pro-
tein pairs.

The table shows the alignment accuracy by RMSD, the
length of alignment, and coverage, which is the fraction
of the aligned residues in the target protein. The results
produced by CE are included in this table as a basic
reference method to evaluate other alignment tools. As
seen from the table, TS-AMIR has the largest length of
alignment (91.4) and coverage (46.6%) where its



Razmara et al. Algorithms for Molecular Biology 2012, 7:4
http://www.almob.org/content/7/1/4

Table 5 Alignment results summary for 200 non-
homologous proteins averaged over all structure pairs

Length of alignment  Coverage RMSD  TMscore
(A)
CE 64.3 34.7% 6.52 0.169
TM-Align 874 42.0% 499 0.253
3D-BLAST 65.7 36.2% 6.69 0.172
TS-AMIR 914 46.6% 6.17 0.237

- The results of CE and TM-Align were taken from [7].
- Coverage denotes fraction of residues aligned within the target protein.
- Length of alignment denotes number of aligned residues

accuracy in terms of RMSD (6.17) is ranked second, less
than CE and 3D-BLAST. Moreover, TM-align is the
best in terms of RMSD (4.99) where it obtains the sec-
ond rank in the length of alignment (87.4) and coverage
(42.0%). Furthermore, comparing the average TMg o in
Table 5 TM-align has the best rank (0.253) followed by
TS-AMIR (0.237) with a low difference and 3D-BLAST
(0.172).

Most of the structures collected in the dataset belong
to different folds with low TMg...e values. In order to
significantly compare the ability of the methods to
match the most similar structure to a given target pro-
tein, the averages over only the highest TM;.,.. match
for each target protein are computed in Table 6. In this
table, TS-AMIR has the best rank in terms of coverage
(74.7%) and the second rank in terms of TMg.ore
(0.502), while positioned lower than TM-align (0.510)
showing a slight difference with the first rank.

Evaluation of retrieval effectiveness

The retrieval effectiveness of the schemes was investi-
gated using Aung and Tan collected dataset [33] of
34,055 proteins from ASTRAL SCOP 1.59 along with
the subset of 108 query proteins belonging to four
major SCOP categories, All-Alpha, All-Beta, Alpha/Beta
and Alpha+Beta. The efficiency of the methods was
evaluated using the precision and recall parameters as
two commonly used measures of information retrieval
assessments. The parameters are determined as follows:

Precision = m/n (7)

Table 6 Alignment results summary for the same dataset
in table 5 averaged over the most similar pairs

Length of alignment  Coverage RN!SD TM¢core
(A)
CE 1288 61.4% 395 0441
TM-Align 166.2 73.1% 445 0.510
3D-BLAST 1314 63.1% 432 0454
TS-AMIR 168.9 74.7% 448 0.502

- The results of CE and TM-Align were taken from [7].
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Recall = m/N (8)

where m is the number of correct retrievals from the
same SCOP family, # is the total number of retrieved
proteins, and N denotes the total number of relevant
proteins within the same SCOP family. The experiment
uses the above dataset to search 108 query proteins, and
the precision and recall values are evaluated for each
method. The average precision-recall values calculated
for the six different schemes are shown in Figure 6. The
results of the methods except for TM-align and TS-
AMIR were taken from the literature [22]. According to
the figure, TM-align is in the first rank in terms of
accuracy. In the second rank, TS-AMIR and CE are
competitively accurate, although TS-AMIR obtains
slightly better accuracy in the higher percentages. More-
over, three linear encoding schemes obtain generally
lower accuracy than TS-AMIR.

The performance of the schemes in terms of running
speed was also measured and compared in Table 7
where all the experiments were done on a 3.2 GHz
CPU. As shown in Table 7 SARST obtains the best run-
ning time of the search within the database of 34,055
proteins. 3D-BLAST and TS-AMIR are in the second
rank with approximately the same running speed, which
is more than 7200, 800 and 3 times faster than CE, TM-
align and YAKUSA, respectively.

Retrieval effectiveness on structural categories

The performance of the methods was evaluated in the
determination of structural categories of each query
structure from the above 108 proteins. To this end, the
false positive rate was computed as a measure of the

100

90 4

80

70 4
g 60
c —+—TM-align
2 50
8 ——CE

10 -
= ——3D-BLAST

0 —TS-AMIR

20 7 —=—SARST

10 1 ——YAKUSA

0 T T T T

0 10 20 30 40 50 60 70 80 90 100
Recall (%)

Figure 6 Average precision-recall for searching 108 query
proteins.
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Table 7 Average running time of the methods to search
in a database of 34,055 proteins (in seconds)

Method

Average time per query Average time per comparison

CE 82789.20 243
TM-align 927341 0.272
YAKUSA  35.60 0.00105
TS-AMIR 1147 0.000337
3D-BLAST 9.07 0.000266
SARST 0.34 0.00000998

- Except for TM-align and TS-AMIR, the Results were taken from literature [22].
- The experiments were done on a 3.2 GHz CPU.

probability of irrelevant retrieval, where the lower rate
indicates a higher degree of efficiency in the retrieval
assessment.

The average false positive rates were computed for
four categories of the SCOP database after the retrieval
of 80 proteins for each query structure. Figure 7 shows
the results for the six schemes where the results except
for TM-align and TS-AMIR were taken from the litera-
ture [22]. Based on the results in this figure, TS-AMIR
yields false positives approximately similar to CE, but
lower than those of SARST, YAKUSA and 3D-BLAST.
TM-align obtains the best performance in this
assessment.

Furthermore, a similar experiment was carried out
using proteins with missing residues, known as incom-
plete structures [33], which constitute about one-fifth of
the query proteins. The results in the last part of Figure
7 illustrate that TM-align is the best among the meth-
ods with considerably low false positives. Moreover, CE
and TS-AMIR generate slightly more false positives for
the incomplete structures than SARST, YAKUSA and
3D-BLAST. In general, the low efficiency of linear
encoding methods is due to the weakness of these meth-
ods in converting structural details of incomplete back-
bone coordinates [19]. However, the ability of TS-AMIR
to improve this efficiency is limited due to the

m TM-align

mCE

B TS-AMIR
3D-BLAST

False Psitive Rate (10%)

W SARST

mYAKUSA

Figure 7 Retrieval effectiveness on different structural
categories.

-
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incompatibility of the employed strategy in the align-
ment procedure at the residue level, as the missing resi-
dues are not taken into consideration.

Retrieval effectiveness on low sequence identity

The efficiency of the above six methods were examined
for homology searching in the low sequence identity.
The experiment uses the dataset of 24,337 proteins
from ASTRAL SCOP 1.69 collected by Lo et al. [22]. A
subset of 83 query proteins belonging to the four main
SCOP categories with certain features such as having
the sequence identity of less than 10%, without missing
residues and having at least two family members in the
dataset, were selected and subtracted from the dataset
(additional details about the dataset are available at Lo
et al. [22]).

The above dataset was utilized to perform an informa-
tion retrieval experiment on a subset of query proteins.
As shown in Figure 8, the methods display decreasing
precision with decreasing sequence identity. TM-align
obtains the highest precision in this test. Moreover, CE
and TS-AMIR are competitively accurate for the
sequence identities higher than 40%. However, the accu-
racy of TS-AMIR is lower than that of CE when
sequence identities fell below 30%. Obviously, TM-align
and CE as geometric methods are more precise than
sequence-based methods. However, TS-AMIR improves
this precision by focusing on the geometry of the struc-
tures in the alignment procedure at the residue level.

Discussion

In general

The main objective in this study was to develop a rapid
protein structure alignment tool by combining two fruit-
ful strategies: geometry-based approach and linear
encoding approach. Indeed, TS-AMIR gains the advan-
tages of two different strategies. In the first stage, it uses
a linear encoded form of protein secondary structure to

100
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707 o TM-align
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Figure 8 Retrieval effectiveness on low sequence identity.
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reach an initial correspondence map. Linear encoding
schemes offer the advantage of fast running speeds. In
the second stage, the method utilizes an iterative algo-
rithm to create a rotation matrix using the geometry of
aligned residues. Geometrical schemes obtain high per-
formance in terms of accuracy. Accordingly, the method
combines the above two schemes to achieve high run-
ning speeds as well as a high degree of precision.

TS-AMIR has been developed with some key features
demonstrating its preference and competence. First of
all, the method uses a simplified representation of the
secondary structure elements in a topology string in
order to match the backbone of two structures. This has
a complexity reduction advantage to a one-dimensional
problem where it requires a string matching procedure
based on language modelling techniques. Moreover, the
method adopts the n-gram modelling technique from
computational linguistics, making it superior to the
other formal language models to capture similarities in
the topology strings. As another feature, this representa-
tion makes the method free from any parameter setting
by the user. Classical structure alignment techniques
such as dynamic programming often require a set of
optional parameters to reach the best possible match.
Moreover, at the residue level, the method applies the
Kabsch method to generate the rotation matrix as an
efficient well-known solution for the optimal alignment
of two structures in an iterative heuristic procedure.
The alignment is converged after 3-4 iterations. Conse-
quently, the method obtains a comparable performance
with other state of the art programs.

Secondary structure encoding in a 1D topology string
provides several advantages in structural analysis and
alignment of proteins. Firstly, it facilitates the represen-
tation of protein backbone structure in a summarized
1D-sequence making an economic pre-calculated data-
base of the structural information. Secondly, the search
algorithm to determine the initial overlap between two
structures is sped up by choosing an efficient sequence
alignment technique to match these strings. Thirdly,
classifying the proteins into structural categories within
large databases can be done efficiently. Finally, the
scheme can be used to simplify computationally com-
plex structure analysis tools by rapidly filtering out irre-
levant structures.

On running speed

As mentioned above, TS-AMIR adopts two relatively
simple strategies from both linear encoding and geome-
try-based schemes to be used in secondary structure
matching and residue level alignment respectively.
Therefore, TS-AMIR obtains a competitive running
speed in comparison with the other rapid structure
alignment techniques.
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Comparing the running time of the methods to search
for each query protein shows that TS-AMIR runs 3
times faster than YAKUSA, approximately as fast as 3D-
BLAST, and more than 30 times slower than SARST
method. The lower speed of TS-AMIR against SARST
seems to be due to utilizing the iterative procedure for
the alignment at the residue level by TS-AMIR in order
to make and apply the rotation matrix. However, TS-
AMIR is more precise compared to SARST in the infor-
mation retrieval assessments. Considering the high
speed of linear encoding schemes, they are mostly devel-
oped as a search tools to run queries in the large struc-
ture databases. Therefore, they ignore giving highly
accurate results in favour of reaching a high running
speed. TS-AMIR improves the low accuracy of the linear
encoding approaches by using a geometry-based techni-
que for the alignment at the residue level.

On alignment accuracy

Although TS-AMIR did not yield a highly accurate
alignment like TM-align, it has shown a competitive
accuracy with CE which is known to be a highly accu-
rate method. Moreover, TS-AMIR outperforms the
other linear encoding methods such as YAKUSA, 3D-
BLAST and SARST in terms of accuracy.

Looking at the results of the benchmark test, it is
clearly visible that TS-AMIR obtains high alignment
quality in terms of TMg,.. after TM-align. The high
efficiency of the method is yielded by the high length of
alignment with a relatively low RMSD. This is due to
the strategy of the method for the alignment of residues
in an iterative step-by-step algorithm. The method first
looks for small fragments within matched SSEs to make
an initial alignment, and then extends the alignment to
the rest of the residues by considering a penalty for
each gap. The allowed gaps between the aligned residues
provide an opportunity to superpose large and signifi-
cant coverage between the two structures. Moreover,
the algorithm clears the alignment list for each repeti-
tion, and looks again for the alignment. This helps the
algorithm to determine a more accurate alignment after
applying the rotation matrix at the end of each repeti-
tion. Due to the convergence of the rotation matrix
after 3-4 attempts, these iterations do not critically
increase the running time of the algorithm.

Structure alignment programs using a hierarchical
approach ranging from secondary structure matching to
the atomic superposition level [6,28] are usually along
with translating the SSEs matching results to the align-
ment of residues. The SSM method [6], as a well-known
hierarchy oriented structure alignment tool, is compara-
tively weak in making a relationship between the topol-
ogy of the SSEs, which is considered as an important
feature in the determination of common scaffolds in
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distantly related structures. TS-AMIR uses a reasonable
strategy for encoding the geometry of SSEs in a topology
string by assuming inter-SSE vectors reflecting the rela-
tive position of two consecutive SSEs to the string.
Moreover, the algorithm for matching two topology
strings of compared proteins chooses a decreasing size
of the n-gram model starting from 6 as an empirically
chosen parameter. Therefore, topological relationships
between the SSEs are effectively considered in the SSEs
matching procedure. However, methods using the sec-
ondary structure to find primarily an initial overlap
between two structures often perform poorly when the
secondary structure of an input query is not strongly
provided. TS-AMIR also needs well-defined secondary
structure details of the query proteins in order to yield
highly accurate alignment results.

On information retrieval

The results of assessments for information retrieval
make evident that geometry-based methods are pre-
ferred to linear encoding methods. Taking advantage of
both schemes, TS-AMIR shows improved accuracy in
the assessments similar to that of CE, but better than
those of other linear encoding programs.

Nevertheless, based on the experimental results, the
method displays occasional weakness in the retrieval of
relevant structures. After subjecting the method to sev-
eral irrelevant retrievals, it was illustrated that the weak-
ness is due to the repetition of common SSE
subsequences shared by different proteins within the
whole structure. In fact, TS-AMIR uses n-gram model-
ling to match the subsequences of SSEs topology strings.
Therefore, the method occasionally falls in ambiguity for
matching the n-grams, which is in accordance with its
multiple occurrences along the topology string, thus
leading to the applied heuristic’s failure in making deci-
sion. However, by setting a relevant n-gram size in the
SSEs matching procedure, these irrelevant retrievals are
minimized.

Additionally, TS-AMIR achieves a fair performance on
retrieval of structural categories among the methods
where it produces low false positives for different SCOP
categories. This is conceptual due to the adoption of an
efficient strategy for matching SSEs based on the topol-
ogy strings. It was expected that the method would pro-
duce more false positives due to repetition of alpha
helices along with the protein chain as the most abun-
dant regular element of secondary structure. Therefore,
the probability of irrelevant matching between SSEs is
increased. However, the method overcomes this expecta-
tion and yields fair results by choosing the appropriate
decreasing sizes of n-gram as mentioned in the methods
section.
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Conclusion and future work

We have developed a rapid protein structure alignment
tool called TS-AMIR, a Topology String Alignment
Method for Intensive Rapid Protein Structure Compari-
son, which is a combination of a linear encoding scheme
in the first stage and a geometry based technique in the
second stage. In terms of speed, the experimental results
demonstrate the high performance of the method as it
performs as well as linear encoding schemes. In addi-
tion, the method obtains results as highly accurate as
the geometry based approaches. This high efficiency
results from the simple and efficient techniques which
are employed by the method.

Further studies will focus on the application of the
approach for non-sequential structural alignment of pro-
teins, which needs to neglect connectivity of the poly-
peptide chains. Considering the flexibility of the strategy
applied by TS-AMIR for the superposition of the sec-
ondary structure elements by topology strings, the
approach seems to be relevant for use in the detection
of non-sequential structural analogies in the proteins.
Moreover, recent studies to fuse theoretical concepts
from computational linguistics in structural biology
motivate the researchers to conduct further studies in
this area.
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