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Abstract

Background: The selection of the reference to scale the data in a copy number analysis has paramount importance
to achieve accurate estimates. Usually this reference is generated using control samples included in the study.
However, these control samples are not always available and in these cases, an artificial reference must be created. A
proper generation of this signal is crucial in terms of both noise and bias.
We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is
based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely
to be normal. These normal regions are predicted for each sample individually and used to calculate the final
reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method.
It also finds an optimal weighting of the samples minimizing possible batch effects.

Results: Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and
Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove
the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy
number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than
other state of the art methods.

Conclusions: NSA provides a robust and accurate reference for scaling probe signals data to CN values without the
need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore,
NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of
references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of
developing a parser to find the normal samples or possible batches within the data. The method is available in the
open-source R package NSA, which is an add-on to the aroma.cn framework. http://www.aroma-project.org/addons.
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Background
A DNA copy number aberration (CNA) is a patholog-
ical amplification or deletion of a part of the genome
(a chromosome, one of their arms or a segment) which has
been related to cancer development. In CNAs, DNA copy
numbers (CNs) may be larger (gains and amplifications)
or smaller (deletions and homozygous deletions) than the
normal state (CN = 2).
CNAs can be measured using single nucleotide poly-

morphism (SNP) arrays. Although the initial application
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of these arrays was genotyping, they can also be used to
calculate the CN estimates. Besides, regions with LOH
(Loss of heterozygosity), which are zones of the genome
that show no heterozygous SNPs, can be found using these
arrays.
The number of SNPs in the arrays range from the ini-

tial ones which interrogate around 10,000 SNPs, to the
newest ones which interrogate several millions of SNPs.
The GWS arrays from Affymetrix, in addition to SNP
probes, include non-polymorphic probes (known as CN
probes) for analysis of Copy Number Variations (CNVs).
In order to deal with Affymetrix SNP arrays it is required
to apply several low level processes, namely, background
removal, calibration, normalization and summarization
[1]. The final results from these steps are two values (θA
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and θB) for each SNP probeset which are approximately
proportional to the number of copies of each allele. On the
other hand, the CN probes of the latest arrays have a sin-
gle value (θT ) proportional to the total number of copies.
The proportionality constant is unknown and different for
each SNP probeset and CN probe.
As previously stated, CNAs occur in segments of the

genome. In order to find these aberrated regions, it is
necessary to compute the scale factor which relates sum-
marized SNP signals (θA and θB) and CN values (CNA

and CNB) for each SNP. If there are control samples in
the study, the computation of the scale factor is straighfor-
ward: two over a robust average of (θA+θB) in the control
samples [2-6] .
In this work it is assumed that a control sample has neu-

tral copy number with no LOH in its whole genome. Of
course, there can be CNVs in a control sample but, for sake
of clarity, they are not considered here.

Unfortunately, there are many experiments that do not
include control samples due to the difficulties to find them
or simply to reduce experimental costs. In these cases,
researchers opt for either using control samples from a
public dataset or calculating a robust reference using the
tumoral samples available in the experiment (implicitly
assuming that for each SNP most of the tumoral sam-
ples have neutral CNs). However, as it will be shown,
using samples from different labs can increase the noise in
the CN estimations and assuming that SNPs have neutral
CNs in most of the samples, although usually works, can
introduce bias in the copy number estimations hiding real
CNAs or even creating false ones, mostly when there is a
recurrent aberration.
We propose an algorithm termed NSA (Normality

Search Algorithm) that generates for each sample the cor-
responding reference without the need of control samples.
Within each of the samples (control or tumoral) NSA

Figure 1 DNA copy number, fraction of B allele and LH values for chromosome 8 in sample GSM318736 from the Prostate Cancer dataset
hybridized to Affymetrix Mapping250K Nsp. Heterozygous SNPs tend to have larger LH values (closer to 1) than homozygous SNPs (LH values
closer to 0). The thick gray line over the LH figure is the segmented LH value obtained from CBS. It has two regions. One which corresponds to the
normal zone (CN = 2) and the other to both deleted and amplified regions. The algorithm does not distinguish between the deleted and the
amplified zone. This fact is not a concern since it differentiates the normal regions from the aberrated ones, which is the objective here.
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Table 1 Level of Heterozygisity

Genotype CN LH

- 0 NAN

A,B 1 0

AB 2 1

AA,BB 2 0

AAB,ABB 3 2/3

AAA,BBB 3 0

AAAB,ABBB 4 1/2

AAAA,BBBB 4 0

AABB 4 1∗

LH of each genotype-CN pair for CNs in a pure tumor sample.
*The last genotype marked with an asterisk, implies a simultaneous alteration in
both chromosomes which is very unlikely to occur.

detects regions with neutral CNs (CN = 2) and no LOH.
Using these normal regions, the reference is calculated
and used to scale the data through both SNPs and samples.
We will show that NSA is able to correctly scale the CN
estimates even if there are no control samples in the exper-
iment. In addition, NSA is able to infer the batches within
an experiment and find a proper weighting (different for
each sample) to calculate the references.
The core of the NSA algorithm is the detection of nor-

mal regions in the genome. The developed method is
based on the comparison of the signals for both alleles
in each SNP. Heterozygous neutral copy number SNPs
(HNCNs) have similar signals for both alleles (θAj,i � θBj,i)
and their total copy number is two. For the majority of
aberrations (amplifications, deletions or LOH), one of the
alleles will have a larger signal than the other since the
number of copies is different for each of them. AABB
(or AAABBB) genotypes are very unlikely (except in mul-
tiploid cells) since it implies an amplification of both
chromosomes and this occurs much less often than aber-
rations that involve only one of the chromosomes [7]. The
nuclear assumption of NSA is that a SNP that have simi-
lar signals in both alleles (θAj,i � θBj,i) is probably a HNCN.
NSA assumes that regions enriched in SNPs with similar
signal for both alleles have neutral total CNs and no LOH.
Once NSA has inferred the normal regions, it also

computes the optimal weights to calculate the reference
using a weighted median. These weights are different for
each sample and strongly related with the batches (set
of samples that share some characteristics such as day of
hybridization, lab, person, etc) in which the samples were
hybridized. Finally, the reference is calculated and the data
scaled across both SNPs and samples.
NSA has been implemented in the aroma.cn framework

and memory requirements are modest even for a large
number of samples. Moreover, it is independent of both
the preprocessing method or the microarray technology.

Implementation
NSA is a population-based multi-array method for scal-
ing any SNP & CN array technology, e.g. Affymetrix
and Illumina. It identifies the normal regions within
the samples, finds optimal weights to account for
hybridization batches, calculates the corresponding
references and, finally, performs a two-dimensional
scaling.

Data
We applied NSA to five different datasets. The first one
is a subset of a Gliobastoma Multiforme (GBM) experi-
ment that includes 64 tumoral samples [8] hybridized to
Affymetrix Mapping 50K Xba array. The second one is a
Prostate Cancer analysis with 20 tumoral and 20 control
samples [9] hybridized to Affymetrix Mapping 250K Nsp
array, the third one is a subset of 50 Lung Cancer and
20 control samples from [10] hybridized to Affymetrix
GWS 6.0 array. The fourth one is a subset of an Ovar-
ian Cancer experiment that includes 72 tumoral samples
and 57 control samples [11] and, finally, the fifth one
is a subset of HapMap samples [12]. It is shown here
that, for these datasets, NSA provides more accurate and
precise CN estimates than other state of the art scaling
methods.
The input data of NSA are the summarized probe sig-

nals (θA and θB) calculated using any summarization
method such as dChip [13], RMA [14], CRMA v2 [1],

Figure 2 Recurrent aberrations obtained after using MTS, MHS
and NSA scaling methods.MTS is represented with thick red and
grey, MHS with green and darkgreen lines and finally, NSA with red
and black lines. The performance for MHS and NSA in terms of
identifying recurrent aberrations is similar. NSA and MHS provide
more significant values for the recurrent aberrations and no artificial
aberrations appear. On the contrary, MTS introduces artificial
aberrations.
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ACNE [15], CalMaTe [16] for Affymetrix arrays or the
one developed by [17] for Illumina technology. From
these allele specific probe signals the fractions of the
B-allele (β = θB/(θA + θB)) are obtained. CRMA v2 pre-
processing methods have been applied to all the datasets.
In the summarization step, ACNE (for Affymetrix Map-
ping 50 and 250K arrays) and CalMaTe (for the GWS6.0
arrays) were chosen because provide more accurate allele
specific CNs.

Detection of neutral DNA copy number regions
The main assumption of NSA is that gains of both chro-
mosomes in a tumor sample are very unlikely to occur.

It is shown in [7] that (for GBM) only 3% of the aber-
rations occur in both chromosomes. Therefore, we con-
sider that if both θA and θB are approximately equal,
the SNP is likely to be heterozygous with CN equal to
2 (i.e. it is a HNCN). Since CNAs occur in segments
of the genome, the homozygous SNPs within a region
enriched in HNCNs will probably also have neutral CNs.
In order to quantify how similar the signals of both alle-
les are, we use the term level of heterozygosity (LH) which
stands for a continuous approximation to the heterozy-
gosity of a SNP (notice that this level of heterozygosity
does not have anything to do with the same term in
population genetics).

Figure 3 DNA copy numbers using MCS (first panel, reference generated using control samples from the sample lab, 40 samples in total),
MHS (second panel, reference generated using Hapmap samples, 40 samples in total), MTS (third panel, reference generated using all
tumoral samples (20 samples)) and NSA (fourth panel, reference using “normal” zones within tumoral samples (20 samples)) for
chromosome 8 in sample GSM318766 from the Prostate Cancer dataset hybridized to Mapping250K Nsp. Noise is especially large for MHS
method.
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Level of Heterozygosity
By definition the LH for a given SNP j (j=1. . . J) in a sample
i (i=1. . . I) is calculated as

LHj,i = 2min(θAj,i, θ
B
j,i)/(θ

A
j,i + θBj,i) (1)

where θAj,i and θBj,i are the corresponding signals of A and
B alleles for SNP j in sample i and they are expected to be
proportional to their CN values (CNA

j,i and CNB
j,i). If LHj,i

is close to 1 (θAj,i � θBj,i), SNP j is expected to be heterozy-
gous in sample i. On the other hand, if it is close to 0 it
means that one of the signals θAj,i or θBj,i is close to zero and,
therefore, either the SNP j is homozygous in sample i, or
that there are more copies of one allele than of the other
(which occurs in an amplified zone). The values of the LH
matrix (dimensions JxI) are within 0 and 1. Alternatively,
LH can be defined as

LHj,i = 2min(βj,i, 1 − βj,i) (2)

where βj,i = θBj,i/(θ
A
j,i + θBj,i) are the fractions of the B-allele.

Figure 1 displays the CNs, the fraction of B-allele (β) and
the LH of chromosome 8 in sample GSM318736, from the
Prostate Cancer experiment. The top panel shows three
different zones in this sample: a normal zone in the begin-
ning of the chromosome (CN=2, from 0 to 20 Mb), a
deletion in the zone of the p arm closer to the centromere
(CN=1, from 20 to 45 Mb) and a gain in the q arm of the
chromosome (CN=3, from 45 to 147Mb). These regions
can be inferred from the CN plot, but also from the β

plot (middle panel). On the other hand, in the bottom
panel, the LH plot shows two clouds in the normal region:
one is centered at 0 and the other at 1. The distribution
is also bimodal for 3 copies, but the peaks for the dis-
tributions are, in this case, about 0 and 0.7. The density
function of LH in a deletion presents a plateau for low val-
ues (close to 0), and it is unimodal if there is no normal
contamination.
HNCNs have a distribution that peaks at LH = 1

(the place where θA = θB). The density function of LH
for homozygous SNPs has a peak close to 0 (row two in
Table 1). The specific position of the peak depends on
the summarization method, especially on how well the
method deals with cross-hybridization between probes
that measure different alleles. The expected values of LH
for the SNPs with CN different to 2 are shown in Table 1
(The last genotype marked with an asterisk, implies a
simultaneous alteration in both chromosomes which is
very unlikely to occur).

Selecting Heterozygous SNPs with Neutral CNs (HNCNs)
Using Table 1, a threshold LHth has been selected to dis-
cern whether the corresponding SNP is HNCN or not.
The most critical case to discern from a normal region
(using the LH value) is a zone with 3 copies. The expected
LH value is around 2/3 for a perfect summarizationmodel
with a pure tumor sample. If there is contamination from
the surrounding normal tissue, this value will be larger.
Because of this, a suitable threshold is 5/6 (the middle

Figure 4 ROC comparison with scaled data (Prostate Cancer dataset, sample GSM318766, hybridized to Mapping250K Nsp).We have
focused on the region where there is a change from 1 to 2 copies, around position 32Mb, that appears in Figure 3. For the analysis, we have
included the SNPs that surrounds the copy number change (specifically from 20 to 45 Mb). The SNPs within a safety zone from 30Mb to 34 Mb are
not considered in the analysis, because it is difficult to discern the exact position of the change. The SNPs located upstream the change point are
considered to have total CNs equal to 1 (deleted region) and the SNPs downstream the change point to have a normal CN (CN=2). For this particular
sample (in the studied jump) the results using NSA are almost as good as using MCS. MTS gives poorer results and MHS is well behind. This is a
general trend that discourage the joint analysis of samples from different laboratories.
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Figure 5 DNA copy numbers using MHS (291 samples where 59 are control samples from HapMap, used to calculate the reference) and
NSA (reference using “normal” zones within tumoral samples (232 samples)) for chromosome 5 in sample GSM638958 from the Lung
Cancer dataset hybridized to GenomeWideSNP 6.0.

point between the expected value for normal heterozy-
gous calls and the value for 3 copies).

Figure 6 ROC comparison with scaled data (Lung Cancer
dataset, sample GSM638958, hybridized to GenomeWideSNP
6.0 array).We have used the region where there is a change from 2
to 3 copies, around position 30Mb, that appears in Figure 5. For the
analysis, we have included the SNPs that surrounds the copy number
change (specifically from 0 to 45 Mb). The SNPs within a safety zone
from 25Mb to 35 Mb are not considered in the analysis because it is
difficult to discern the exact position of the change. The SNPs located
upstream the change point are considered to have total CNs smaller
than the SNPs downstream the change point. For this particular
sample (in the studied jump), NSA differentiates the two regions
better than MHS.

Once the threshold is set, the SNPs with LH value over
it are labeled as HNCN (LH = 1) and the others as non-
HNCNs (LH = 0). A segmentation algorithm is applied to
these binary data to find zones enriched in HNCNs. We
used a variant of CBS in which the input are binary data
[18,19], although other methods could be applied (using
for example Hidden Markov Models [20]).
In the aforementioned Figure 1, the thick gray lines in

the bottom panel represent the different segments pre-
dicted by CBS. The y axis represents the proportion of
HNCNs SNPs in the segment. It can be observed that CBS
detects 2 different segments, corresponding to the two
states (normal and aberrated). In other samples, segmen-
tation also differentiates between aberrations (deletions
and gains) assigning them a different value since the pro-
portion of SNPs whose LH is above the threshold can be
different, but this fact does not affect the method.

Labeling normal segments
On average, 27% of the SNPs in a HapMap sample are het-
erozygous. Therefore, ideally, the proportion of HNCNs
in a normal region would be around 27%. On the other
hand, the proportion of HNCNs should be ideally close
to 0% in an aberrated region. We have selected a thresh-
old in the middle point (13.5%). The larger the threshold,
the more likely the selected segments have neutral CNs.
However, some normal regions can be missed because of
noise or simply because the regions include many SNPs
with onerare variant.
For example, consider the initial part of the p arm

from Figure 1, which is normal, and the q arm, which is
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amplified. The density function for the normal zone has
more SNPs with LH closer to 1 than the amplified region.
In this particular case, 18.3% of the SNPs are above the
threshold set in the previous section. For the 3 copies
region, only 8.6% of the SNPs have LH above the thresh-
old. The difference between both regions is large enough,
so that, the algorithm is not sensitive to a particular
selection of the threshold.
If the array of the experiment includes SNP and CN

probes (GWS 5.0 or GWS 6.0), then the corresponding
status (neutral copy number or not) of the CN probes is
inferred from the status of the segment where they are
located (that has been computed using the SNP probes).

Copy number data scaling
The final processing of NSA includes two scaling steps,
one by SNPs and another by samples.

Scaling by SNP
NSA implements two methods (user-selectable) to com-
pute the references: the first one uses standard medians
and the second one uses weighted medians to minimize
batch effects. In this second method each sample has a
different computed reference.
For the first method, the reference is computed by

using the median of the signals of the samples labeled
as normal for each SNP. In the second case, a different
algorithm (described in the following section) estimates
some weights that are used to compute the reference for
each SNP and sample using weighted medians [21]. It also

uses only the samples labeled as normal for each SNP to
compute the reference.

Scaling by sample
The algorithm computes for each sample the median of
the CNs of the SNPs assumed to be normal and re-scales
all the data so that the median of the normal zones for
each sample is 2.
The two scaling steps of the proposed normalization is

similar to a median polish in which only the SNPs which
are labeled as normals are included in the computation.

Algorithm
The procedure that involves both scaling steps is the
following:

1. Get the reference signal for every SNP computing:

Ref SNPj = mediani∈I(SLHj,i)(θ
(1)
j,i ) (3)

where θ
(1)
j,i = θAj,i + θBj,i is the sum of the signals of

both alleles and I(SLHj,i) is an indicial matrix of the
samples (for SNP j) that have been labeled as normal
in that position. Ref SNPj is the computed reference for
SNP j, taking the medians by SNPs. If the batch effect
removal (BER) method is used, this step converts into

Ref SNPj,i = wmediank∈I(SLHj,k)(θ
(1)
j,k , γi,k). (4)

where wmedian stands for the weighted median
using weights γi,k . Notice that the reference is
different for each SNP j but also for the same SNP in

Figure 7 DNA copy numbers using MHS (291 samples where 59 are control samples from HapMap, which are the ones used to calculate
the reference) and NSA (reference using “normal” zones within tumoral samples (232 samples)) for chromosome 14 in sample
GSM639066 from the Lung Cancer dataset hybridized to GenomeWideSNP 6.0.
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Figure 8 ROC comparison with scaled data (Lung Cancer
dataset, sample GSM639066, hybridized to GenomeWideSNP
6.0 array).We have used the region where there is a change from 3
to 2 copies, around position 65Mb, that appears in Figure 7. For the
analysis, we have included the SNPs that surrounds the copy number
change (specifically from 0 to 100 Mb). The SNPs within a safety zone
from 60 Mb to 75 Mb are not considered in the analysis since includes
a deleted region. The SNPs located upstream the change point are
considered to have total CNs larger than the SNPs downstream the
change point. For this particular sample (in the studied jump), NSA
differentiates better than MHS between the two regions.

a different sample i, since the weights of the median
(γi,k) are different for each sample. These weights are
computed by the algorithm described in the
following section.

2. Normalization of the signals across SNPs. For each
SNP in every sample

θ
(2)
j,i = 2θ(1)

j,i

Ref SNPj(,i)
(5)

The values of θ(2)
j,i will be close to the real CNs. The

reference will be different for each sample if the
batch effect removal method is used.

3. Get the reference signals for every sample:

Ref sample
i = medianj∈I(SLHj,i)(θ

(2)
j,i ) (6)

Ref sample
i is the average value (using medians) of the

normal segments of the genome. This value is
expected to be close to 2. In order to ensure this, the
following (and last) step scales the samples
accordingly.

4. Normalization of the signals across the samples. For
each sample, in every SNP

θ
(3)
j,i = 2θ(2)

j,i

Ref sample
i

(7)

The values of θ(3)
j,i are the final estimates of NSA for

the total CN values.

These steps should be repeated until convergence but
improvement is negligible after the first iteration (average
copy number changed about 0.001 copies in the exam-
ples).

Computation of weights for batch effect removal
Batch effects have proved to have paramount importance
in the analysis of SNP arrays [22,23]. The particular char-
acteristics of NSA algorithmhelps to develop an algorithm
to minimize them. The overall idea is that, since NSA
identifies normal zones that are expected to have neu-
tral CNs, the reference can be selected so that, for these
normal zones, the estimated copy number is close to 2.
The procedure is the following. First of all, a set “S” of

SNPs is selected. This set must include a sufficient number
of normal SNPs to capture the relationships between the
arrays. These SNPs are selected from normal regions in

Figure 9 Normal regions (in white) detected by NSA within the
chromosome X from the GIGAS HapMap dataset. These data (70
samples hybridized to GenomeWideSNP 6.0 array) were preprocessed
with ACNE. Note that the index of SNPs is ordered by genomic
position and the index of samples is ordered by “normal” content.
According to this order, the first 32 samples are men and the next 38
are women. In addition, female samples can be separated into two
groups. The first group, that presents many uniparental disomy
regions, belongs to Asian women (except one caucasian) and the
second group belongs to caucasian and Yoruban women.
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most of the samples. Although for some studies there are
no normal SNPs for all the samples, the SNPs in “S” are
selected so that they appear as normal in as many samples
as possible.
For SNPs in “S” that are not located in normal regions

in any of the samples, their values are substituted by the
references using standard medians, the signal used by the
algorithm θ̂ is

θ̂j∈S,i =
{

θ
(1)
j∈S,i, ifi, j ∈ I(SLHj,i)

Ref SNPj∈S , otherwise
(8)

Using these values, the weights γi,k to compute the ref-
erence for each sample i are estimated by solving the

following optimization problem

min
γi,k

|| log(θ̂j∈S,i) −
I∑

k=1,k �=i
γi,k log(θ̂j∈S,k)|| (9)

subject to

γi,k > 0, γi,i = 0 (10)

implicitly assuming that the reference for log(θ̂) is∑
γi,k log(θ̂j∈S,k), i.e. a linear combination of the logarithm

of the signals for each sample. The restrictions impose that
1) sample i is not used to compute its own reference and 2)
only positive weights are allowed, i.e. if samples i and k are
so different that the corresponding coefficient γi,k is nega-
tive, sample k is not used to build the reference of sample
i instead of giving it a counter-intuitive negative weight.

Figure 10 DNA copy numbers using ACNE, ACNE+NSA and CN5 and B Allele Fraction for chromosome X in sample
GIGAS g GAINmixHapMapAffy2 GenomeWideEx 6 A04 31266 from the GIGAS HapMap dataset hybridized to GenomeWideSNP 6.0. The
number of copies and the fraction of the B allele show that this sample is male. The total copy number for the autosomal regions -beginning of p
arm and middle of q arm- are closer to two copies.
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Figure 11 ROC comparison with scaled data (GIGAS HapMap
dataset, sample
GIGAS g GAINmixHapMapAffy2 GenomeWideEx 6 A04 31266,
hybridized to GenomeWideSNP 6.0 array).We have used the
initial region of chromosome X, where there is a change from 2 to 1
copy, that appears in Figure 10. For the analysis, we have included the
SNPs that surrounds the copy number change (specifically the first
1000 SNPs, ordered by genomic position). There is no safety zone in
the analysis. The SNPs located upstream the change point are
considered to have total CNs larger than the SNPs downstream the
change point. Again, for this particular sample (in the studied jump),
NSA differentiates better than ACNE (in this case, “MTS”) and CN5 (in
this case, “MCS”).

This optimization is a quadratic programming (QP)
problem. Instead of using a standard QP algorithm (quite
time consuming) we have iteratively solved the minimum
squares problem. In each step, the algorithm removes the
samples whose weights are negative in the solution.
Any linear combination such as

∑
γi,k log(θ̂j∈S,k), can

be interpreted as a weighted mean multiplied by an addi-
tional factor (the sum of the weights). In this particular
case, since the data are further normalized by samples,
this additional factor is computed and taken into account
in the “scale by samples” step. In addition, instead of
using the weighted mean, we used a weighted median
to increase the robustness and withstand the presence of
outliers. Since the median and the logarithm are inter-
changeable operators, the suggested reference is

Ref SNPj,i = wmediank∈I(SLHj,k)(θ
(1)
j,k , γi,k). (11)

Using this formula, each of the computed γi,k is the
weight of the normal regions of sample k to compute ref-
erence for sample i using a weighted median. For each
SNP j, only the samples that are expected to be nor-
mal are included in calculation of the median using the
corresponding weights.

Results
In this part, it is shown that the results using NSA out-
perform the use of control samples from a different lab
or using a robust median of the tumoral samples (which
are the most used methods). This improvement in perfor-
mance appears both in noise and bias. Since there is not a
ground truth to compare against, we have used three indi-
rect aspects to state the performance: the ability to find
CNAs along the genome, the quality of the estimated CNs
in regions that are known to be normal and the ability to
find recurrently aberrated regions.
Eckel-Passow et al. [24] shows a comparison among

different summarization algorithms. It describes four
summarization methods [2-5]. Within these methods,
there are only two different algorithms for scaling:
using the median (of some of the samples) and a
linear model. The summarization methods used here
(ACNE and CalMaTe), internally implement a calli-
bration that is in fact a linear model. In addition
to the methods described in [24], dChip [6] imple-
ments a trimmed mean of the samples if no ref-
erences are provided, LaFramboise [25] fits a non-
linear model using the information from control sam-
ples, Nannya et al [26] propose to use the m con-
trol samples most similar to the sample under study.
In the end, the suggested methods to scale the sam-
ples (except [26]) are simply the computation of a
robust average (i.e. the median or a trimmed mean)
of some of the samples. As will be shown later, our
approach to remove batch effects resembles Nannya’s but
focusing only on the normal zones within the tumor
samples.
We have compared four different possibilities to select

the samples to build the references. These scaling meth-
ods depend on whether control samples are available or
not and on the laboratory where the control samples (if
any) were hybridized. The first algorithm under study can
be applied to a dataset which includes control samples
from the same lab. In this case, for each SNP, the median
of the values of the control samples is used as reference i.e,
the median of (θAC,i + θBC,i) where C is a subset of control
samples within the experiment. We named this algorithm
MCS (median of control samples). This is the method of
choice suggested by all the referred methods if control
samples are available.
The next three algorithms are used when no control

samples are available. The second method (MHS: median
of HapMap samples) computes the reference using the
median of external control samples (in this case they are
fromHapMap). This is themethod suggested by [3,6]. The
third method (MTS: median of tumoral samples) builds
the reference using the median of all the tumoral sam-
ples (implicitly assuming that most of the samples have
neutral copy number at a given locus). It is suggested in
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some vignettes of the package aroma.affymetrix [2]. And,
finally NSA, which calculates the reference based on the
predicted normal regions within the tumoral samples.

Ability to find recurrent aberrant regions
Wehave focused this section on the detection of recurrent
alterations since it is the aim of many CN analysis.
The analyzed experiment is the GBM dataset (64

tumoral samples [8] hybridized to Affymetrix Map-
ping50K 240Xba). The data were analyzed using
CRMAv2 pre-processing and ACNE summarization
method. Once the θ values were obtained, the data were
scaled using both MTS and NSA. In addition, we per-
formed the same analysis taking HapMap samples as
references (MHS).
After applying the three scaling methods, the CN esti-

mates were segmented using CBS [18] and then, the
recurrent aberrant regions were calculated using GISTIC
[27].
GBM has been deeply studied by different groups [8,28],

and it is known to present strongly recurrent aber-
rations. For example, in GBM there is a well known

recurrent amplification in 7q and a deletion of almost
the whole chromosome 10 [28]. Figure 2 shows the
recurrent aberrations found using the median of the
tumoral samples (MTS), shown in thick red and grey,
the ones obtained from NSA (lines red and black) and
MHS (green and dark green). Using MTS, the aber-
rated region 7q does not only appear to be amplified
but also deleted. This recurrent deletion is an artifi-
cial aberration originated by the bias of the estima-
tion of the reference. Since the recurrent amplification
in 7q occurs in more than half of the samples, the
MTS estimates of the reference for these loci are larger
than the real ones. In turn, the scaling process pro-
vides smaller copy number values than expected for these
loci. This is a general trend: in recurrent amplifications,
MTS estimates are larger for neutral copy number loci
than expected. This bias makes the amplification less
prominent and the statistics less significant. The oppo-
site effect can also be seen in chromosome 10, which
is known to be recurrently deleted. Using MTS, both a
recurrent amplification and a recurrent deletion appear in
chromosome 10.

Figure 12 Fraction of B allele and DNA copy numbers using MHS (291 samples where 59 are control samples from HapMap, which are the
ones used to calculate the reference) and NSA (reference using “normal” zones within tumoral samples (232 samples)) for chromosome 5
in sample GSM638955 from the Lung Cancer dataset hybridized to GenomeWideSNP 6.0. FracB plot shows that the sample has neutral copy
number. MHS predictions show a wavy effect that is not present in the case of NSA.
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On the other hand, in both chromosomes 7q and 10,
NSA and MHS provide more significant values for the
aberrations (the amplified and deleted regions have higher
q-values) and no artificial aberrations appear. The per-
formance in terms of identifying recurrent aberrations
is similar for both algorithms. Nevertheless, we have to
fine-tune the low-level analysis using MHS since a very
strong bias appears in the CN estimates (that NSA does
not present because of the second stage of the algorithm
-scale by samples).

Ability to find CNAs along the genome
We have performed this comparison in two cancer
datasets, Prostate Cancer and Lung Cancer. In addition,
we have analyzed the chromosome X in some HapMap
samples to check if NSA is able to uncover which samples

have two copies (female samples) and, using the first auto-
somic region of this chromosome, compare the ability to
find a copy number change.

Prostate cancer analysis
The Prostate Cancer dataset is hybridized to Affymetrix
Mapping250K Nsp [9]. We compared the NSA results
withMTS, MCS andMHS. It is reminded that MCS needs
more hybridizations than the other methods. This analy-
sis is focused on finding aberrant regions in order to show
which method detects CNAs more accurately.
Figure 3 presents the DNA CNs of chromosome 8 for

sample GSM318766 obtained using the different scaling
methods. It is not possible to pinpoint clear differences
from these figures, except for the MHS method which is
clearly noisier than the others in this example.

Figure 13 DNA copy numbers using CalMaTe, CalMaTe+NSA (without BER) and CalMaTe+NSA (with BER) and B Allele Fraction for
chromosome 1 in sample GSM492511 IC318T from the Ovarian dataset hybridized to GenomeWideSNP 6.0. It can be observed that the
resultant signal obtained by NSA with BER is less noisy than the other methods.
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In order to quantify the ability to find CNAs we
have generated a ROC curve (Figure 4) for the region
that changes from 1 to 2 copies, around position 32Mb
(Figure 3). The SNPs located downstream the change
point are considered to have a larger total CN (which
have neutral CNs) than the SNPs upstream the change
point (deleted region). For any threshold in the CNs there
are true positives TP (SNPs in the normal region that
are above the threshold), false positives FP (SNPs in the
deleted region that are above the threshold), true nega-
tives TN (SNPs in the deleted region below the threshold)
and false negatives FN (SNPs in the normal region that are
below the threshold). The FPR = FP /(FP + TN) and TPR
= TP /(TP + FN) can be evaluated at different thresholds.
The ROC curve is the plot of TPR against FPR for differ-
ent thresholds. A perfect classification method provides
large TPRs for low FPRs. The worst classification method
(random selection) is a straight line from (0,0) to (1,1).
This evaluation method was also used by Bengtsson et al.
in [1] and it is deeply explained in their corresponding
Supplementary Notes.
For this analysis, we have included the SNPs that sur-

round the CN change (specifically from 20 to 45Mb).
Since the exact position of the change is difficult to locate,

Figure 14 ROC comparison with scaled data (Ovarian dataset,
sample GSM492511 IC318T, hybridized to GenomeWideSNP 6.0
array).We have used the region where there is a change from 3 to 2
copies, in the begining of chromosome 1, that appears in Figure 13.
For the analysis, we have included the SNPs that surrounds the copy
number change (specifically from 60 to 85 Mb). The SNPs within a
safety zone from 70 Mb to 75 Mb are not considered in the analysis.
The SNPs located upstream the change point are considered to have
total CNs larger than the SNPs downstream the change point. For this
particular sample (in the studied jump), NSA (with BER) differentiates
better than NSA (without BER) and CalMaTe using control samples as
references (MCS).

the SNPs within a safety zone from 30Mb to 34Mb are
not considered. This figure includes some gray zones that
illustrate which is the region under study. It can be seen in
Figure 4 that MCS and NSA are the ones that best identify
this CN change (better TPR for the same FPR). MTS gives
intermediate results and MHS performs worse than the
rest.We have selected this locus since it is themost promi-
nent recurrent aberration for this dataset and has been
previously shown to be a frequent aberration in Prostate
Cancer [29,30].

Lung cancer analysis
We have also validated NSA with the dataset from
a Lung Cancer study [10], hybridized to Affymetrix
GenomeWideSnp 6.0. It should be noted that in this study
there are 291 samples where 59 are control samples from a
different lab (one of the authors informed us in a personal
communication that they are from HapMap).
Figure 5 shows the CNs of chromosome 5 in sample

GSM638958 using MHS (over the 291 samples) and NSA
(using the 232 tumoral samples). It can be seen from this
figure that the noise using MHS is again larger than using
NSA. The region used here to calculate the ROC ranges
from 0 to 45 Mb and the safety region is from 25 to 35
Mb where there is a jump from 2 to 3 copies[31,32]. The
ROC curve from Figure 6 shows that NSA performs bet-
ter than MHS. Figures 7 and 8 shows a similar behavior in
a different sample and location.

Chromosome X analysis
Although NSA is not thought to be used on sexual chro-
mosomes, we have included an analysis of chromosome
X in a set of HapMap samples that includes 32 male
and 38 female samples. This set of samples is equiv-
alent to an experiment in which some of the samples
have a deletion of one of the chromosomes. Figure 9
depicts which regions are identified as normals (in this
case should correspond to female samples) by NSA. The
first 32 samples are males and the last 38 samples are
females. Within the male samples, the beginning of the
X chromosome PAR1, one of its autosomic regions- is
correctly identified to have two copies. The second auto-
somic region (PAR2) (a few SNPs at the end of the X
chromosome) also appears with two copies. The XTR
(X-transposed region, around the middle of the q arm)
showed very few HNCNs and did not pass the thresh-
old for almost all the samples. Among the female sam-
ples we found that a group of them (from sample 33 to
sample 48) presented many regions with uniparental dis-
omy i.e. zones with LOH. All these samples were from
Asian women (and one Caucasian). The second group
were all Caucasian and Yoruban, this group did not show
LOH regions and were predicted to be normal for the
whole chromosome.
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Using this information, we have compared ACNE,
ACNE+NSA with CN5 (see Figure 10). CN5 uses the
information of sexual chromosomes (i.e. which samples
are male and female) to perform the scaling. In this
particular analysis, ACNE and NSA do not have this
information. Plain ACNE can be considered to scale by
using the MTS method (all the samples are used as ref-
erence regardless of the sex) and CN5 by using MCS
(uses the expected number of copies for female sam-
ples). We have analyzed the CN jump located at the
end of the PAR1 region of chromosome X in a male
sample. This pseudoautosomal region goes from 0.6 Mb
to 2.699 Mb. The ROC curve in Figure 11 shows that,
ACNE performs worse than CN5 in this particular anal-
ysis. However, after correcting ACNE with NSA, its ROC
outperforms CN5’s.

CN estimates for normal regions
In the previous paragraphs we have shown that using
samples from different labs increases the noise of the
estimates. However, it will be shown here that this fact
does not only increase the noise but also the bias. We
have used again the Lung Cancer dataset hybridized
to Affymetrix GenomeWideSNP 6.0 array and chosen a
chromosome in a tumoral sample which seems to be nor-
mal (since the fracB plot shows three clouds through the
whole chromosome, Figure 12). These three clouds corre-
spond to SNPs with AA, BB and AB genotypes. Figure 12
shows the CN estimates using MHS (middle panel) and
NSA (bottom panel). A wavy effect on the whole chro-
mosome appears when using MHS, which does not occur
using NSA. This bias that changes along the genome is
originated by a wrong computation of the reference.

Figure 15 DNA copy numbers using CalMaTe, CalMaTe+NSA (without BER) and CalMaTe+NSA (with BER) and B Allele Fraction for
chromosome 1 in sample GSM492507 IC288T from the Ovarian dataset hybridized to GenomeWideSNP 6.0. The resultant signal obtained
by NSA (with BER) is less noisy than using other methods.
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Moreover, there is also another bias, which exists even
using control samples from the same lab. This bias is
generated in the pre-processing step where the samples
are normalized. This step performs a transformation on
probe level data to make them comparable across differ-
ent samples. This transformation can be a quantile scaling
or simply a multiplication of the data by a constant. Nev-
ertheless, if a large part of the genome in a sample is
deleted (amplified), the normalization procedure tends to
compensate for this effect and the normal regions of the
genome (that ideally have CN=2) are shifted to a larger
(smaller) value to compensate for the aberration. This fact
induces a bias in the CN estimation. Therefore, if there is
a sample with many deletions (or amplifications), the nor-
mal regions of these samples have a slightly higher (lower)
value than 2.

Behavior in the Presence of Batch Effects
We have also analyzed the ability to remove batch effects
using NSA. For this we have used the Ovarian Can-
cer dataset [11]. This dataset includes 129 samples (72
tumoral and 57 references, some of them matched) that
were hybridized in 13 batches. The number of samples for
each of the batches is very different to each other rang-
ing from 2 samples in one batch to more than 20 samples
in another batch. In the case of small batches, the advan-
tage of computing the references by batches or taking the
experiment as a whole is unclear.
We have applied NSA with batch effect removal on this

dataset. NSA’s procedure to estimate the weights is com-
pletely blind, i.e., it does not require any information from
the user on which are the samples within each batch.
Figure 13 shows the chromosome 1 in sample

GSM492511 ICT318T using CRMAv2 plus CalMaTe
summarization method and NSA to scale the result. First
panel shows CalMaTe using the control samples as ref-
erences (taking all of them as a whole) and second and
third panel show the scaling after running NSA without
and with Batch Effect Removal (BER). It can be seen that
the overall noise is slightly smaller using NSA with BER.
To quantify this effect, we have also included the ROC
curve (Figure 14) of the CN change around position 70
Mb. This ROC confirms what is seen by bare eye: the noise
is smaller and therefore, the ability to detect copy number
changes improves. We have included also the analysis in a
different sample (GSM492507 IC288T) of a change from
1 to 2 copies (Figure 15). This general trend is similar. This
copy number change is easier to pinpoint as shown by the
upper location of the ROC curve (Figure 16). The behav-
ior of NSA (without BER) and MCS is similar. Therefore,
NSA can be used safely without the need to provide the
control samples to the scaling method.
Figure 17 shows a hierarchical clustering of the correla-

tion of the matrix of weights γi,k . It can be seen that the

weights are similar for samples hybridized within the same
batch. Each batch have a different color (gray scale). The
shades of gray are ordered by hybridization day.

Discussion and conclusions
This paper describes NSA, an algorithm to scale the sum-
marized SNP signals to CN values by finding normal
regions within tumoral samples. NSA is platform (Illu-
mina or Affymetrix) and pre-processing method (dChip,
CRMAv2, ACNE, CalMaTe. . . ) independent. The syn-
thetic reference generated by NSA using only tumoral
samples gives more accurate results than either using con-
trol samples from different labs or using all the tumoral
samples. Indeed, NSA results are close to the ones
obtained using control samples from the same lab within
the dataset. In addition, NSA includes an algorithm to
deal with batch effects. It automatically computes an opti-
mal reference for each sample (that in our tests is strongly
related to the hybridization batches). Batch information
is not required to run NSA; the algorithm automatically
identifies the proper samples to compute the reference
using only the signals of the microarrays. NSA minimizes
the problem of bias for samples with a large number of
similar aberrations (i.e. most of them are gains or dele-
tions). For these samples, the predicted CNs for normal
regions tends to compensate the aberration including a

Figure 16 ROC comparison with scaled data (Ovarian dataset,
sample GSM492511 IC318T, hybridized to GenomeWideSNP 6.0
array).We have used the region where there is a change from 1 to 2
copies, in the begining of chromosome 1, that appears in Figure 15.
For the analysis, we have included the SNPs that surrounds the copy
number change (specifically from 15 to 45 Mb). The SNPs within a
safety zone from 27.5 Mb to 32.5 Mb are not considered in the
analysis. The SNPs located upstream the change point are considered
to have total CNs smaller than the SNPs downstream the change
point. NSA (with BER) outperforms NSA (without BER) and CalMaTe.
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Figure 17 Hierarchical clustering performed on the correlation of the weighting matrix (γi,k ) calculated for the Ovarian dataset. This
dataset have been run in 13 batches. Each batch has a different color (gray scale). The assigned gray scale is done according to date of hybridization.
A gray scale band is added in top of the figure. It can be observed that the weights are similar for samples hybridized in similar batches.

bias. This is a potential problem that also occurs using
MCS (control samples from the same lab). NSA is able
to effectively discover the normal regions and uses them
to scale the data diminishing any bias that appears in the
normalization step.
We have compared NSA with other scaling methods.

On one hand, it is important to pinpoint that the number
of hybridized samples needed for NSA, MTS and MHS
is much smaller than using MCS, since these methods do
not need to hybridize control samples from the same lab
to create the reference. MHS method seems to be nois-
ier which can be an effect of the difference between the
protocols or conditions of the labs where the arrays were
hybridized. MTS provides biased estimates especially in
the case of recurrent aberrations. On the contrary, NSA
estimates are similar to the ones from MCS. In addition,
NSA provides a way to deal with the unavoidable batch
effects of large experiments.
NSA also presents some limitations that are summa-

rized here. Ultimately, the identification of normal regions
relies on the fact that gains in both chromosomes are
very unlikely to occur. If this is not the case and a few
samples do present amplifications on both chromosomes,

NSA is still reliable since a robust estimator of the refer-
ence (such as the median) can withstand the presence of a
small percentage of outliers.
The prediction of normal regions can be affected by

samples with low tumor purity that can be wrongly
included within the normal ones. Again, since the median
withstand the presence of errors, it will only affect if most
of the samples have very low tumor purity which usually
is not the case.
The number of samples used by NSA to build the ref-

erence is different for each locus. Therefore, the variance
of the reference varies on each position. In particular,
recurrently aberrated regions have a reference with larger
variance than regions that show seldom aberrations.
Since NSA is based on finding regions enriched in

HNCNs, if an aberration occurs in a region with no SNPs
(it includes only CN probes), NSA cannot provide an
accurate reference for this region.
Similarly, NSA estimates of chromosomes X and Y are

not reliable for experiments that include only male sam-
ples. It is not useful either for experiments that include
polyploid samples. These samples still pose a challenge for
their analysis.
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Finally, one potential situation in whichNSA could fail is
if all the samples present an aberration in the same locus.
This is very unlikely event but it could potentially occur.
Even in this putative case, a few samples hybridized in
the same lab can be included in the study to avoid these
“emergency cases”.
In spite of these limitations (most of them also present

in other scaling methods), NSA is able to fix the problem
of finding recurrent regions and copy number changes
when no control samples are available.
If NSA is applied to a dataset with both tumoral and

control samples, the detection of CN changes could be
even more accurate than using MCS (especially if NSA
removes the batch effects) because of having more and
(what is more important) more appropriate samples to
calculate the references. This fact makes NSA especially
convenient to apply to many experiments (in GEO or
ArrayExpress) without the need to explicitly state which
are the control samples or the batches in the datasets.
In conclusion, NSA can be used to accurately scale sum-

marized SNP signals to CNs. It presents less bias and
noise than MTS or MHS and needs no control sample
hybridization.

Availability and requirements
The proposed NSA method is available in the NSA
package implemented in R (R Development Core Team,
2010). This package includes an add on to the high-level
aroma.affymetrix framework [33], which allowsNSA to be
applied to very large SNP data sets. It is publicly available
at CRAN repository in a package called “NSA”.
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