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Abstract

Motivation: Methods for simulating the kinetic folding of RNAs by numerically solving the chemical master
equation have been developed since the late 90's, notably the programs Kinfold and Treekin with Barriers that are
available in the Vienna RNA package. Our goal is to formulate extensions to the algorithms used, starting from the
Gillespie algorithm, that will allow numerical simulations of mid-size (~ 60–150 nt) RNA kinetics in some practical
cases where numerous distributions of folding times are desired. These extensions can contribute to analyses and
predictions of RNA folding in biologically significant problems.

Results: By describing in a particular way the reduction of numerical simulations of RNA folding kinetics into the
Gillespie stochastic simulation algorithm for chemical reactions, it is possible to formulate extensions to the basic
algorithm that will exploit memoization and parallelism for efficient computations. These can be used to advance
forward from the small examples demonstrated to larger examples of biological interest.

Software: The implementation that is described and used for the Gillespie algorithm is freely available by
contacting the authors, noting that the efficient procedures suggested may also be applicable along with Vienna's
Kinfold.
Background
The RNA molecule, once considered as an intermediate
step between DNA and proteins, has drawn much atten-
tion in recent years. Discoveries relating to its unique
capabilities to prominently participate in gene regulation
have motivated even more the concerted efforts to
understand its folding and structural arrangement at
several levels, both at the level of tertiary structure and
that of secondary structure. The functional form of
single stranded RNA molecules frequently requires a
specific tertiary structure, but the scaffold for this struc-
ture is provided by secondary structural elements which
are hydrogen bonds within the molecule. The four build-
ing blocks of RNAs are A,C,G,U and the base pairings
among them form the secondary structure. This leads to
several recognizable "domains" of secondary structure
like hairpin loops, bulges and internal loops. Although
the functional role of the RNA molecule in more detail
is related to its three-dimensional structure, the RNA
secondary structure is experimentally accessible and in
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many interesting cases may contain substantial import-
ant information to shed light on the relationship be-
tween structure and function. In general, RNA folding is
thought to be hierarchical in nature [1,2], whereby a
stable secondary structure forms first and subsequently
there is a refinement to the tertiary fold. Thus, RNA
conformational rearrangements that will be mentioned
in the discussion can often be studied by examining their
secondary structure, while keeping in mind the import-
ance of tertiary structure.
When attempting to simulate the complete folding

event, the time needed to reach equilibrium can become
very long and it is computationally too expensive to con-
sider the kinetics of the tertiary structure by using a mo-
lecular dynamics approach. Therefore, beyond the static
view of RNA folding using energy minimization methods
to predict the final state of the folding, a time-dependent
view is desired in order to extract information on the
folding kinetics. To do so practically, it is imperative to
simulate the complete folding event at the level of RNA
secondary structure. For that, the chemical master equa-
tion can be solved numerically by a stochastic simulation
algorithm, as was first shown in that context in [3,4].
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Potentially, important information can be extracted from
such a simulation that considers the suboptimal solu-
tions, which were dealt with before in refs [5,6] in an in-
formative manner. The motivation and importance from
the biochemical perspective for this type of computa-
tional simulations, also describing the experimental
observables that can be extracted from the calculations,
can be found in [7]. A recent comprehensive review of
the field is available in [8]. Other computational simula-
tion approaches for RNA kinetics besides Kinfold [4]
that are beyond the regime of the mid-size RNA kinetics
described herein include RNAkinetics [9], Kinefold [10],
and Kinwalker [11] for large RNAs. To further motivate
the time-dependent view, it was shown in [12] that RNA
genes not only encode information about their func-
tional structure, but also on their co-transcriptional fold-
ing pathway (and, e.g. transient structures). More
recently, kinetically trapped RNA secondary structures
were thermodynamically analysed in [13] and an efficient
method for computing folding pathways between RNA
secondary structures was developed in [14] that follows
the work of [15] on determining an optimal folding
pathway and barrier energies introduced in [4,16]. For
an overview on RNA folding kinetics and the import-
ance of RNA folding intermediates, some recent review
articles are available in [17-21].

Methods
The complete folding event is governed by the chemical
master equation [8]. In order to introduce the concept
behind the reduction of the time-dependent RNA fold-
ing problem to that of stochastic chemical kinetics de-
scribing the time evolution of a well-stirred chemically
reacting system, the Appendix follows closely references
[22,23] in summarizing the formulation leading to Gille-
spie's Stochastic Simulation Algorithm (SSA).
Our goal is to model the problem of RNA secondary

structure folding in such a way that it can be reduced to
the algorithm with the pseudocode given in the Appen-
dix. Therefore, we will describe a reduction into the Sto-
chastic Simulation Algorithm (SSA). The rationale
behind this way of formulating the problem is that after
the reduction it becomes easier to devise an efficient ver-
sion of the SSA for RNA folding kinetics, with multiple
runs performed in parallel (see SSA version II and dis-
cussion thereafter).
Using the Vienna's notations as can be found in [4,24],

the RNA sequence in time t will be represented as two
strings. Both are of the size of the RNA sequence. One is
over the character set {A,U,G,C} also providing what the
order of the nucleotides is. It will be called from here on
the 'sequence string'. The other is a string of balanced
parentheses over the character set {., (,)}, known as "dot-
bracket" notation, describing the secondary structure of
the RNA sequence (dot means no base-pairing, and each
open and close parentheses represent a base pairing). It
will be named here the 'structure string'. We shall notice
that while the former does not change over time, the lat-
ter does.
In attempting to simulate over time the secondary-

structure changes of a certain RNA sequence, let us de-
note SR tð Þ as the random variable that contains what is
the structure string of the RNA structure at time t, when
the sequence string is known to be R. In the settings of
this simulation, SR 0ð Þis set to be the string } . . . ;⋯; . . . },
which is the initial folding open state without any base
pairings. Our goal is to predict what SR tð Þ is for some
parameter t. In particular, we would like to predict how
much time it will take for an RNA sequence to fold into
its 'optimal' state, defined as the structure whose Gibbs
free energy is minimal. To formalize that, we will denote
the optimal structure for the sequence R as Op(R). Thus,
our simulation goal is to find the smallest t for which
SR tð Þ ¼ Op Rð Þ.
Having defined our goal, we will introduce some

more notations to explain the reduction. FR ¼
s1R; s

2
R; . . . ; s

M Rð Þ
R

n o
will be the finite set (whose size is

denoted by M(R)) of the feasible structure strings for the
sequence string R, feasible meaning taking into account
biological constraints. Now, for some 1≤ i≤M(R), a single
step move of siR is a structure string sjR 2 FR such that sjR
and siR differ only by omitting a pair of parentheses, add-
ing a pair, or flipping a pair in the way that is well
described in [4]. We will define the neighbourhood of siR ,
denoted Ni

R ¼ si1R ; s
i2
R ; . . . ; s

iL
R

� �
, as the subset of FR which

can be reached from siRwithin a single step, unless siR ¼
OP Rð Þ , in which case we will define Ni

R to be an empty
set.
Gillespie's SSA deals with simulations of reactions of a

system [22,23]. A possible reaction from molecule of
structure sa into molecule of structure sb is denoted
sa ! sb . We will define a shortened notation for a set of
possible reactions:

sa ! sB ¼ sb1; sb2; . . . ; sbp
� � ¼ sa ! sb1; sa
! sb2; . . . ; sa ! sbp:

The reduction of the input is done by treating single-
step moves of the RNA structure as 'possible reactions'.
Using the given notations, we will obtain that the total

possible moves are: s1R ! N1
R ; s

2
R ! N2

R; . . . ; s
M Rð Þ
R !

NM Rð Þ
R . But, since the simulation is at a specific time at

state siR for some 1≤ i≤M(R), we are only left with the
feasible moves of siR ! Ni

R . These moves will constitute
the reaction set of Gillespie's algorithm. Now, the prob-
ability factor of each move to occur in a time of Δt is cal-
culated according to the Gibbs free energy considerations
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using the program RNAeval available in the Vienna RNA
package, along with a stochastic Monte Carlo feature. The
equation we used in our implementation is the one based
on the simulated annealing approach [25] and known as
the Metropolis [26] step, which is:

aij ¼ exp �ΔG=RTð Þ; if ΔG≥0;
1; otherwise:

�

A ¼ aij
� �

is the transition probability matrix, with
ΔG ¼ G0

j � G0
i when considering the rate of a transition

to j, being at i. G0
i is the Gibbs free energy of i for each

secondary structure i for the SSA algorithm version 1
below; for the SSA algorithm version 2 that follows, it is
the sum of the free energies over an n-tuple of second-
ary structures. We shall note that in our implementa-
tion, we used Vienna's own program called RNAeval to
get the Gibbs free energy values for the RNA structures.
In addition, similar to Vienna's Kinfold, a Kawasaki step
can be used instead of the Metropolis step in the equa-
tion above. We can observe that we now have a proper
input problem that fits Gillespie's SSA algorithm. Thus,
we can use the following algorithm:

SSA for RNA folding, version I – simulating one RNA-
structure fold

1. The current structure is siR for some 1≤ i ≤M(R).
While stopping condition siR equals to Op(R) is not
met:

2. Calculate Ni
R.

3. Evaluate for each member of Ni
R its probability factor,

and the total sum of the factors. We define akR as the
probability factor of siR ! skR if skR 2 Ni

R and 0
otherwise. We will also denote asum as the total sum
of all the factors.

4. Draw two independent uniform (0,1) random
numbers: ξ1 and ξ2.

5. Set j to be the smallest integer satisfyingXj
k¼1

akR > ξ1asum:

6. Set τ ¼ ln 1=ξ2ð Þ
asum

:
7. Set the current structure to be sjR, and the time to be
(t + τ). Return to step 1.

At this point, a beneficial observation is that we can ac-
tually expand the model to run this way many simulations
simultaneously. If we have different RNA sequences
with the sequence strings of R1;R2;R3; . . . ;Rn as in all
possible single point mutations, we will have the possible

moves of s1R1 ! N1
R1; s

2
R1 ! N2

R1; . . . ; s
M R1ð Þ
R1 ! NM R1ð Þ

R1 ;

s1R2 ! N1
R2; s

2
R2 ! N2

R2; . . . ; s
M R2ð Þ
R2 ! NM R2ð Þ

R2 ; . . . ; s1Rn !
N1

Rn; s
2
Rn ! A2

Rn; . . . ; . Let si1R1; s
i2
R2; . . . ; s

in
Rn be the current
states of the n RNA sequences, then we are left with the
feasible moves of si1R1 ! Ni1

R1; s
i2
R2 ! Ni2

R2; . . . ; s
in
Rn ! Nin

Rn.
Using these formulations, we suggest a somewhat opti-

mized and generalized variation of the aforementioned
algorithm. In the following version, the indices i and j
will not anymore correspond directly to an explicit aij

� �
matrix instance of the Metropolis step's equation. In-
stead, although we still are doing a Metropolis step, it
will correspond to a much larger matrix which is defined
only implicitly.
SSA for RNA folding, version II – simulating numerous
RNA-structure folds

1. The initial structure array is Sarr ¼<
si1R1

; si2R2
; si3R3

; . . . ; sinRn
>.

2. CalculateNarr ¼< Ni1
R1
;Ni2

R2
;Ni3

R3
; . . . ;Nin

Rn
>.

3. Evaluate for each member of N
ij
Rj
2 Narr its

probability factor, and the total sum of the factors.
We denote by akiRi

as the factor related to the k'th
member of N

ij
Rj
, and asum the total sum of all the

factors related to Ni1
R1
;Ni2

R2
;Ni3

R3
; . . . ;Nin

Rn
: Having all

the factors ordered by some total order, we will
obtain a series akð Þ. Each member of akð Þ
corresponds to a specific member of Narr , and we
will denote this mapping to the corresponding Narr

indices by mkð Þ.
4. While Sarr is not equal to<
Op R1ð Þ;Op R2ð Þ;Op R3ð Þ; . . . ;Op Rnð Þ >:

5. Draw two independent uniform (0,1) random
numbers: ξ1 and ξ2.

6. Set j to be the smallest integer satisfyingXj
k¼1

ak > ξ1asum. We shall denote j* and k* as the

indices for which aj ¼ aj�k�:
7. Set τ ¼ ln 1=ξ2ð Þ

asum
:

8. Set the mj 'th component of Sarr to be sj�R�, the time to
be (t + τ).

9. Recalculate the mj 'th neighborhood (with its
corresponding factors, aRi ), and update Narr as well
as akð Þ and asum. Return to step 4.

Repetitions of the same experiment, i.e. setting R1 ¼
R2 ¼ R3 ¼ . . . ¼ Rn , are useful to estimate the smallest t
for which SR tð Þ ¼ Op Rð Þ. This information is, as told at
first, what we sought for, and what we actually imple-
mented. In this special case, memoization might be use-
ful in calculating the expensive step 9 above. Because
folding patterns tend to be very repetitive, even a rela-
tively small-sized memoization might save a significant
amount of computation time. We implemented a simple
memoization and were able to run it on short sequences
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(up to 40 nt). We measured running times with a mem-
oization that memorizes the neighborhoods of 10,000
different structures. The allocated RAM space was large
enough not to require swapping. We obtained a signifi-
cant speedup: 43 seconds with memoization vs. 684 sec-
onds without memoization for a sequence of size 35,
with 100 simultaneous simulations, and approximately
6 seconds with memoization against 60 seconds without
memoization for a sequence of size 20, with 1000 simul-
taneous simulations. When implementing memoization,
keeping in memory all neighborhood sets possible is not
feasible since their number grows too fast in respect to
the size of the sequence. But because most of the transi-
tions occur in the basins of the local minima, in terms
of the energy values of the structures, keeping a fixed
number of sets may suffice to decrease the computation
time. We suggest the use of a cache-like LRU (least re-
cently used) algorithm as mentioned above for deciding
which information is likely to be re-usable among all
neighboring sets and probabilities ever computed during
a run. In addition, interesting ideas can be developed to
make the memoization more efficient along the lines of
calculating useful measures in order to assess the "fold-
ing progress" of all molecules. Since folding times may
well be distributed over several orders of magnitude, one
may want to let those molecules that have "fallen be-
hind" given some time to catch up, such that all mole-
cules fold at approximately the same speed without large
time deviations that are problematic because of having
to wait for the slowest molecules to terminate. A simple
and practical candidate for such a measure is the base
pair distance between the starting and stopping struc-
tures. In addition, we claim that the strategy outlined in
the SSA for RNA folding, version II above is better tai-
lored for biological problems in which it is not necessary
to wait for all molecules to reach their target structure.
For such type of problems, there are several advantages
to our approach. First, when a particular molecule gets
folded, it frees its memoization resources and also
reduces the size of the probability space in the sense that
it makes the transitions of the rest of the molecules
more probable to be the next to occur.
Aside of memoization, an advantage of the approach

of the SSA for RNA folding version II presented above
over a repetition of single structure simulations is that
we can stop the simulation after an elapsed simulation
time τ, and extract the folding time of all the experi-
ments that were already folded in time which is the most
τ. Moreover, taking this approach, no single long-lasting
simulation can delay the intermediate results of the
overall run. It is well on our interest that the molecules
that are last to be folded will not constitute a bottleneck
for the whole computation. In our settings, if we could
use an anytime computation approach in which the
probability is revealed gradually, what we might give up
by not waiting for the last molecules to terminate is just
the extent of a long probability tail. If the whole compu-
tation is stopped before all molecules have terminated
their folding, it may again be useful to calculate their
base pair distances to the stopping structures in order to
predict the amount of error by not letting all molecules
terminate their folding. For some problems the error
might be small enough or the computation can be
resumed some more until the approximation is satisfac-
tory for the particular problem's needs. It should also be
noted that if the sequence strings R1;R2;R3; . . . ;Rn are
different mutants of the same wildtype then the ideas
discussed above can still be used to considerably reduce
the computation time.

Results
Here below, we demonstrate our SSA implementation
on two "toy problem" examples. Our program that we
have been developing is similar in style to Vienna's Kin-
fold [4], but has been built in principle to have the abil-
ity of exploiting memoization and efficiency
considerations as proposed above.
Before examining Figures 1, 2, 3, 4, 5, 6, the two re-

spective sequences for Example 1 and Example 2 are
given below. Next, for each of the two examples, the
RNA secondary structures in 5 different stages are
drawn, after the drawing of the open chain at the very
left of Figures 1 and 4, respectively. The main analysis
plots of the time-dependent simulations are the distribu-
tion of folding times P tð Þ in Figures 2 and 5, and the
folding characteristic in Figures 3 and 6. The distribution
of folding times is the fraction of folding trajectories that
reached the mean free energy structure plotted on a
logarithmic time scale, with the time units arbitrary. The
plot was generated after collecting 1000 points. The
folding characteristic is given by t � P0 tð Þ=P tð Þ and dis-
tinctive humps on this figure correspond to different
folding paths. These figures, namely the distribution of
folding times and the folding characteristic, are well
described in Flamm et al. 2000 [4] and are given here for
consistency with the aforementioned paper that
describes Kinfold. In our two examples and our SSA im-
plementation, we can clearly see that the sequence of
Example 1 in Figure 3 evolves much smoother with no
humps in the folding characteristic compared to the se-
quence of Example 2 in Figure 6 that displays 3 humps
in the folding characteristic. Next, a representative out-
put of the evolved RNA secondary structure in "dot-
bracket" notation is outlined in two tables, for Example
1 in Additional file 1: Table S1 and for Example 2 in
Additional file 2: Table S2, respectively, with the 5
underlined structures for each example drawn in
Figures 1 and 4, respectively.



Figure 1 Ex1: Starting from open chain (left), six stages during the folding. SSA version I, sequence ‘GAGCAUCCGUGUAACCAUUCACAC
UGCUC ' is used.
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The sequences used for illustration in Figures 1, 2, 3,
4, 5, 6 are:

Example 1: SSA version I, R =
` GAGCAUCCGUGUAACCAUUCACACUGCUC '
Example 2: SSA version I, R =
` GGGGGGGGGGGGAAAUCCCCCCCCCCCC '
Figure 2 Ex1: Distribution of folding times.
Discussion
As a possible application of biological significance, the
time-dependent approach discussed above is suggested for
beneficial use in the problem of deleterious mutation pre-
diction. To elaborate on this problem, a common way to
detect deleterious mutations in the secondary structure of
RNAs is to look for mutations that may cause a



Figure 3 Ex1: Time evolution of the folding characteristic.

Aviram et al. Algorithms for Molecular Biology 2012, 7:24 Page 6 of 11
http://www.almob.org/content/7/1/24
conformational rearrangement to occur. It was noted in
[27] that there is some probability that even a single muta-
tion can substantially alter the RNA secondary structure.
Experimentally, this was observed in the spliced leader of
Leptomonas collosoma [28], in RNA viruses [29,30], and in
some other biological systems. Another very recent find-
ing of biological importance is the existence of disease-
associated Single Nucleotide Polymorphisms (SNPs) called
Figure 4 Ex2: Starting from open chain (left), six stages during the
CCCCC ' is used.
"RiboSNitches" that have an RNA secondary structural
consequence that results in a disease phenotype [31].
Computationally, even before the added motivation as a
consequence of the latter disease related finding, this gave
rise to a procedure for detecting deleterious mutations
using RNA folding predictions numerous times [32]. Each
time, relevant programs from an energy minimization
package such as RNAfold from the Vienna RNA package
folding. SSA version I, sequence `GGGGGGGGGGGGAAAUCCCCCCC



Figure 5 Ex2: Distribution of folding times.
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[24,33] or Zuker's mfold [34,35] can be used. In these
packages, expanded energy rules [36] that were derived
from an independent set of experiments are incorporated
into the folding prediction algorithm. While the folding
prediction problem described above is the most funda-
mental problem in RNA bioinformatics, the RNA muta-
tion prediction problem is a sub-problem that uses the
former multiple times, for various mutation combinations.
Historically, initial works for the mutation prediction
problem can be traced back to [37,38] and have been sub-
stantially revived in [32,39]. The first publicly available
program for the RNA mutation prediction problem that
takes into account only single-point mutation predictions
was called RNAMute [40,41]. It uses the Vienna RNA
package in its core. Subsequently, a web server dealing
with similar issues was put forth called RDMAS [42].
There are also some computationally challenging issues in
the mutation prediction problem [43], mainly in the
generalization to multiple-point mutations that can
Figure 6 Ex2: Time evolution of the folding characteristic.
become computationally heavy if a 'brute-force' strategy of
calculating all possible mutations is used without devising
any unique approach. There have been various suggestions
on how to reduce the number of mutations simulated
or make the computations more efficient, for example
[44-46]. In general, neither the original RNAMute [41]
nor RDMAS [42] can handle multiple-point mutations.
Consequently, RNAMute [41] was extended to Multi-
RNAMute [44] and based on the approach of [45], the
web servers RNAmutants [47] and later corRna [48] were
developed. A web server for MultiRNAMute was worked
out in [49]. There is, however, one common feature that
should be taken into account when considering all of the
programs dealing with RNA deleterious mutation predic-
tions. Because several single point mutations inserted to
the wildtype sequence can bring about to the same sec-
ondary structure, oftentimes there is a degeneracy in the
mutations that is needed to be addressed. Any mutation
prediction method for the purpose of conformational
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rearrangement in the secondary structure should therefore
aim to report in each step (i.e., one-mutation, two-
mutations, etc.) several mutation possibilities, not only a
single one. If the method only reports a single possible
mutation in each step, it probably means that a computa-
tional efficiency consideration was taken that may neglect
many good candidate mutations that are conformationally
rearranging just as well and will lead to the same second-
ary structure. Therefore, in order to fundamentally solve
the degeneracy of mutations leading to the same struc-
ture, we suggest to perform for each one a time-
dependent calculation and check how smooth the folding
occurs in time, to discriminate those mutation candidates
that get stuck in a local optimum for a while during the
folding in time. This is quite an intensive calculation for
sequences that are beyond "toy problems", leading to a
computational challenge from the numerical standpoint.
It is also of considerable interest to check whether there
is a correlation between the kinetic calculation and the
static information obtained by performing energy
minimization without taking into account what happens
during the folding event. In order not to lose reliability,
we suggest to consider all single point mutation combina-
tions, and decide which one is the most likely to occur
without getting trapped in a local minimum by using a
time-dependent approach.
In Figure 7, the idea of using a time-dependent ap-

proach for RNA deleterious mutation prediction is ex-
emplified on a segment taken from an HCV IRES
within the 5' UTR, for which experimental results are
already known and the wildtype structure is well pre-
dicted by energy minimization. It was found in an
Figure 7 Demonstrating feasibility of the time-dependent approach i
experiment on this segment [29], which is notably
located far away from the well-known pseudoknot of
the IRES and its folding is well predicted by mfold and
the Vienna RNA package when compared to the experi-
mental result, that a single point mutation will cause a
dramatic reduction in translation initiation. With RNAMute
[41] it is possible to capture this mutation inside a list of
about 60 other selected single point mutations that
can potentially induce a conformational rearrange-
ment, all resulting in a common or very similar sec-
ondary structure when checked with mfold or Vienna's
RNAfold. Consequently, the question that a potential ra-
tional design experiment might want to address is which
mutation will likely show the most pronounced affect,
assuming that a reduction in translation initiation corre-
lates with a smooth transition from the wildtype struc-
ture to a conformationally rearranging one without
getting trapped in local minima. Figure 7 displays the re-
sult of Kinfold [4] for 3 mutations from the list of 60
candidate mutations, providing an indication of how
smooth is the folding for each mutant. For mutations
G89C and G30C, about 100 points were collected when
generating the distribution of folding times P tð Þ , which
all together took from several hours to more than a day,
and for the mutation U20G only 20 points were col-
lected in the course of more than 2–3 days. From the
one hand, the feasibility of a time-dependent simulation
for such a sequence that is biologically significant and
in the range of mid-size RNA (60–150 nt long) is quali-
tatively demonstrated in Figure 7 for a small sample
of points. From the other hand, it is clearly evident
that computational strategies to reduce the heavy
n RNA deleterious mutation prediction.
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computation time, as proposed here with the SSA for
RNA folding version II, can be of benefit.

Conclusions
The significance of the initial development of efficient pro-
cedures described here can be divided into several items.
First, the time-dependent folding is what takes place within
the RNA molecule, and the static view of RNA structure
only at the beginning and end may not be sufficient or
complete in many cases. Experimental approaches to
measure folding kinetics in detail, such as temperature
jump experiments or single molecular methods [7], can be
employed to check the computational model and predic-
tions, in turn, can be pivotal to RNA rational design.
Developing efficient numerical methods for the time-
dependent folding simulation is therefore, by itself, an
important goal. Here, we embarked on the stochastic ap-
proach, noting that if at all possible to achieve with prac-
tical computation time then one should definitely consider
deterministic approaches [50] for the simulations of bio-
logically relevant examples. Another direction for reducing
computational cost is by an efficient exploration of discrete
energy landscapes, which was developed in a recent work
[51] by introducing a sampling method that allows for a
fast yet accurate estimation of the transition probabilities
between macrostates when coarse graining of the state
space is used [4,16,50,52,53]. Second, a time-dependent ap-
proach to contribute in deleterious mutation prediction is
suggested, which is still an open problem of considerable
biological interest in a variety of RNA systems. For ex-
ample, point mutations performed on an RNA virus such
as HCV can alter virus replication [30] or lead to a dra-
matic reduction in translation initiation [29]. Development
of efficient time-dependent simulations can well assist from
the predictive standpoint in such efforts.

Appendix
The probability of a reaction Rk to occur in an infinitesi-
mal time interval [t, t + dt) will be denoted by ak X tð Þð Þdt,
known as the propensity function. Applying the law of
total probability, one can obtain:

Pðx; t þ dtÞ ¼ 1�
XM
j¼1

aj xð Þdt
 !

Pðx; tÞ

þ
XM
j¼1

aj x� vj
� �

dtPðx� vj; tÞ

, P x; t þ dtð Þ � P x; tð Þ
dt

¼
XM
j¼1

ðaj x� vj
� �

Pðx� vj; tÞ

�ajPðx; tÞÞ
⇒dt!0 dP x; tð Þ

dt
¼
XM
j¼1

ðaj x� vj
� �

Pðx� vj; tÞ � ajPðx; tÞÞ
The last equation is known as the chemical master
equation. It is a set of linear ordinary differential equations
(ODEs), one ODE for each possible state of the system.
Solution of each of the equations at time t is a real number
giving the probability of the system being in that particular
state at time t. X(t) is the state vector, X(0) is the initial
condition, and the quantity P(x,t) is the probability that X
(t) = x. The inputs to the equation are the chemical reac-
tions and their propensity function ak X tð Þð Þ. An illustrative
example of how this equation is applied for studying the
Michaelis-Menten model system is available in [23]. In
order to solve the chemical master equation for practical
cases, a stochastic simulation algorithm was devised, also
known as the Gillespie algorithm [22], by simulating the
changes in the system as they evolve in time. Because single
steps are treated, the following quantities are introduced:

– p(τ,j|x,t) is the probability that reaction j happens in
the time interval [t,t + τ] given that X(t) = x.

– p(τ,0|x,t) is the probability that no reaction happens
in the time interval [t,t + τ] given that X(t) = x.

It is assumed that p(τ,0|x,t) and p(dτ,0|x,t + τ) are inde-
pendent. It follows that: Pðτ þ dτ; 0 jx; tÞ ¼ Pðτ; 0jx; tÞ�

Pðdτ; 0jx; t þ τÞ ¼ Pðτ; 0jx; tÞ 1�
XM
k¼1

ak xð Þdτ
 !

,

Pðτ þ dτ; 0 x; tj Þ�Pðτ; 0 x; tj Þ
dτ

¼�asumðxÞPðτ; 0jx; tÞ;where

asum ¼
XM
k¼1

ak xð Þ⇒dt!0

Pðτ; 0jx; tÞ ¼ e�asum xð Þτ

And, since: P τ; j x; tj Þ ¼ P τ; 0 x; tj Þaj xð Þdτ��
Then Pðτ; j jx; tÞ¼ajðxÞe�asum xð Þτ

,Pðτ; jjx; tÞ¼ aj xð Þ
asum xð Þ asumðxÞe�asum xð Þτ

The last equation shows that P τ; j x; tj Þð can be written
as the product of two individual density functions:

– Next reaction index aj xð Þ=asum xð Þ corresponds to a
discrete random variable: pick one of the reactions with
the rule that the chance of picking the jth reaction is
proportional to the propensity function aj xð Þ.

– Time until next reaction asum xð Þe�asum xð Þτ is the
density function for a continuous random variable
with an exponential distribution. These exponential
random variables arise universally in descriptions of
the time elapsing between unpredictable events.

The resulting algorithm for solving the master equa-
tion using the Stochastic Simulation Algorithm (SSA, or
the Gillespie algorithm) can now be described with the
following pseudocode:
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SSA for chemical reactions

1. Evaluate ak x tð Þð Þf gMk¼1 and asum ¼
XM
k¼1

ak x tð Þð Þ:

2. Draw two independent uniform (0,1) random
numbers: ξ1 and ξ2.

3. Set j to be the smallest integer satisfyingXM
k¼1

ak x tð Þð Þ > ξ1asum x tð Þð Þ:

4. Set τ ¼ ln 1=ξ2ð Þ
asum x tð Þð Þ

5. Set x(t + τ) = x(t) + νj and update t to t + τ
6. If no stopping condition is met, return to step 1.

This is the basic algorithm for simulating chemical
reactions that is described in more detail in [22,23],
and has been used as well for simulating RNA folding
kinetics [4].
Additional files

Additional file 1: Table S1. Ex1: Output illustration of the evolved RNA
secondary structure. The list is in "dot-bracket" notation. Energies are in
kcal/mol and time units are arbitrary. The five underlined secondary
structures of Ex1 are drawn in Figure 1.

Additional file 2: Table S2. Ex2: Output illustration of the evolved RNA
secondary structure. The list is in "dot-bracket" notation. Energies are in
kcal/mol and time units are arbitrary. The five underlined secondary
structures of Ex2 are drawn in Figure 4.
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