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Abstract

Background: First proposed by Cavender and Felsenstein, and Lake, invariant based algorithms for phylogenetic
reconstruction were widely dismissed by practicing biologists because invariants were perceived to have limited
accuracy in constructing trees based on DNA sequences of reasonable length. Recent developments by algebraic
geometers have led to the construction of lists of invariants which have been demonstrated to be more accurate on
small sequences, but were limited in that they could only be used for trees with small numbers of taxa. We have
developed and tested an invariant based quartet puzzling algorithm which is accurate and efficient for biologically
reasonable data sets.

Results: We found that our algorithm outperforms Maximum Likelihood based quartet puzzling on data sets
simulated with low to medium evolutionary rates. For faster rates of evolution, invariant based quartet puzzling is
reasonable but less effective than maximum likelihood based puzzling.

Conclusions: This is a proof of concept algorithm which is not intended to replace existing reconstruction
algorithms. Rather, the conclusion is that when seeking solutions to a new wave of phylogenetic problems (super tree
algorithms, gene vs. species tree, mixture models), invariant based methods should be considered. This article
demonstrates that invariants are a practical, reasonable and flexible source for reconstruction techniques.
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Background
History
A phylogenetic tree provides a visual representation of
the relationships among a collection of organisms. Accu-
rate and easily computable phylogenies allow scientists
to make informed decisions based on the genetic rela-
tionships among taxa. Phylogenies can then be used to
fight disease outbreaks [1], to develop plans for saving
endangered species [2], or to assemble the Tree of Life [3].
The majority of existing algorithms for phylogenetic

reconstruction fall into one of three classes: distance
based algorithms, parsimony algorithms, and maximum
likelihood based algorithms. These classes of algorithms
justifiably form the pillars of phylogenetic reconstruction,
but they are each known to have shortcomings. Parsi-
mony algorithms have difficulty in reconstructions involv-
ing rapidly evolving taxa. Maximum likelihood algorithms
are typically slow and suffer from long branch attraction.
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Distance based algorithms also suffer from long branch
attraction, and have regions where they are uncomputable
due to infinite or negative distances.
In 1987 Cavender and Felsenstein [4], Lake [5], and

Evans and Speed [6] introduced a new class of reconstruc-
tion algorithms based on invariants. These invariants are
relationships which observed data should satisfy assum-
ing the taxa have evolved over a given tree topology
and model of evolution. Initial studies in invariant based
reconstruction found it to be less effective than more tra-
ditional methods [7,8]. Due to their limited accuracy on
sequences of a biologically reasonable length, invariant
based algorithms fell out of favor in practical phylogenet-
ics research. Upon closer inspection, the limited success
of invariants is not surprising given that initial attempts
did not use all possible expected relationships among the
observed data. In this article, we build on mathemati-
cal advances in the field of algebraic geometry that have
made it possible to reconsider invariants as a practical and
flexible source for reconstruction algorithms [9-11].
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Application of algebraic geometry to phylogenetics
Recent work by algebraic geometers has led to the con-
struction of complete lists of invariants for certain models
of evolution [9,12,13]. Casanellas and Fernández-Sánchez
used a complete list of invariants to analyze the per-
formance of invariant based reconstruction of quartet
trees and found that they performed quite well, and in
some instances outperformed traditional methods such as
neighbor joining and maximum likelihood [11]. Still the
direct use of invariants on larger data sets would require
the construction of a potentially enormous list of polyno-
mial equations (determined by the tree topology), which
must then be evaluated on each of the possible evolution-
ary trees. The computational power required to complete
these tasks makes the direct use of invariants impractical
for large data sets. As such, the resurgence of interest in
invariant based phylogenies has been focused both around
the development of new and exciting mathematics, and as
a theoretical framework for proving that certain types of
phylogenetic reconstructions are possible [9,14,15].
As a theoretical framework for understanding phyloge-

netics, invariant basedmethods are quite powerful. Unlike
distance based methods, they can account for any con-
ceivable evolutionary rate, and any number of differences
per site. They have been used, for example, to demonstrate
when it is possible to determine if a mixture model can
be inferred from a data set [14]. However, practicing biol-
ogists have widely dismissed invariant based algorithms
because there has not been a clear algorithm for applying
them to realistic phylogenetic reconstruction problems.

Invariant based quartet puzzling
To address the scalability issue, we propose a variation
of quartet puzzling which uses invariants to compute
the individual quartets, thus allowing the application of
invariants to data sets of arbitrary size. Strimmer and von
Haeseler introduced quartet puzzling as a way to take
advantage of the theoretical power of maximum likeli-
hood while limiting the computational costs involved in
a full maximum likelihood reconstruction [16]. Subse-
quently, the use of quartet puzzling has become standard
through programs such as TREE-PUZZLE [17]. Quartet
puzzling computes the optimal four taxa trees for every
subset of four taxa from the data set. A puzzling algo-
rithm is used to combine these quartet trees into a large
tree containing all of the taxa. Simulation studies of quar-
tet puzzling revealed that errors made in the choice of
the individual quartets were propagated throughout the
puzzling process, which in some instances caused inaccu-
rate tree reconstructions [18]. Attempts to reduce these
errors include variations on quartet puzzling which limit
the quartets that are examined, provide different weights
for individual quartets, or modify the puzzling procedure
[18-20]. Although it was conjectured that quartet based

methods of reconstruction could not compete with neigh-
bor joining algorithms for accuracy [18], the short quartet
puzzling method of Snir et. al. disproved this claim by
outperforming the neighbor joining algorithm [19].
In this paper we develop an analog of the original

method proposed in [16]. Instead of using maximum
likelihood to reconstruct the quartet trees, we use invari-
ant based reconstruction. Our invariant reconstruction
method follows [11] with the following modifications. We
tested our algorithm using a modification of the algebraic
Jukes-Cantor invariants for an unrooted quartet tree with-
out molecular clock restrictions which was constructed
in [9] and is available in [13]. We also used the algebraic
Kimura 2-parameter invariants available on the same site.
Using the metric outlined in [11], we select the quartet for
which the sum of the absolute value of the evaluation of
the invariants at the observed pattern frequencies is the
smallest. We test the performance of this algorithm using
simulated DNA sequence data.

Methods
Construction of invariants
If taxa have evolved under a particular evolutionarymodel
along a given tree topology, the pattern frequencies which
occur in the aligned nucleotide sequences should satisfy a
set of polynomial relationships called invariants. For our
study we test both the Jukes-Cantor, and the Kimura-2
parameter models of evolution for the unrooted quartet
tree topology (12)(34) (see Figure 1). For each model, one
can group pattern frequencies into classes p1, p2, · · · pn for
which the expected pattern frequencies are the same (see
[13] for an explicit description).
In the Jukes Cantor model, two of the invariants which

arise in the pi s are linear invariants, called Lake’s invari-
ants [5]. Each of these invariants can be expressed as a
sum of four terms which is expected to equal zero. Sturm-
fels and Sullivant [9] found that the remaining invariants
are much easier to compute after a linear change of

Figure 1 Depiction of Unrooted Tree Topology (12)(34).
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coordinates based on a discrete Fourier transformation.
This method was first applied in a phylogenetic setting by
Evans and Speed [6]. After the change of coordinates, they
label the new frequency classes q1, · · · , qn . In the qi s,
there are 33 additional invariants which can be expressed
as binomial expressions (10 quadratic and 23 cubic) which
are expected to equal zero when evaluated using the pat-
tern frequencies for the Jukes Cantor Model. A similar
construction for the Kimura-2 parametermodel yields 795
expressions (54 quadratic, 390 cubic, and 351 quartic).
Given a collection of invariants, Casanellas and

Fernández-Sánchez used the sum of the absolute values
of the evaluation of each invariant expression as a score
for how well a particular tree fits the data, and they
selected the tree with the lowest score for phylogenetic
reconstruction. They found this method to be quite accu-
rate in selecting the best quartet arrangement [11]. While
several scoring algorithms have been explored in the lit-
erature [10], we adopt Casanellas and Fernández-Sánchez’
metric because of its simplicity and accuracy. In this arti-
cle we will also explore several additional collections of
invariants used to reconstruct the quartet phylogeny.

Relevant invariants
Recent work by Casanellas and Fernández-Sánchez, based
on the geometry of the invariants and the combinatorics
of binary trees, demonstrated that it is theoretically pos-
sible to reconstruct phylogenetic trees using a subset
of the invariants called relevant invariants [21]. For the
Jukes-Cantor model, they show that only the linear and
quadratic invariants are relevant. The potential to use
fewer invariants is appealing both in terms of algorithm
speed and simplicity. In our study we seek to determine
whether reconstruction accuracy is improved by evaluat-
ing the data using only the relevant invariants.

Biologically symmetric invariants
The minimal collection of invariants used by Casanellas
and Fernández-Sánchez arises from a statistical frame-
work, but because they were derived using algebraic
geometry, this particular list has one drawback. Bio-
logically speaking we would like the trees (12)(34) and
(21)(34) to have the same score since they represent
the exact same relationship among the data. This is not
the case, however, because the invariant expressions are
not symmetric. The fact that two trees that represent
the same relationship among the taxa can have different
scores when evaluated at the observed pattern frequencies
may cause serious theoretical problems for phylogenetic
inference.
To illustrate the theoretical difficulties involved with

using this minimal set of invariants we use an exam-
ple with data drawn from the crab.meg file that comes
with the MEGA software package [22]. We computed the

minimal invariant scores for each of the 24 possible order-
ings of the taxa 1=Artemia salina, 2=Clibanarius vittatus,
3=Paralithodes camtschatica and 4=Pagurus acadianus.
Table 1 lists the top ten scores among these orderings.
Notice that while the best overall score corresponds to the
pairing (13)(24) , the following three best scores all point
to (14)(23) as the proper unrooted tree.
Potential theoretical solutions to this problem have been

explored by Erickson using algebraic geometry [10], and
by Sumner et al. using representation theory [23,24]. We
adopt Erickson’s solution which we briefly review here.
The zero set of the collection of invariants describes a
particular shape known as an algebraic variety. There are
many different collections of equations whose zero sets
describe the same geometric shape. The set of invariants
computed in [13] is a minimal set of equations that define
this variety. This minimal set of equations, however, is
asymmetric causing a different total score depending on
the ordering of the pairs within the quartet trees.
Eriksson describes an extended list of 49 invariants

which define the Jukes Cantor variety and do not depend
on the ordering of the pairs within the quartet trees [10].
We call these biologically symmetric invariants or BSI.
Though longer, we prefer using this list of equations since
it makes the selection of a tree with the smallest score
independent of the ordering of the taxa. To construct the
BSI equations one begins with the list of 33 nonlinear
invariants in q-coordinates for the Jukes-Cantor model of
evolution on the unrooted tree (12)(34) as found on the
small trees website [13]. For each of the biologically equiv-
alent tree topologies (ie (12)(43) , (21)(34) , and (21)(43) )
one identifies the corresponding change in q-coordinates
and then makes the change of coordinates in each of the
invariants. This results in a new list of 33 expressions.
If any additional invariants appeared, they are added to
the list of invariants. After repeating this process for each

Table 1 Minimal invariant scores for crab data

Ranking Ordering Score Unrooted tree

1 4231 .00660042 (13)(24)

2 2341 .00662293 (14)(23)

3 3214 .00664202 (14)(23)

4 3241 .00664335 (14)(23)

5 3142 .00668515 (13)(24)

6 3412 .00669565 (12)(34)

7 1234 .00672918 (12)(34)

8 4123 .00681494 (14)(23)

9 1432 .00683403 (14)(23)

10 4132 .00683536 (13)(23)

Minimal invariant scores for selected orderings of a four species subset of crab
data.
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equivalent tree, there are 14 additional expressions, bring-
ing the total number of biologically symmetric invariants
to 49 (including the Lake’s two linear invariants which
were already symmetric).When choosing a tree for a quar-
tet (1, 2, 3, 4) we select the tree for which the average of
the absolute values of all of the biologically symmetric
invariants is the smallest. When these new invariants are
evaluated on the example species subset of crab data, we
get the scores in Table 2. Using BSI we would select the
quartet tree (14)(23).
While it is possible to reconstruct biologically sym-

metric invariants for the Kimura 2 parameter model as
well, we do not include that information here, as recon-
struction using these invariants performed significantly
worse than those simply using the Kimura 2 parameter
invariants.

Invariant based quartet puzzling algorithm
Our method follows the original quartet puzzling algo-
rithm described in [16]. We begin by using invariants to
select the appropriate tree for each of the

(n
4
)
quartets of

data from our sample of n taxa. Due to the nature of the
invariant scoring, it is highly unlikely that there will be
a tie between scores, but in this rare event we randomly
select a tree from those with the lowest scores. Next we
select k orderings of the n taxa. Following the recom-
mendations for the tree puzzling algorithm as described
in the simulation results of Ranwez and Gascuel [18], we
choose k = 1, 000 random orderings of the taxa unless
otherwise specified. For each ordering, we use the BSI to
select the best quartet tree for the first four taxa. Addi-
tional taxa are added to the tree following the quartet
puzzling algorithm [16]. When there is a tie among edges
which are candidates for adding the additional taxa, an
edge is selected at random from those tied as the most
likely edge. For each of the k orderings, the algorithm pro-
duces an unrooted bifurcating tree with n taxa. In the final
step of reconstruction, we use the CONSENSE program,
which is a part of the PHYLIP software package, to com-
pute an unrooted consensus tree [25]. Our reconstruc-
tion program is available at [http://faculty.winthrop.edu/
hippb/QuartetPuzzlingWithBSI]. While there have been
many advances in quartet puzzling over the past years
(see [17,20,26] for example) we used the traditional puz-
zling algorithm to allow a more true comparison between

Table 2 Biologically symmetric invariant scores

Ranking Unrooted Tree Score

1 (14)(23) .00595688

2 (13)(24) .00601559

3 (12)(34) .00632047

Biologically symmetric scores for a four species subset of crab data.

invariant based puzzling and traditional maximum likeli-
hood puzzling.

Simulation study
Since maximum likelihood based quartet puzzling is the
most similar model of phylogenetic reconstruction to our
model, we tested our model using the data sets of Ranwez
and Gascuel [18]. These data sets, which include 6 dif-
ferent tree topologies with 12 taxa, were used to analyze
various quartet puzzling based algorithms and improve-
ments. Images of these trees along with corresponding
data sets can be found [http://www.atgc-montpellier.fr/
quartet/]. Three of the trees (AA, BB and AB) satisfied the
molecular clock assumptions, while three trees (CC, DD
and CD) did not. For each tree we have data sets of length
300 and 600 base pairs which were generated using the
Seq-gen software [27] under the Kimura two-parameter
model with a transition/transversion rate of 2. Each tree
and base pair length is run under four different assump-
tions of evolutionary rate. The exact specifications appear
in [18], but can be described in terms of the average max-
imum pairwise distance (MD). The four data sets consist
of low (MD ≈ 0.1), medium (MD ≈ 0.3), fast (MD ≈ 1.0)
and very fast (MD ≈ 2.0) substitution rates per site.
Following [18] we compared the results using the accu-

racy with which our algorithm reconstructed the cor-
rect tree, and the average Robinson-Foulds distance [28]
between our reconstructed tree and the actual tree. To
compute the Robinson-Foulds distance, one notices first
that every internal edge of an unrooted tree partitions the
taxa into two disjoint sets known as a split. The Robinson-
Foulds distance between two trees counts the number of
splits which appear in one tree but not the other. As such,
this score ranges from 0, for equivalent trees, to twice
the number of internal edges (2(n − 3) for a unrooted
tree with n taxa). As the distribution of Robinson-Foulds
distances is weighted very heavily to the high end of the
score, almost all small scores can be viewed as indica-
tors of at least partial reconstructive success [29]. For the
study we analyzed the data sets of Ranwez and Gascuel
using Jukes Cantor invariants (JC), biologically symmet-
ric Jukes Cantor Invariants(BSI-JC), the relevant Jukes
Cantor invariants (JC-R) and the Kimura 2 parameter
invariants (K2P).
To determine the effect of the choice of model selection

on phylogenetic accuracy we designed a model misspec-
ification analysis test. We used Seq-gen software [27] to
generate 1000 sequences of lengths 300, 600 and 5,000
for trees AA and CC for the four evolutionary rates
described above. The sequences were generated using
the Jukes Cantor model of evolution, and then separately
using the Kimura-2 parameter model of evolution. We
reconstructed the trees using BSI Jukes Cantor invariants
and Kimura 2 parameter invariants.

http://faculty.winthrop.edu/hippb/QuartetPuzzlingWithBSI
http://faculty.winthrop.edu/hippb/QuartetPuzzlingWithBSI
http://www.atgc-montpellier.fr/quartet/
http://www.atgc-montpellier.fr/quartet/
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Results
Comparison with maximum likelihood based quartet
puzzling
The results of our simulation study are recorded in the
four tables below. Table 3 describes the accuracy of the
algorithm in reconstructing the correct tree for length 300
sequences. Table 4 shows the average Robinson-Foulds
distance between the correct tree and the reconstructed
tree. Tables 5 and 6 list the accuracy and distance results
for sequences of length 600 base pairs. We list all data in
relation to the results found on the same data set for the
quartet puzzling algorithm, listed as QP4.2 in [18]. Note
that the results listed for Ranwez and Gascuel were cre-
ated using quartet puzzling with a majority-rule consen-
sus method, which does not always lead to a fully resolved
tree. Use of this most recent version of the ONSENSE pro-
gram’s extended majority-rule consensus method would
increase the percentage of trees constructed correctly, but
also increase the average Robinson-Foulds distance.

Variations of invariant based quartet puzzling
To compare the difference between using the entire list of
Jukes Cantor biologically symmetric invariants (BSI-JC) to
only the relevant invariants (JC-R) we ran the simulation
study again using only the relevant invariants. The average
accuracy for the blocks of datasets are listed in Table 7. On
these same data sets we compared the accuracy of quartet
puzzling with BSI invariants to those using the minimal
invariants. Table 8 lists the comparison of these methods
in terms of accuracy. The choice of type of invariants used
in the puzzling algorithms had a negligible effect on the
computation time.

Table 3 Length 300 simulation accuracy percentages

Molecular Clock NoMolecular Clock

AA BB AB AVG CC DD CD AVG

M=0.1 BSI-JC 5 9 8 7 11 10 12 11

M=0.1 K2P 5 8 6 6 10 10 11 11

M=0.1 ML 1 3 2 2 3 3 4 3

M=0.3 BSI-JC 14 27 17 19 33 34 35 34

M=0.3 K2P 5 22 11 13 27 25 25 26

M=0.3 ML 4 14 7 9 18 24 21 21

M=1.0 BSI-JC 3 11 3 6 20 25 23 23

M=1.0 K2P 1 7 2 3 5 7 6 6

M=1.0 ML 0 3 1 2 17 26 22 22

M=2.0 BSI-JC 0 0 0 0 0 0 0 0

M=2.0 K2P 0 0 0 0 0 0 0 0

M=2.0 ML 0 0 0 0 1 3 1 2

Comparison of the percentage of reconstructed trees that match the correct
tree using Biologically Symmetric Invariants (BSI) and Kimura 2 parameter
invariants (K2P) versus Maximum Likelihood (ML) for sequences of length 300.

Table 4 Length 300 simulation Robinson-Foulds distances

Molecular Clock NoMolecular Clock

AA BB AB AVG CC DD CD AVG

M=0.1 BSI-JC 4.9 4.8 4.9 4.9 4.4 4.5 4.3 4.4

M=0.1 K2P 5.1 4.9 5.0 5.0 4.7 4.7 4.4 4.6

M=0.1 ML 4.3 3.8 4.1 4.1 3.6 3.7 3.6 3.6

M=0.3 BSI-JC 3.2 2.6 3.3 3.0 2.1 2.1 2.1 2.1

M=0.3 K2P 4.4 3.3 4.0 3.9 2.7 2.6 2.7 2.7

M=0.3 ML 3.1 2.2 2.9 2.7 1.8 1.7 1.8 1.8

M=1.0 BSI-JC 4.8 4.8 5.3 5.0 3.1 2.8 2.9 2.9

M=1.0 K2P 5.9 5.7 6.1 5.9 5.9 5.5 5.7 5.7

M=1.0 ML 4.3 3.6 4.1 4.0 1.9 1.7 1.8 1.8

M=2.0 BSI-JC 9.1 11.6 10.3 10.3 11 11.4 11.2 11.2

M=2.0 K2P 8.8 11.7 9.9 10.1 15.1 15.0 14.9 15.0

M=2.0 ML 6.6 6.5 6.6 6.6 4.3 4.1 4.2 4.2

Comparison of the average Robinson-Foulds distance between the
reconstructed tree and the correct tree for sequences of length 300.

To compare our method with traditional quartet puz-
zling, we ran the program with k = 1000 random order-
ings of the data. The number of orderings was chosen
to match the conditions of the study in [18]. We also
tested the effect of using a smaller number of orderings
on both the speed and reconstruction accuracy. The accu-
racy results are described in Table 9. We ran our program
on a Dell Optiplex 960 with an Intel 2 Duo 3 GHz pro-
cessor and 3.5 GB of RAM. The average run time per tree
for k = 1000 orderings was 1.9 seconds. For k = 100

Table 5 Length 600 simulation accuracy percentages

Molecular Clock NoMolecular Clock

AA BB AB AVG CC DD CD AVG

M=0.1 BSI-JC 36 40 37 38 50 45 49 48

M=0.1 K2P 28 35 30 31 47 44 44 45

M=0.1 ML 17 29 21 22 29 28 27 28

M=0.3 BSI-JC 57 66 63 62 77 80 80 79

M=0.3 K2P 33 57 43 44 70 69 69 69

M=0.3 ML 48 61 54 54 74 79 78 77

M=1.0 BSI-JC 23 41 29 31 70 71 68 70

M=1.0 K2P 9 36 16 20 32 36 36 35

M=1.0 ML 21 43 26 30 76 84 79 80

M=2.0 BSI-JC 0 2 0 1 2 5 2 3

M=2.0 K2P 0 4 1 2 0 0 0 0

M=2.0 ML 0 1 0 1 24 36 30 30

Comparison of the percentage of reconstructed trees that match the correct
tree using Biologically Symmetric Invariants (BSI) and Kimura 2 parameter
invariants (K2P) versus Maximum Likelihood (ML) for sequences of length 600.
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Table 6 Length 600 simulation Robinson-Foulds distances

Molecular Clock NoMolecular Clock

AA BB AB AVG CC DD CD AVG

M=0.1 BSI-JC 1.9 1.7 1.9 1.8 1.4 1.6 1.5 1.5

M=0.1 K2P 2.4 2.1 2.6 2.3 1.6 1.7 1.7 1.6

M=0.1 ML 1.9 1.5 1.7 1.7 1.4 1.5 1.5 1.5

M=0.3 BSI-JC 1.0 0.8 0.9 0.9 0.5 0.5 0.5 0.5

M=0.3 K2P 1.9 1.2 1.6 1.5 .7 .7 .7 .7

M=0.3 ML 0.8 0.6 0.7 0.7 0.4 0.3 0.3 0.3

M=1.0 BSI-JC 2.3 1.7 2.3 2.1 0.7 0.7 0.8 0.7

M=1.0 K2P 3.6 2.2 3.0 2.9 2.2 2.0 2.0 2.1

M=1.0 ML 1.8 1.0 1.5 1.4 0.4 0.3 0.3 0.3

M=2.0 BSI-JC 6.7 7.8 7.6 7.4 7.4 6.9 7.2 7.2

M=2.0 K2P 6.3 7.0 6.8 6.7 11.6 11.8 11.8 11.7

M=2.0 ML 4.4 3.8 4.3 4.2 1.7 1.4 1.6 1.6

Comparison of the average Robinson-Foulds distance between the
reconstructed tree and the correct tree for sequences of length 600.

orderings the run time was 0.3 seconds, and with k = 10
orderings the run time was 0.1 seconds per tree.

Model selection analysis
The results of our analysis on the effect of model selec-
tion on invariant based quartet puzzling are described
in Tables 10 and 11. Table 10 summarizes the average
effect of using BSI-JC invariants versus K2P invariants
for data sets generated from trees AA and CC of length
300 and 600 for low, medium and high evolutionary rates.
With 1000 sequences generated for each type for a total
of 12,000 sequences included in the average. For length
300 or 600 sequences neither algorithm reconstructed
a significant number of the trees accurately. For length
5,000 trees, each model reconstructed the correct tree
with near 100 percent accuracy with the exception of

Table 7 Comparison of BSI with relevant invariants only

L=300 Mol. L=600 Mol. L=300 No L=600 No

clock clock clock clock

M=0.1 BSI-JC 7 38 11 48

M=0.1 JC-R 10 41 11 45

M=0.3 BSI-JC 19 62 34 79

M=0.3 JC-R 24 69 32 78

M=1.0 BSI-JC 6 31 23 70

M=1.0 JC-R 5 26 14 48

M=2.0 BSI-JC 0 1 0 3

M=2.0 R-JC 0 1 0 2

Comparison of percentage of reconstructed trees that match the correct tree
using biologically symmetric invariants (BSI-JC) compared with using only the
relevant invariants (JC-R).

Table 8 Comparison of BSI-invariants tominimal
invariants

Tree BSI-JC JC

CC M=0.1 11 10

CC M=0.3 33 32

CC M=1.0 20 15

CC M=2.0 0 0

CD M=0.1 12 10

CD M=0.3 36 32

CD M=1.0 21 17

CD M=2.0 0 0

DD M=0.1 10 9

DD M=0.3 34 32

DD M=1.0 23 20

DD M=2.0 0 0

Percentage of reconstructed trees that match the correct tree using BSI
invariants (BSI-JC) vs minimal Jukes Cantor invariants (JC) (length=300 bp).

trees generated with a very high evolutionary rate (MD ≈
2.0). Table 11 summarizes the results for these longer
sequences.

Discussion
Simulation study of BSI Jukes Cantor and Kimura 2
parameter quartet puzzling
Based on our simulated data sets, BSI-JC quartet puzzling
more frequently reconstructs the correct evolutionary
tree for trees constructed with low to medium evolution-
ary rates in comparison with ML-Quartet Puzzling. For
length 300 sequences with low to high rates of evolution

Table 9 BSI-JC accuracy based on number of orderings

Tree k=1000 k=500 k=100 k=50 k=10

CC M=0.1 11 10 11 11 10

CC M=0.3 33 33 34 32 27

CC M=1.0 20 19 18 18 14

CC M=2.0 0 0 0 0 0

CD M=0.1 12 13 13 12 11

CD M=0.3 36 33 34 33 27

CD M=1.0 21 22 20 19 14

CD M=2.0 0 0 0 0 0

DD M=0.1 10 10 10 10 9

DD M=0.3 34 34 34 33 28

DD M=1.0 23 24 22 22 18

DD M=2.0 0 0 0 0 0

Percentage of reconstructed trees that match the correct tree using N randomly
generated orderings (length=300 bp).
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Table 10 Effect of model selection on reconstruction
accuracy for sequences of length 300 and 600 with low,
medium or high evolutionary rates

Jukes Cantor BSI Kimura 2 Parameter

Invariants Invariants

Sequences generated 35.3 31.3

under Jukes Cantor

model assumptions

Sequences generated 2 34.1 23.0

under Kimura Parameter

model assumptions

Percentage of reconstructed trees for data data sets generated by Jukes Cantor
versus Kimura 2 parameter model assumptions.

(MD ≤ 1.0 ), BSI- quartet puzzling was twice as likely as
ML-Quartet Puzzling to reconstruct the exact twelve taxa
tree (18% vs. 9%). For length 600 sequences with the same
rates of evolution BSI-quartet puzzling provides a mod-
est improvement in exact reconstruction accuracy as well
(57% vs 45%). For very high rates of evolution, both meth-
ods do poorly at reconstructing the exact tree (≤ 2%)with
the exception of ML reconstruction in length 600 trees
without a molecular clock (30%) .
Even in instances where BSI-JC outperforms ML in

reconstruction accuracy, the average Robinson-Foulds
distance [28] remains slightly larger. This indicates that
while BSI-JC quartet puzzling is more likely to recon-
struct the exact correct tree, the number of splits which
are correctly reconstructed would be smaller. Our results

Table 11 Effect of model selection on reconstruction
accuracy for sequences of length 5000 with very high
evolutionary rates

Jukes Cantor BSI Kimura 2 Parameter

Invariants Invariants

Sequences generated under 24 12

Jukes Cantor model

assumptions for tree AA

Sequences generated under 56 69

Kimura 2 Parameter model

assumptions for tree AA

Sequences generated under 99 84

Jukes Cantor model

assumptions for tree CC

Sequences generated under 63 88

Kimura 2 Parameter model

assumptions for tree CC

Percentage of reconstructed trees for data data sets generated by Jukes Cantor
versus Kimura 2 parameter model assumptions.

indicate that this error is typically on the order of one
additional misconstructed split for every four reconstruc-
tions if the evolutionary rate is high, medium, or small (M
≤ 1.0 ), and an additional two and a half misconstructed
splits per reconstruction if the evolutionary rate is high
(DL = 2.0) .
Given that the data sets used to run this simulation

study were generated under the Kimura 2 parameter
model assumptions it is quite surprising that the K2P
invariants under perform the BSI-JC model for almost
all trees. The only region where K2P invariants outper-
formed JC-BSI was for trees satisfying a molecular clock
assumption and a very high rate of evolution. We believe
the under-performance of the K2P invariants may be
attributed to additional noise in the data created by the
large number of invariant expressions. Recent work has
indicated that certain individual invariants may be biased
against reconstructing the correct quartet tree [10]. We
believe a more nuanced scoring system could account
for this bias and improve the accuracy of reconstruction
algorithms using BSI-JC and K2P invariants.

Variations of invariant based quartet puzzling
The transition from the Jukes Cantor invariants (JC)
on the small trees website [13] to biologically symmet-
ric invariants (BSI-JC) has a minor effect on improving
reconstruction accuracy. The extra time required to eval-
uate the additional biologically symmetric invariants is
made up for by slightly improved accuracy and dramati-
cally improved peace of mind.
Restricting the equations to use only the relevant

invariants had limited success. While mild accuracy
improvements were seen at low to medium rates of
evolution, there were significant loses of accuracy on
trees simulated without a molecular clock and with
a high evolutionary rate. This suggests that the cubic
invariants, while not relevant may still play an impor-
tant role in reconstructing certain trees. Our data con-
firms that the relevant invariants are a sufficient set
of equations for performing reasonable phylogenetic
analysis [21].
All comparisons between BSI and ML based quartet

puzzling were made using consensus trees based on 1000
random taxa orderings. This number was selected to
match the number of runs used in the puzzling in the
simulation study under comparison. Our testing indicates
that dramatic increases in speed could be gained with
little to no effect on accuracy by running only 50 data
orderings. We assume that the 1000 orderings sugges-
tion in the TREEPUZZLE guidelines is there for working
with larger data sets and that similar savings in time
would occur when running traditional puzzling meth-
ods on this data set with fewer orderings. Given the
tremendous increase in speed, further investigation into
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the appropriate number of orderings which maximize a
combination of speed and accuracy may be of merit.

Model selection analysis
The results of the effect of model selection on invari-
ant based reconstruction are surprising. For data sets
of length 300 or 600 reconstructions using the Jukes
Cantor BSI invariants outperform those using the Kimura
2 parameter invariants regardless of which model was
used to create the data sets. This suggests that the Kimura
2 parameter invariants are not being utilized in an opti-
mal matter. For length 5, 000 sequences with a very high
evolutionary rate, trees are more accurately reconstructed
using the invariants corresponding to the model used to
generate the data. This suggests that when there are many
site substitutions in the data, it is important to use the
invariants from the appropriate model.

Conclusion
Given that ML models are known to reconstruct the cor-
rect quartet trees with very high accuracy, the fact that
BSI-puzzling performs comparably with ML-puzzling in
most circumstances is somewhat surprising and encour-
aging. We see this as evidence that invariant based models
of reconstruction may play an important role in practical
phylogenetic reconstruction in addition to the role they
currently play in helping to understand the theoretical
possibilities of phylogenetic reconstruction problems [14].
As incorrect quartet propagation will still occur in the

puzzling procedure, we would not expect this method
to compete with the many variations of ML based quar-
tet puzzling algorithms that have been developed over
the years. Our findings, should be viewed as a proof of
principle that invariant based algorithms for phylogenetic
reconstruction are practical, and should be of interest to
working biologists, not just phylogenetic algorithm spe-
cialists.
The issue of using the full list of invariants as opposed

to only the relevant invariants remains unresolved. For
trees with a molecular clock assumption and small rates
of evolution, the relevant invariants outperformed the
complete list. However, for non-molecular clock trees,
and molecular clock trees with higher rates of evolution,
the complete list of invariants outperformed the relevant
invariants. We believe further study is needed in this area.
While we agree in principle that a smaller list of invari-
ants would be beneficial, our data suggests that the cubic
invariants do play an important role in reconstructing
trees.
In this paper we do not claim to have fully exploited

the power of invariants to solve issues such as long
branch attraction. We believe that a more nuanced large
scale investigation of invariant based algorithms may pro-
vide solutions to traditional problems in phylogenetic

reconstruction. As genetic data is becoming more read-
ily available, and as scientists seek to assemble the
Tree of Life, the importance of accurate and fast phy-
logenetic analysis is extremely important. Our find-
ings indicate that invariant based algorithms should be
included in the search for these improved algorithms,
especially when computing the Tree of Life, where cur-
rent algorithms focus around quartet based methods of
reconstruction [30].
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