
Baudet et al. Algorithms for Molecular Biology 2012, 7:18
http://www.almob.org/content/7/1/18

RESEARCH Open Access

Sampling solution traces for the problem of
sorting permutations by signed reversals
Christian Baudet1,2*, Zanoni Dias3 and Marie-France Sagot1,2*

Abstract

Background: Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal
solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which
share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By
using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for
enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity,
their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of
traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the
sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be
�P-complete.

Results: We propose and evaluate three algorithms for producing a sampling of the complete set of traces that
instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first
algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal
1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the
complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve
the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200
elements.

Conclusions: We analysed the distribution of the enumerated traces with respect to their height and average
reversal length. Various works indicate that the reversal length can be an important aspect in genome
rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such
traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms
DFALT and SWA produce distributions which approximate the reversal length distributions observed with a
complete enumeration of the set of traces.

Keywords: Reversals, Traces, Sampling, Genome rearrangement

Background
Permutations and reversals
When studying genome rearrangements, we can identify
homologousmarkers with the integers 1, . . . , n, with a plus
orminus sign to indicate onwhich strand they lie. By using
this notation, we can represent by a signed permutation

*Correspondence: christian.baudet@univ-lyon1.fr; marie-france.sagot@inria.fr
1Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Universit
Lyon 1, CNRS, UMR5558 Villeurbanne, France
2INRIA Grenoble-Rhône-Alpes, team BAMBOO, 655 avenue de l’Europe, 38334
Montbonnot Cedex, France
Full list of author information is available at the end of the article

the order and the orientation of the genomic markers of
one species in relation to those of another.
A subset of numbers ρ ⊆ {1, . . . , n} is said to be an

interval of a permutation π if there exist i, j ∈ {1, . . . , n},
0 < i ≤ j ≤ n, such that ρ = {|πi|, . . . , |πj|}, where πx is
the element which is in position x of the permutation π .
If we write the elements of different intervals in increas-
ing order (for example, {2, 3, 6, 8}), we can compare them
using lexicographic order.
Two intervals are said to overlap if they intersect but

none is contained in the other. For example, if π =

© 2012 Baudet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 2 of 17
http://www.almob.org/content/7/1/18

(1,−4, 3, 2,−5,−6), then ρ1 = {1, 3, 4} and ρ2 = {2, 3, 4}
overlap, while ρ3 = {2, 3, 4, 5} and ρ4 = {2, 3} do not.
Given a permutation π and an interval ρ of π ,

we can apply a reversal on π , that is, an operation
which reverses the order and flips the signs of the ele-
ments of ρ. If ρ = {|πi|, . . . , |πj|}, then π ◦ ρ =
(π1, . . . ,πi−1,−πj, . . . ,−πi,πj+1, . . . ,πn). Due to this, we
can use ρ to denote a reversal.
A sequence of k + 1 permutations can be represented

by a sequence π0,π1, . . . ,πk of permutations. In such a
sequence, every pair of consecutive permutations π i and
π(i+1) (0 ≤ i < k) are just one reversal apart (i.e.,
we need just one reversal to transform π i into π(i+1) or
vice-versa).

Sorting permutations by signed reversals
A sequence of reversals ρ1 . . . ρd sorts a permutation π0 if
ρi is an interval of π0◦ρ1 · · · ρi−1 for all i, and π0◦ρ1 · · · ρd
is the target permutation πd (usually, πd is the iden-
tity permutation ιn = (1, 2, . . . , n)). A shortest sequence
of reversals sorting a permutation is called an optimal
sorting sequence. The length of such a sequence of rever-
sals is called reversal distance, denoted by d(π0,πd) (or
simply d(π0), when πd = ιn). For example, if π0 =
(−3, 2, 1,−4) and πd = ι4, one optimal sorting sequence
is {1}{4}{2}{1, 2, 3} and d(π0,πd) = d(π0) = 4.
The problem of finding an optimal sorting sequence

under this model (henceforward denoted by HP) due to
Hannenhalli and Pevzner [1] is called Sorting Permuta-
tions by Signed Reversals (SPSR) and has been the topic
of a vast literature. The first polynomial algorithm with
complexity O(n4) was proposed in 1999 by Hannenhali
and Pevzner [2]. In 2001, Bergeron presented a quadratic
algorithm [3]. In 2004, Tannier, Bergeron and Sagot devel-
oped the first sub-quadratic algorithm with complexity
O(n3/2

√
log n) [4], while a linear algorithm, by Bader,

Moret, and Yan, can calculate the reversal distance in
linear time [5].
More recently, Swenson et al. [6] proposed an

O(n log n + kn) algorithm for finding one optimal sce-
nario, where k is the number of successive corrections
which must be applied when the algorithm chooses an
unsafe reversal. Swenson et al. showed a permutation fam-
ily where k is �(n) (worst-case for k) and, in this case,
the algorithm is quadratic. However, tests performed by
the authors showed that k generally is a constant smaller
than 1 and independent of the permutation size. Because
of this, the algorithm has, with high probability, execution
time O(n log n) [6].
A more general evolutionary model than the HP model

was proposed by Yancopoulos, Attie and Friedberg [7]
called the Double Cut and Join operation (DCJ). It allows
the study of evolutionary scenarios between genomes
which are composed by one or more chromosomes, either

linear or circular. This universal operation accounts for
reversals, translocations, fusions and fissions. Transposi-
tions and block interchanges are modelled by two DCJ
operations. Bergeron, Mixtacki and Stoye gave a linear
time algorithm to compute the DCJ distance between two
genomes [8]. Braga and Stoye studied the solution space
of the problem of sorting by DCJ and developed an algo-
rithm to count the number of optimal sorting sequences
[9]. Additionally, they demonstrated that any optimal DCJ
sorting sequence can be obtained from another one by
applying replacements of consecutive operations. How-
ever, the problem of finding the shortest number of
replacements is still open and an algorithm to enumerate
all DCJ rearrangement scenarios is currently not available.
Furthermore, the DCJ model appears less relevant then
the classical HP model as it allows for mutations that are
rarely or never observed in biological data (e.g. circular
chromosomes for eukaryotes) [10].

Enumeration of all solutions to the SPSR problem
The traditional SPSR algorithms for the HP model how-
ever output just one optimal sequence of reversals, while
the space of optimal solutions can be huge. Hence, the
solution produced by such algorithms may differ from
the scenario which really occurred during the evolution
of the genome, even when such scenario indeed verifies
some optimality criterion. For instance, the permuta-
tion (−4,−11, 6,−9,−2, 1,−8, 3,−10, 7,−5) has 6345019
optimal solutions.

Deterministic approach
Given a permutation π0 and a target permutation πd,
an optimal 1-sequence is a reversal that, when applied to
π0, produces a permutation π1 such that d(π1,πd) =
d(π0,πd) − 1. In the same way, an optimal i-sequence is a
sequence of i reversals that, when applied to π0, produces
a permutation π i such that d(π i,πd) = d(π0,πd) − i.
In 2003, Siepel proposed an algorithm which calcu-

lates the set of all optimal 1-sequences of a given per-
mutation in time O(n3) [11]. It is thus easy to see that,
by iterating this algorithm, we can obtain the set of all
optimal d(π0,πd)-sequences that sort the permutation
π0 into πd. Recently, Swenson, Badr and Sankoff pre-
sented a quadratic algorithm to enumerate the optimal
1-sequences of a permutation [12].

Probabilistic approach
York, Durret, and Nielsen proposed in 2002 a Bayesian
approach for the problem of inferring the history of
inversions which separate the homologous chromosomes
from two different species [13]. The method is based on a
Markov ChainMonte Carlo (MCMC) approach and mod-
els the occurrence of rearrangement events by a Poisson
process. Additionally, all possible inversions are supposed

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 3 of 17
http://www.almob.org/content/7/1/18

to occur with equal probability and the authors do not
impose the restriction of parsimonious scenarios to the
solutions (i.e. they do not require the sorting sequence to
have minimum size). This was extended in 2004 to include
translocations [14]. In 2003, Mikls proposed an MCMC
approach based on a stochastic model of inversions,
transpositions and inverted transpositions [15].
The methods of Mikls and York et al. were designed

to infer the sequence of rearrangement events that
explain the difference between two species. Larget
et al. developed a method to analyse the complete mito-
chondrial genome rearrangements of 87 metazoa taxa
[16,17]. Their approach used anMCMCmodel to estimate
the phylogeny and ancestral genome arrangements con-
sidering only reversals. This led to the software BADGER.
An MCMC approach was also proposed by Mikls and

Darling in 2009 for sampling parsimonious reversal his-
tories [18]. The method is implemented in the software
MC4Inversion. It uniformly samples the set of all opti-
mal paths and can estimate the total number of optimal
sorting paths.

Traces
Bergeron et al. introduced the concept of traces for the
SPSR problem. This concept allows the organisation of a
set of optimal solutions into classes [19]. If sequences of
reversals are identified as words, Bergeron et al. define a
relation over them: if ρ and θ are reversals (intervals) and
they show no overlap, then the words ρθ and θρ are said
to be equivalent. We say that ρ and θ commute. Based
on this relation, any word that contains the subword ρθ

is equivalent to the same word obtained by replacing ρθ

by θρ. For example, the sequences of reversals (words)
{1}{1, 2, 3}{2, 3, 4} and {1, 2, 3}{1}{2, 3, 4} are equivalent
because the reversals {1} and {1, 2, 3} commute. Inversely,
none of these sequences of reversals is equivalent to
{1}{2, 3, 4}{1, 2, 3} because the reversals {1, 2, 3} and
{2, 3, 4} overlap.
A class of optimal reversal sequences over this relation

is called a trace. Bergeron et al. proposed that for a given
signed permutation π , the set of all optimal solutions is
a union of traces. Thus, traces can be used to produce a
more relevant result to the SPSR problem because they
provide a more compact representation of an enormous
set of solutions.

Normal form of a trace
An element s of a trace T is in its normal form if it can be
decomposed into subwords s = u1| . . . |um such that:

• every pair of elements of a subword ui commute;
• for every element ρ of a subword ui (i > 1), there is

at least one element θ of the subword ui−1 such that
ρ and θ do not commute;

• every subword ui is a nonempty increasing word
under the lexicographic order.

A theorem by Cartier and Foata states that, for any trace,
there is a unique element that is in normal form [20]. This
allows the representation of traces through their normal
forms.
The number of subwords in a trace denotes its height.

The size of a trace T is the number of solutions
which it represents. The trace {1, 2, 4}{3}|{1, 3, 4}|{2, 3, 4}
has height 3 and size 4 because it represents just the
solutions: {3}{1,2,4}{1,3,4}{2,3,4}, {1,2,4}{3}{1,3,4}{2,3,4},
{1,2,4}{1,3,4}{3}{2,3,4}, and {1,2,4}{1,3,4}{2,3,4}{3}.
A trace T that contains an optimal sequence ρ1 . . . ρd

can be represented by a partial ordering of the set PT =
{ρ1, . . . , ρd}. We say that ρi <T ρj if and only if ρi is
always before ρj in the elements of T . For example, in
the trace T = {1, 2, 4}{3}|{1, 3}|{3, 4}, the elements of PT
are {1, 2, 4}, {3}, {1, 3}, and {3, 4}, and the relations are
{1, 2, 4} <T {1, 3}, {1, 3} <T {3, 4}, and {1, 2, 4} <T {3, 4}.
Notice that the reversal {3} is not comparable to the others
by the relation <T because, given that it does not overlap
the other reversals, it can be placed in the sequence before
or after any of them.
The set PT and the relation <T form a partially ordered

set (poset). The width of a trace (or poset) is a maximum
cardinality set of elements of PT that are not comparable
by the relation <T . It is at least (but in general not equal
to) the maximum size of a subsequence ui in the normal
form of a trace.

Tree representation of a set of solution traces
A set of solution traces can be represented using a
sorted tree similar to the one shown in Figure 1 (that
records the traces that sort the permutation π0 =
(−3, 2, 1,−4) into ι4). A node of the tree represents a
set of reversals that is sorted in lexicographic order. The
root node contains the optimal 1-sequences of the orig-
inal permutation. To each reversal ρ of a non-leaf node
is attached a subtree which groups the reversals that
are lexicographically bigger than it or that should be
applied after it. For example, in Figure 1, node A con-
tains the optimal 1-sequences of π0 and the reversal {1}
of node A has a subtree, rooted at node B, attached
to it. Node B contains the optimal 1-sequences of the
permutation π1 obtained after applying the reversal {1}
over π0.
Every path from the root to a node at level i of the tree

gives us an i-trace. An i-trace represents a set of solu-
tions which sort πk into π(k+i) by using the same set
of i reversals, respecting the overlap relationship among
them. If i = d(π0,πd), then we have a trace that sorts the
permutation π0 into πd .

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 4 of 17
http://www.almob.org/content/7/1/18

{2}

{1,2,3}

{1} {1,2,3} {1,2,4} {2} {3} {4}

{4}{2} {4}{2}{1} {1,3,4} {3}
B E

A

{1} {1,2,3} {4} {2}{1,2,3}{1}{1,2,4}

{4}
C

{4}{1,2,3} {2}{1,2,3} {4}{1} {1} {2} {2,3,4} {3} {1,3,4} {1,2,3}{1}

{4}
D

{2} {1,2,3} {1} {2,3,4}{3}

Figure 1 Tree representation of the solution traces of the permutation π = (−3, 2, 1,−4). In this representation, only the values inside of
solid boxes are reversals that effectively are in the structure. The values inside of dashed boxes are reversals which are optimal 1-sequences but,
when combined with their parent trace, lead to traces that were inserted in another branch of the tree. The wide edges show the two traces which
sort the permutation: {1}{1, 2, 3}{2}{4} and {1, 2, 4}{3}|{1, 3, 4}|{2, 3, 4}.

Complete enumeration of solution traces for the
SPSR problem
Braga et al. combined Siepel’s algorithm with the concept
of traces [21] and developed an algorithm for enumerat-
ing all solution traces of a given permutation. As a single
trace can represent a big number of solutions, by enu-
merating traces we can generate a set much smaller than
the complete set of solutions. Moreover, the clustering of
solutions provided by the traces offers to the biologist a
better information on the characteristics of the blocks of
elements of the permutation which are being affected by
the reversals.
Considering some biological criteria, constraints can

be applied in the selection of the reversals during the
process of enumeration. Thus, the size of the output
can be reduced [21,22]. For example, common intervals
between two permutations can be used to model clusters
of co-localised genes. These clusters are intervals of the
genomes which are composed by the same genes but not
necessarily in the same order and orientations. In this con-
text, we can determine a biological constraint that forbids
or imposes a maximum number of reversals that break
this type of intervals.
The algorithm proposed by Braga et al. explores the tree

of solution traces in breadth-first manner and adopts a
complex data structure to keep the intermediary infor-
mation into the main memory and disk [23]. Due to the
strategy adopted in this algorithm, in this text we shall
refer to it as the Breadth-First Algorithm or BFA for short.
In a previous work, instead of exploring the universe

of solutions in breadth-first manner, we adopted a depth-
first strategy to explore the branches of the tree of solution
traces [24]. This Depth-First Algorithm (or DFA for short)
makes use of a stack structure to keep the intermediary
data on the main memory only. With this solution, we
greatly reduced the amount of data which must be kept

in the main memory and we eliminated the disk accesses.
However, this algorithm cannot be used with most of
the biological constraints developed by Braga et al., and
cannot compute the total number of solutions that is
represented by the set of traces.
The time complexity of the BFA algorithm is

O(Nnkmax+4), where kmax is the maximum width of a
trace and N is the number of traces of solutions [21]. The
complexity of the DFA algorithm is O(Nn42n) [25].
Recently, Badr, Swenson and Sankoff adapted the two

algorithms of trace enumeration [25]. The strategy con-
sists in grouping i-traces according to the permutation
that they produce when their sequences of reversals are
applied to the original permutation. As many traces can
produce the same intermediary permutation, by group-
ing them, the authors avoid unnecessary computations.
Instead of generating the set of optimal 1-sequences for
every i-trace, they compute this set just for the interme-
diary permutation which groups a set of i-traces. Despite
the gain of 70% over the execution time of the BFA algo-
rithm and 50% over the DFA algorithm, the methods
proposed by Badr, Swenson and Sankoff use a consider-
able amount of the main memory to keep the groups of
i-traces and permutations.

Partial enumeration of solution traces for the
SPSR problem
Although sets of traces are smaller than their equiva-
lent sets of solutions, the number of traces also increases
exponentially with the size of the permutations and their
reversal distance. Thus, for big permutations (n ≥ 15),
the time necessary to produce the complete set of traces
makes impracticable any analysis.
For big permutations, instead of enumerating the com-

plete set of traces, we could study alternative evolutionary
scenarios by producing a sampling of this set. We call

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 5 of 17
http://www.almob.org/content/7/1/18

this sampling a “Partial Enumeration of Traces” and, in
this work, we propose three new algorithms for doing this
sampling.

New algorithms
The three algorithms were designed to enumerate traces
while a given execution time limit is not reached. The
first (RA) is very simple and constructs the traces through
a random selection of reversals in the list of optimal 1-
sequences. The second algorithm (DFALT) represents a
slight modification of the DFA algorithm. Finally, the last
algorithm (SWA) is more elaborate and makes uses of a
sliding window strategy to improve the enumeration of
traces.
We implemented the proposed algorithms and tested

themwith sets of random permutations.While processing
small permutations, the DFALT algorithm is able to sam-
ple a number of traces higher than the ones obtained by
the other solutions. However, as the size of the permuta-
tions increases, the algorithm SWA outperforms the others
with respect to the number of enumerated traces.

Quality of sampling
To demonstrate that the sampling is from the uniform
distribution and to determine the time that is necessary
to obtain a good sampling are not easy tasks. Indeed,
it has been conjectured that this is �P-complete [10]. It
may however be enough in some cases to show that the
sampling preserves in practice a characteristic that is bio-
logically relevant. One such characteristic is the average
length of the reversals in optimal scenarios. Indeed, the lit-
erature contains studies of genomes that appear subjected
to reversals of mainly small or intermediate sizes [26-29].
In this context, sampling traces whose average reversal
length follows a distribution statistically similar to the dis-
tribution observed for the complete set of traces can be
important to validate or invalidate an a posteriori biologi-
cal interpretation. We could qualitatively show that when
we increase the execution time, the DFALT and SWA algo-
rithms obtain sets whose distributions of traces do tend
to approach the distributions observed for the complete
set of traces as concerns the average reversal length of the
traces, and also the height.

Methods
State of Art – Algorithms for traces enumeration
Before introducing the algorithms for partial enumeration
of traces, in this section we make a quick presentation of
the algorithms which were designed for the enumeration
of the complete set of solution traces.

Breadth-first algorithm – BFA
Braga et al. proposed the first algorithm for enumeration
of solution traces [21]. This explores the tree of solution
traces in a breadth-first manner.

First, the algorithm lists the set of optimal 1-sequences
of the original permutation π0. These optimal 1-
sequences are equivalent to a list of 1-traces of the permu-
tation π0.
Then at each iteration i (1 < i ≤ d(π0,πd)), the algo-

rithm applies each (i − 1)-trace t on π0 to produce a new
permutation π(i−1) (i.e. π(i−1) = π0◦t). The list of optimal
1-sequences of π(i−1) is thus obtained, and each reversal
of this list is added to the (i − 1)-trace t to generate a new
set of i-traces.
When the algorithm finishes to process level i =

d(π0,πd), all traces which sort π0 into πd have been
enumerated.

Depth-first algorithm – DFA
A depth-first strategy was adopted by Baudet and Dias to
explore the tree of solution traces [24].
The algorithm makes use of a stack structure to handle

the data produced during the process. Each level of the
stack has a list of reversals sorted in lexicographic order.
Additionally, the sequence of reversals constructed with
the first reversal of each level, from the bottom to the top
of the stack, represents the current i-trace.
First, the list of optimal 1-sequences of the permuta-

tion π0 is pushed into the first level of the stack. While
the stack is not empty, the algorithm gets the current i-
trace t and applies it to the permutation π0 to produce the
permutation π i. Each reversal ρ of the list of optimal 1-
sequences of π i is added to the list that will be pushed into
the top of the stack only when it is the last reversal of the
(i + 1)-trace t′ = t + ρ. If the reversal ρ does not appear
in the last position of the (i + 1)-trace t′, it means that
it belongs to another branch of the tree of solution traces
and, therefore, it can be ignored.
When the stack reaches the level i = d(π0,πd), the

algorithm outputs the current trace t and removes from
the list the reversal that is on the top of the stack. Every
time the top of the stack contains an empty list, the algo-
rithm pops it and removes the first reversal of the list that
is in the new top. The algorithm finishes when the stack
becomes empty.

BFA and DFAwith permutation grouping
During the enumeration of traces which sort π0 into πd,
different i-traces can sort π0 into the same intermediary
permutation π i. Based on this observation, Badr, Swenson
and Sankoff adapted the BFA and DFA algorithms to
speed-up the trace enumeration [25].
The strategy consists in grouping i-traces according to

the permutation that they produce when their sequences
of reversals are applied to the original permutation.
Instead of computing sets of optimal 1-sequences for
every i-trace, this procedure is performed only for each
intermediary permutation which appears on the level i.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 6 of 17
http://www.almob.org/content/7/1/18

Tests performed by the authors show that, on average,
this change in the algorithms results in a gain of 70%
and 50%, respectively, over the total execution time of the
algorithms BFA and DFA.

New algorithms – Partial enumeration of traces
Due to the exponential nature of the set of solutions, the
algorithms that sort all solution traces are not suited for
processing big permutations.
With the objective of calculating alternative evolution-

ary scenarios for big permutations, we developed three
different algorithms that perform a partial enumeration of
the complete set of solution traces of a given permutation.
The proposed algorithms output traces while they do

not reach the stopping criterion which, in our case, is a
given execution time limit.

Random algorithm – RA
A very simple solution for the partial enumeration of
traces is to construct random traces.
Let π0 be the original permutation and πd the target

permutation. This method consists in generating a trace
through the random selection of a reversal among those
in the set of optimal 1-sequences of each permutation π i

which is between π0 and πd (0 ≤ i < d = d(π0,πd)).
This process is repeated while the execution time limit is
not reached.

Depth-first algorithm limited by time – DFALT
The algorithm DFA explores the tree of solution traces
branch by branch. Moreover, every time it reaches a leaf
node, it outputs a new trace. Consequently, another sim-
ple alternative to producing a set of traces is to use
the algorithm DFA and introduce a verification over the
elapsed time to interrupt its execution when the time limit
is reached.
Observe that the same procedure cannot be adapted to

the algorithm BFA. As it outputs the enumerated traces
only when it reaches the last level, the necessary time limit
to output at least one trace would be very close to the time
required to enumerate all traces.

Slidingwindow algorithm – SWA
Let πk be an intermediary permutation that is obtained
after applying the first k reversals of an optimal sequence
of reversals which transforms π0 into πd (1 ≤ k < d =
d(π0,πd)). In this context, we can define the k-traceX and
the l-trace Y , where l = d − k. X and Y are, respectively,
the traces which represent all solutions that transform π0

into πk and, πk into πd .
If we get the reversals of Y and add each one of them,

sequentially, to X, we produce a trace Z that trans-
forms π0 into πd . For example, Figure 2 shows a sequence
of reversals which optimally sorts the permutation

π0 = (−7,+8,−3,+3,+6,−5,−1,+4) into the per-
mutation π8 = (+1,+2,+3,+4,+5,+6,+7,+8). The
4-trace A = {1,−, 6, 8}{1,−, 3, 5, 6}{8}|{1,−, 7} represents
a solution trace which transforms π0 into the inter-
mediary permutation π4. In the same way, the 4-trace
C = {2, 5, 6}{3, 4}{6}|{3,−, 6} represents a solution trace
which transforms π4 into π8. By adding each rever-
sal of C into the trace A, we build the 8-trace AC =
{1,−, 6, 8}{1,−, 3, 5, 6}{2, 5, 6}{6}{8}|{1,−, 7}{3, 4}|{3,−, 6}
which sorts π0 into π8.
This strategy of combining small traces to construct a

bigger one can be used in a sliding window algorithm. The
set of all intermediary permutations which is produced by
an optimal sequence of reversals is processed by a window
of size w that produces sets of k-traces (1 ≤ k ≤ w) which
transform: π0 into π1, π0 into π2, . . ., π0 into π(w−1), π0

into πw, π1 into π(w+1), π2 into π(w+2), . . ., π(d−w) into
πd , π(d+1−w) into πd , . . ., π(d−1) into πd.
After that, these sets of k-traces (1 ≤ k ≤ w) can be

combined in the following way:

• 1-traces that transform π0 into π1 with w-traces that
transform π1 into π(w+1) to generate (w + 1)-traces
which transform π0 into π(w+1);

• 2-traces that transform π0 into π2 with w-traces that
transform π2 into π(w+2) to generate (w + 2)-traces
which transform π0 into π(w+2);

• . . .

• (d − 1)-traces that transform π0 into π(d−1) with
1-traces that transform π(d−1) into πd to generate
d-traces which transform π0 into πd .

The first step of this algorithm consists in generating
a random set of intermediary permutations. To do this,
we can adapt the algorithm RA to return the list of all
intermediary permutations (π i, 0 ≤ i ≤ d).
To produce the set of all k-traces (1 ≤ k ≤ w)

that transform π i into π(i+k), we can use the algorithm
DFA.
In our example of Figure 2, the algorithm DFA

would output the 4-traces A = {1,−, 6, 8}{1,−, 3, 5, 6}
{8}|{1,−, 7} and B = {1,−, 3, 5,−, 8}{4}{7}|{4, 7, 8}, which
transform π0 into π4, and the 4-traces C = {2, 5, 6}
{3, 4}{6}|{3,−, 6} and D = {2}{2,−, 4, 6}{5}|{2,−, 5},
which transform π4 into π8. With the combination of
these 4-traces, we can obtain four 8-traces which trans-
form π0 into π8 passing by the intermediary permutation
π4 (AC,AD,BC, and BD).

Tests
The algorithm BFA was implemented in Java by Braga
[30]. Starting from this Java source code, we implemented
the algorithm DFA in order to adopt the same Java Objects
that were used by Braga. The algorithms RA, DFALT, and

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 7 of 17
http://www.almob.org/content/7/1/18

4

−7 +8 −3 +2 +6 −5 −1 +4

−7 −4 +1 +5 −6 −2 +3 −8

−7 −4 −3 +2 +6 −5 −1 −8

+1 +5 −6 −2 +3 +4 +7 −8

+1 +5 −6 −2 +3 +4 +7 +8

+1 +2 +6 −5 +3 +4 +7 +8

+1 +2 −6 −5 +3 +4 +7 +8

+1 +2 −4 −3 +5 +6 +7 +8

+1 +2 +3 +4 +5 +6 +7 +8

{1,−,6,8}

{1,−,3,5,6}

{1,−,7}

{8}

{2,5,6}

{6}

{3,−,6}

{3,4}

A = {1,−,6,8}{1,−,3,5,6}{8}|{1,−,7}

A = {1,−,6,8}{1,−,3,5,6}{8}|{1,−,7}

D = {2}{2,−,4,6}{5}|{2,−,5}

B = {1,−,3,5,−,8}{4}{7}|{4,7,8}

C = {2,5,6}{3,4}{6}|{3,−,6}

C = {2,5,6}{3,4}{6}|{3,−,6}

BC = {1,−,3,5,−,8}{2,5,6}{4}{6}{7}|{4,7,8}|{3,4}{3,−,6}

AC = {1,−,6,8}{1,−,3,5,6}{2,5,6}{6}{8}|{1,−,7}{3,4}{3,−,6}

AD = {1,−,6,8}{1,−,3,5,6}{2}{5}{8}|{1,−,7}{2,−,4,6}|{2,−,5}

BD = {1,−,3,5,−,8}{2}{4}{5}{7}|{4,7,8}|{2,−,4,6}|{2,−,5}

π

π

π

π

π

π

π

π

π

π

π

π π

π

π

0

1

2

3

4

5

6

7

8

0

4

0 8

8

Figure 2 Building a 8-trace with 4-traces. This schema shows a sequence of reversals that optimally sorts π0 = (−7,+8,−3,+2,+6,−5,−1,+4)
into π8 = (+1,+2,+3,+4,+5,+6,+7,+8). This sequence of reversals is represented by the 8-trace {1,−, 6, 8}{1,−, 3, 5, 6}{2, 5, 6}{6}{8}|{1,−, 7}
{3, 4}|{3,−, 6}. This 8-trace can be obtained by the application of the reversals of the 4-trace C = {2, 5, 6}{3, 4}{6}|{3,−, 6} (it sorts π4 into π8) to the
sequence of reversals of the 4-trace A = {1,−, 6, 8}{1,−, 3, 5, 6}{8}|{1,−, 7} (it sorts π0 into π4). The algorithm DFA can be used to obtain the two
4-traces which sort π0 into π4 and the two 4-traces which sort π4 into π8. Combining these 4-traces, we obtain all 8-traces of solutions which sort
π0 into π8 and have π4 as an intermediary permutation.

SWA were also implemented under the same Java package
structure.
The tests were performed on an Intel Pentium 4 HT

3.0 GHz with 2.0 GB of RAM running Ubuntu. To avoid
the influence of swap operations on the performance of
the structures, we limited the maximum memory that the
Java Virtual Machine could allocate to 1.0 GB (parameter
-Xmx1024m).
During the tests we collected the maximum amount

of main memory used by the algorithms. The memory
was measured through a separated thread that at regular
intervals collected the memory used by the Java Virtual
Machine (Object Runtime: methods totalMemory()
and freeMemory()).
Random permutations were generated to test the algo-

rithms. Since the package implemented by Braga does not
work with permutations that have hurdles, the generated
permutations should have no hurdles. The decision to

ignore hurdles is based on the very small probability of
finding them in random permutations [31].
Given a number n of elements and a reversal distance

d, starting from the identity permutation ιn = πd , a
random permutation is generated through the applica-
tion of successive reversals in the following way: while
there is more than one adjacency (pair of elements which
appear together with the same relative orientations in the
current and target permutations) in the permutation π i,
two adjacencies are chosen at random and their posi-
tions are used to define the reversal ρi; otherwise, two
positions of the permutation are chosen at random to
define ρi. After applying ρi to π i to obtain π(i−1), we ver-
ify if either d(π(i−1),πd) < d(π i,πd) or π(i−1) contains
hurdles. If one of these conditions are observed, we dis-
card π(i−1) and generate a new random reversal ρi to
apply to π i. The process finishes when we produce the
permutation π0.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 8 of 17
http://www.almob.org/content/7/1/18

Results and discussions
Evaluating the time necessary to enumerate all traces
Before performing comparative tests with the three pro-
posed algorithms (RA, DFALT, and SWA), we evaluated the
average time which is necessary to enumerate all traces
of a given permutation. The objective here is to show the
exponential behaviour of the sizes of the sets of traces,
depending on the number of elements of the permutations
and their reversal distances, and to collect information
to determine the time limits that will be used to evalu-
ate the proposed algorithms. We shall see later how to
choose such a time limit in general, or some other stop
criterion.
We created sets of 500 random linear and circular per-

mutations with, respectively, 10 and 15 elements with
reversal distances between 4 and 13. These values were
chosen because they allow the total enumeration of traces,
for the set of 500 permutations, in a reasonable time. For
example, just the set (n = 15, d(π) = 13) required three
days to be processed. For each permutation, we enumer-
ated all traces with the algorithm DFA, and we collected
the execution time. For each set of permutations, we cal-
culated the average number of traces and the average
execution time. Figures 3 and 4 show the plots which were
produced with the collected values.
The algorithm DFA was chosen because it is faster than

the algorithm BFA. We could also adopt the algorithm
DFA with a permutation grouping that reduces the total
execution time by 50%. However, the permutation group-
ing routine requires a big amount of main memory to
keep the associations between intermediary permutations
and i-traces. Additionally, the results of the work of Badr,

Swenson and Sankoff (Figure 3 [25]) show that the adapted
version of the algorithm DFA outperforms the basic ver-
sion only when the permutations have reversal distance
bigger than 8. As our testing environment had a limited
amount ofmainmemory, we opted to use instead the basic
version of the algorithm DFA.
Figure 3 shows that the number of traces grows expo-

nentially with the number of elements and with the rever-
sal distance. For a same reversal distance, we can see that
the number of traces grows with the ratio d(π)/n. For
example, when we fix the value 9 for the reversal dis-
tance, permutations with 10 elements have on average
more traces than permutations with 15 elements. The
same observations made for Figure 3 can be applied to
Figure 4, and this means that the time is proportional to
the number of traces which must be enumerated.
The average amount of traces observed for circular

permutations is bigger than the one observed for linear
permutations with the same reversal distance. For every
reversal in a linear permutation, there exists two equiva-
lent reversals in the corresponding circular permutation.
Thus, circular permutations have a higher number of
optimal solutions than linear permutations. This charac-
teristic is indicated by the curves of Figure 3.

Number of enumerated traces versus execution time
To evaluate the proposed algorithms, we decided to adopt
a set of permutations which lead to an average execu-
tion time that is neither too short, nor too long. As the
behaviour of linear and circular permutations are similar,
we opted for performing tests only with linear permuta-
tions. Based on these criteria, we chose the set (n = 15,

4 6 8 10 12

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Reversal distance

N
um

be
r

of
 tr

ac
es

10 − linear
10 − circular
15 − linear
15 − circular

Figure 3 Average number of traces. Sets of 500 random permutations (linear and circular) with 10 and 15 elements and different reversal
distances were processed with the algorithm DFA. For each set, we calculated the average number of traces.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 9 of 17
http://www.almob.org/content/7/1/18

4 6 8 10 12

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
50

0.
0

Reversal distance

T
im

e
in

 s
ec

on
ds

10 − linear
10 − circular
15 − linear
15 − circular

Figure 4 Average execution time. Sets of 500 random permutations (linear and circular) with 10 and 15 elements and different reversal distances
were processed with the DFA algorithm. For each set, we calculated the average execution time. The horizontal dotted line indicates 30 seconds.

d(π) = 12) which leads to an average execution time of,
approximately, 30 seconds.
We processed the selected set of permutations with the

algorithms RA, DFALT, and SWA. In the case of the algo-
rithm SWA, we adopted the values 4, 5 and 6 for the
parameter window size. These values were chosen with
the aim of obtaining a compromise between the num-
ber of enumerated w-traces and the time lost with the
dead branches. To facilitate the description along the text,
we shall refer to these algorithms as, respectively, SWA4,
SWA5, and SWA6.
First, for each permutation P, we got the set of all its

traces and we counted the number of traces that have
height H (2 ≤ H ≤ 12). We also counted the number of
traces that have average reversal length R (2 ≤ R ≤ 11).
Considering that the average time to process the per-

mutations of the selected set is 30 seconds, we used the
algorithms with the following time limits: 6, 12, 18, 24,
30, and 36 seconds. Each permutation P was processed by
each pair (algorithm A, time limit T). For each of these
executions, we calculated the percentage of all traces of
height H (resp., average reversal length R) of the permu-
tation P that we sampled with the algorithm A within the
time limit T.
Finally, for each pair (A, T), we calculated for the set

of 500 random permutations the average percentage of all
traces of height H (average reversal length R) that were
enumerated by A within the time limit T. The plots in
Figures 5 and 6 show the collected data for the parameters
H and R respectively.
Among the proposed solutions, the algorithm DFALT is

the only one which is deterministic. Figures 5 and 6 show

that the increment of the execution time corresponds to a
gradual increase in the number of enumerated traces.
For the non-deterministic algorithms, Figures 5 and 6

show also a gradual increment in the number of enumer-
ated traces. However, these algorithms do not present a
good capacity for sampling traces that have high height
or high average reversal length. We can see that the algo-
rithm RA has the worst results and the algorithm SWA6
has the best results among the non-deterministic algo-
rithms. Notice however that, as we shall see later, since the
number of traces with high height or high average rever-
sal length are rare in general, this will not affect much the
observed distributions of such parameters for the partial
enumeration of traces relatively to a full enumeration.
The lower the height of a trace, the higher is the num-

ber of solutions that it represents. This happens because,
when we have a small number of overlaps among the
reversals, we have a higher number of possible combina-
tions for the sequence of reversals. The same observation
can be made for traces that have a small value for the aver-
age of the reversal length. When the reversals have small
size, the probability of overlap among them decreases and,
consequently, the number of solutions that can be repre-
sented by the traces increases. Thus, randomly, we have
a bigger chance of producing a trace with low height or
low average reversal length. This explains the behaviour
shown by the non-deterministic algorithms in Figures 5
and 6.

Processing big permutations
The average time to process this set of permutations (n =
15, d = 12) is just 30 seconds. It is a set of permutations

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 10 of 17
http://www.almob.org/content/7/1/18

Figure 5 Average percentage of traces with height Hwhich were calculated by each algorithm. A set of 500 random permutations with
n = 15 and d(π) = 12 were processed by RA, DFALT, SWA4, SWA5, and SWA6. The following time limits were imposed to the algorithms: 6, 12, 18,
24, 30, and 36 seconds. For each triplet (A, H, T), we calculated the average percentage of traces with height H shown by the 500 permutations in
the execution of algorithm A inside of the time limit T . In each plot, the axes x, y, and z represent, respectively, the heights, the algorithms and, the
average percentage values.

whose traces can be easily enumerated. Nonetheless, these
algorithms were developed with the objective of enumer-
ating traces of big permutations which demand a huge
processing time.
To check whether they were capable of doing this, we

created sets of 100 random permutations with a number
of elements varying between 40 and 200 and a reversal
distance d = �(n + 1)/2	. Each permutation was pro-
cessed by each proposed algorithm with a time limit of

60 seconds. For each execution, we collected the number
of enumerated traces and the maximum amount of mem-
ory used by the algorithm. Figures 7 and 8 show, for each
algorithm and for each value of n respectively, the average
number of enumerated traces and the average memory
usage observed during the executions of each set of 100
permutations.
We can see in Figure 7 that the number of traces that

are enumerated by DFALT decreases as the size of the

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 11 of 17
http://www.almob.org/content/7/1/18

Figure 6 Average percentage of traces with average reversal length Rwhich were calculated by each algorithm. A set of 500 random
permutations with n = 15 and d(π) = 12 were processed by RA, DFALT, SWA4, SWA5, and SWA6. The following time limits were imposed to the
algorithms: 6, 12, 18, 24, 30, and 36 seconds. For each triplet (A, R, T), we calculated the average percentage of traces with average reversal length R
shown by the 500 permutations in the execution of algorithm A inside of the time limit T. In each plot, the axes x, y, and z represent, respectively, the
reversal lengths, the algorithms and, the average percentage values.

permutations increases. This phenomenon is associated
with the time that this algorithm spends processing dead
branches in the tree of traces.
RA has a curve very similar to the one shown by

DFALT but its shape has a different explanation. When we
increase the number of elements of the permutation and,
consequently, the initial reversal distance, we have that the

time that is spent on the analyses of the breakpoint graph
to find an optimal 1-sequence also grows. Because of this,
the number of traces which are enumerated by the algo-
rithm RA decreases when we increase the initial reversal
distance of the permutations.
The reason that makes the algorithm RA lose in perfor-

mance does not affect the SWA algorithm. Even with an

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 12 of 17
http://www.almob.org/content/7/1/18

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 tr

ac
es

n = permutation size

Average number of traces

DFALT RA SWA4 SWA5 SWA6

Figure 7 Average number of traces produced by each algorithm in 60 seconds. Sets of 100 random permutations with 40 ≤ n ≤ 200 and
d(π) = �(n+ 1)/2	 were generated and processed with the algorithms RA, DFALT, SWA4, SWA5, and SWA6 during a time limit of 60 seconds. The
plot shows the average number of traces produced by each algorithm for each set of permutations.

increment of the initial reversal distance, SWA is all the
time concerned with the enumeration of k-traces (1 ≤
k ≤ w). As w is usually small, SWA does not lose in
performance when producing optimal 1-sequences.
Another advantage of the sliding window strategy is

that it produces all k-traces that transform π i into π(i+k).
Because of this, we profit from all the structures that are
created for the generation of the optimal 1-sequences. In

the case of the algorithm RA, even if we avoid to gener-
ate all structures, the created ones are partially explored
because just one reversal is considered for each interme-
diary permutation.
Figure 7 shows that the algorithm SWA is able to enu-

merate more traces than the other two algorithms when
the same time limit is imposed. For permutations with
up to 120 elements, the algorithm SWA6 enumerates the

0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 40 60 80 100 120 140 160 180 200

M
em

or
y

in
 m

eg
ab

yt
es

n = permutation size

Average maximum memory used

DFALT RA SWA4 SWA5 SWA6

Figure 8Maximum amount of main memory used by the partial enumeration algorithms. Sets of 100 random permutations with
40 ≤ n ≤ 200 and d(π) = �(n+1)/2	were generated and processedwith the algorithmsRA, DFALT, SWA4, SWA5, and SWA6 during a time limit of
60 seconds. The plot shows the average maximum amount of main memory used by the algorithms while processing each set of 100 permutations.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 13 of 17
http://www.almob.org/content/7/1/18

highest number of traces. For bigger permutations, the
algorithm SWA5 outperforms the algorithm SWA6.
We can see in Figure 7 that the algorithms SWA5 and

SWA6 present curves that have a parabolic shape. The
number of enumerated traces grows up to a given point,
and then starts to decrease. The explanation for this
behaviour lies in the process of combining the i-traces and
the k-traces. When we combine x i-traces with y k-traces,
we can create up to x × y (i + k)-traces (some of the gen-
erated traces can appear more than once). Thus, if the
reversal distance of the original permutation increases,
the number of combinations (i-traces + k-traces) and the
time that is spent on them also increases.
Generally, a set of 6-traces is bigger than a set of 5-traces

and much bigger than a set of 4-traces. As a consequence,
we can see that the algorithm SWA6 initially enumerates
many more traces but the reduction in the performance
also starts earlier than for the other two tested values of
window.
Figure 8 shows that RA and DFALT have a small varia-

tion in the average memory and that the algorithm SWA
consumes more memory. While SWA4 has a more stable
memory usage, SWA5 and SWA6 have an ascending curve
of memory usage.
While the random algorithms can eventually produce

the same trace more than once, DFALT outputs every
trace just once. Because of this, when using DFALT, we
can print the traces avoiding to keep them inmemory with
the purpose of controlling duplicated traces.
The higher memory usage of RA is related to the inter-

val where it outputs more traces. When the number of
enumerated traces decreases, the amount of space that we
need to keep the traces in memory also diminishes. As a
consequence, memory consumption reaches a level that is
low enough for the maintenance of the objects which are
being used to produce the enumeration.
In the case of the algorithm SWA, we have to keep in

memory the sets of traces which were enumerated and
the set of traces which are going to be combined. To
reduce memory consumption, we could print all enu-
merated traces but, as a result of this, we must add a
post-processing step to eliminate the duplicate traces.

Evaluating the quality of the sampling
Whenwe perform a sampling of a big set of elements, usu-
ally we must verify whether the result is unbiased. This
implies checking if the output of the algorithms covers the
space of solutions uniformly. This task has been conjec-
tured to be �P-complete [10]. We therefore addressed this
issue in a different way, and tried instead to show that the
sampling strategies developed preserved in practice some
important characteristic of the set of all optimal solutions.
The characteristics in this case are the average reversal
length of the traces, and also the height.

We considered the set of 500 random permutations with
n = 15 and d = 12 and, for each permutation P, we calcu-
lated the ratios (number of enumerated traces with height
H / total number of enumerated traces of P) and (number
of enumerated traces with average reversal length R / total
number of enumerated traces of P), using the complete set
of traces (Total) and the outputs of the executions of
each algorithm. For each permutation, we thus have the
distribution of its traces according to the height, and to
the average reversal length of the traces.
For each pair (algorithm A, time limit T) and for the

set Total, we calculated the average ratio for each value
of H and R over all 500 permutations. Figures 9 and 10
show the curves of the average ratio values obtained for,
respectively, the parameters height and average reversal
length.
Finally, to compare the distributions of height and

reversal values obtained for the set Total with the dis-
tributions obtained by the algorithms, we performed a
Kolmogorov-Smirnov test. As the sets of traces are very
big (millions of traces), we generated for the set Total
and for each pair (A, T) distributions of 5000 values
(height or average reversal length) respecting the average
ratios observed on the 500 permutations. These generated
distributions were compared with the statistical test.
For the parameter height, the distributions produced for

the pairs (DFALT, 36s), (DFALT, 30s) and (DFALT, 24s)
were considered to be similar (or almost similar) to the
distribution of the set Total with p-values, respectively,
equal to 0.94, 0.46 and 0.04. In the case of the parame-
ter average reversal length, the distributions produced for
the pairs (DFALT, 36s), (DFALT, 30s), (DFALT, 24s) and
(SWA6, 36s) were considered to be similar (or almost sim-
ilar) to the distribution of the set Total with p-values,
respectively, equal to 0.71, 0.25, 0.03 and 0.02.
The curves of the proposed algorithms exhibit different

levels of approximation to the reference curve (Total)
depending on the time limit imposed. The algorithm RA
enumerates less traces and, consequently, is more distant
from the reference curve. On the other hand, the algo-
rithm DFALT enumerates more traces and has the best
approximation to this curve. Considering the executions
of the algorithm SWA, we have that SWA6 is the one that is
closer to the reference curve.
Qualitatively, we can see that except for algorithm RA,

the distribution curves tend to approximate the reference
curve as we increase the time limit. This may give an indi-
cation that the algorithms DFALT and SWA can produce
unbiased sets of traces with respect to the distribution of
the height and average reversal length.
Naturally, as the time limit gets closer to the total time

necessary to enumerate all traces, we expect that the algo-
rithm DFALT gets closer to the distribution observed with
the complete set. This is confirmed by the statistical test.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 14 of 17
http://www.almob.org/content/7/1/18

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

a) 6 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

b) 12 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

c) 18 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

d) 24 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

e) 30 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

f) 36 seconds

Height

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

Figure 9 Average ratio distribution of the traces according to their heights. Using the set of 500 random permutations with n = 15 and
d(π) = 12, we calculated the average ratio distribution, according to the trace height, of the complete set of traces. This procedure was repeated
for each pair (algorithm A, time limit T).

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 15 of 17
http://www.almob.org/content/7/1/18

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

a) 6 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b) 12 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

c) 18 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d) 24 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

e) 30 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

f) 36 seconds

Reversal Size

A
ve

ra
ge

 r
at

io

RA
SWA4
SWA5
SWA6
DFLAT
Total

Figure 10 Average ratio distribution of the traces according to their average reversal length. Using the set of 500 random permutations with
n = 15 and d(π) = 12, we calculated the average ratio distribution, according to the average reversal length, of the complete set of traces. This
procedure was repeated for each pair (algorithm A, time limit T).

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 16 of 17
http://www.almob.org/content/7/1/18

In the case of the non-deterministic algorithms, we can-
not guarantee that the sampling will have the same prop-
erty for small or big permutations. Nonetheless, Figures 9
and 10 show that the curve SWA6 gets gradually closer to
the reference curve. Specifically in the case of the average
reversal length, the Kolmogorov-Smirnov test confirms
that the distribution of traces enumerated by the pair
(SWA6, 36s) approximates the reference curve, with a
p-value of 0.02.

Conclusions
In this work, we proposed three different algorithms for
the partial enumeration of traces: RA, DFALT, and SWA.
Designed for processing big permutations, all proposed
algorithms are able to do a partial enumeration of traces
for permutations which cannot be processed by the actual
algorithms for total trace enumeration, that is, BFA and
DFA with or without permutation grouping.
The algorithms DFALT and SWA are based on the algo-

rithm DFA. Thus, they inherited the inability of working
with most of the biological constraints implemented by
Braga et al. [21,22]. However, the algorithm RA can be
easily adapted to consider these constraints.
Among the three proposed solutions, the algorithm SWA

is capable of producing a number of traces higher than
the ones produced by the other two algorithms when the
same time limit is imposed during the processing of big
permutations.
During our tests, we worked with time limits between 6

and 60 seconds. However, it is not an easy task to deter-
mine the time limit which should be used to produce a
good sampling of the total space of traces which sort a
given permutation.
One alternative could be to adopt other types of stop-

ping criteria. For example, the algorithm could stop after
achieving a fixed number of enumerated traces, or a fixed
number of repeated traces (traces which were already enu-
merated). Nevertheless, these kind of criteria would be
subjected to the same problems as the time limit crite-
rion with respect to the guarantee of obtaining a uniform
sampling.
A more advanced solution could involve a detailed anal-

ysis of the space of solutions of traces to determine a way
of calculating the expected total number of traces. As a by-
product, we could determine a percentage of the expected
number of traces and use it as a stopping criterion.
In our tests, we could observe that the number of traces

grows exponentially according to the ratio d/n. Never-
theless, to predict the number of traces which sort a
permutation is an open question which requires more
investigation. A deeper study about the characteristics
of the permutations must be conducted with the aim of
obtaining, if possible, a formula to calculate the expected
number of traces of a permutation. In this direction,

the results obtained by Braga and Stoye when analysing
the solution space of sorting by DCJ operations [9] may
provide some insights.
The difficulty of analysing the quality of the sampling

for big permutations is that, for now, we are capable nei-
ther to calculate the expected total number of traces, nor
to predict the general distribution of the complete set of
traces just by looking at the permutation. The software
MC4Inversion, written byMikls andDarling [18], could
be used to estimate a lower bound for the number of
traces. To do this, we could get the estimated number of
optimal solutions given by the software and divide it by
d(π0,πd)!. In this estimation, we assume that every trace
contains only non-overlapping reversals. Obviously, this
is not true and, in fact, the real number of traces can be
much higher than this estimated lower bound.
We conducted tests with small permutations and we

could see that the sets of traces partially enumerated by
the algorithms DFALT and SWA have distributions that get
closer to the distribution observed for the complete set
of traces when we increase the time limit. This may give
an indication that these algorithms can produce unbiased
sets of traces, at least in relation to the distribution of
height and average reversal length.
The height of a trace does not have a direct biological

meaning but it provides some evidence of the complexity
of the solutions that it represents. Traces with high height
group solutions that have a high number of reversal over-
laps. For example, some groups of bacteria evolve mainly
through symmetrical or almost-symmetrical reversals rel-
atively to the replication terminus. In this case, we could
expect that the occurrence of small reversals contained
inside big ones exhibits a ratio bigger than the one
observed when the position of the reversals are not
restricted. As a consequence, we would then also expect
the solution traces to have low height values.
The average reversal length can be an important aspect

in genome rearrangements. The algorithms RA and SWA
show a tendency for losing traces that have high aver-
age reversal length. However, if we know that the target
genome is subjected to reversals of small or intermediate
sizes [26-29], the deficiency of these algorithms becomes
a minor issue.
Independently of a biological meaning, the parameters

height and average reversal length represent measures
that are easy to compute and that can be used in the
evaluation of the quality of a sampling.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
Implementation and test analyses were performed by CB. All authors
participated in the discussions. The manuscript was written by CB with major
contributions by MFS and ZD. All authors read and approved the final
manuscript.

Baudet et al. Algorithms for Molecular Biology 2012, 7:18 Page 17 of 17
http://www.almob.org/content/7/1/18

Acknowledgements
Christian Baudet was supported by CAPES – Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (BEX 4676/08-4) and is
currently supported by the ANR project MIRI, ANR-08-BLAN-0293-01. Zanoni
Dias is partially sponsored by CNPq – Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (483177/2009-1 and 473867/2010-9).
This work is also supported by the ERC Advanced Grant SISYPHE awarded to
Marie-France Sagot, INRIA, France.

Author details
1Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Universit
Lyon 1, CNRS, UMR5558 Villeurbanne, France. 2INRIA Grenoble-Rhône-Alpes,
team BAMBOO, 655 avenue de l’Europe, 38334 Montbonnot Cedex, France.
3Institute of Computing, University of Campinas, Campinas - SP, Brazil.

Received: 8 February 2012 Accepted: 1 June 2012
Published: 15 June 2012

References
1. Hannenhalli S, Pevzner PA: Transforming Men into Mice (Polynomial

Algorithm for Genomic Distance Problem). In FOCS IEEE Computer
Society; 1995:581–592.

2. Hannenhalli S, Pevzner PA: Transforming Cabbage into Turnip:
Polynomial Algorithm for Sorting Signed Permutations by
Reversals. Journal of the ACM 1999, 46:1–27.

3. Bergeron A: A Very Elementary Presentation of the
Hannenhalli-Pevzner Theory. In Proceedings of the 12th Annual
Symposium of the Combinatorial Pattern Matching (CPM’2001), Volume 2089
of Lecture Notes in Computer Science. Jerusalem, Israel;
2001:106–117.

4. Tannier E, Bergeron A, Sagot MF: Advances on sorting by reversals.
Discrete Applied Mathematics 2007, 155:881–888.

5. Bader DA, Moret BME, Yan M: A Linear-Time Algorithm for Computing
Inversion Distance Between Signed Permutations with an
Experimental Study. Journal of Computational Biology 2001,
8(5):483–491.

6. Swenson KM, Rajan V, Lin Y, Moret BME: Sorting Signed Permutations
by Inversions inO(n logn) Time. Journal of Computational Biology
2010, 17(3):489–501.

7. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21(16):3340–3346.

8. Bergeron A, Mixtacki J, Stoye J: A new linear time algorithm to
compute the genomic distance via the double cut and join distance.
Theoretical Computer Science 2009, 410:5300–5316.

9. Braga MDV, Stoye J: The Solution Space of Sorting by DCJ. Journal of
Computational Biology 2010, 17(9):1145–1165.

10. Miklós I, Tannier E: Bayesian sampling of genomic rearrangement
scenarios via double cut and join. Bioinformatics 2010,
26(24):3012–3019.

11. Siepel AC: An Algorithm to Enumerate Sorting Reversals. Journal of
Computational Biology 2003, 10(3-4):575–597.

12. Swenson KM, Badr G, Sankoff D: Listing all sorting reversals in
quadratic time. Algorithms for Molecular Biology 2011,
6:11.

13. York TL, Durrett R, Nielsen R: Bayesian Estimation of the Number of
Inversions in the History of Two Chromosomes. Journal of
Computational Biology 2002, 9(6):805–818.

14. Durrett R, Nielsen R, York TL: Bayesian Estimation of Genomic
Distance. Genetics 2004, 166:621–629.

15. Miklós I:MCMC genome rearrangement. Bioinformatics 2003,
19(Suppl. 2):ii130–ii137.

16. Larget B, Simon DL, Kadane JB, Sweet D: A Bayesian Analysis of
Metazoa Mitochondrial Genome Arrangements.Molecular Biology
and Evolution 2005, 22(3):486–495.

17. Larget B, Kadane JB, Simon DL: A Bayesian approach to the estimation
of ancestral genome arrangements.Molecular Phylogenetics and
Evolution 2005, 36:214–223.

18. Miklós I, Darling AE: Efficient Sampling of Parsimonious Inversion
Histories with Application to Genome Rearrangement in Yersinia.
Genome Biology and Evolution 2009, 1:153–164.

19. Bergeron A, Chauve C, Hartman T, Saint-Onge K: On the Properties of
Sequences of Reversals that Sort a Signed Permutation.
In Proceedings of the JOBIM 2002. Saint Malo; 2002:99–108.

20. Cartier P, Foata D: Problèmes combinatoires de commutation et
réarrangements. No. 85 in Lecture Notes in Mathematics. Berlin:
Springer-Verlag; 1969.

21. Braga MDV, Sagot MF, Scornavacca C, Tannier E: Exploring the solution
space of sorting by reversals with experiments and an application
to evolution. Transactions on Computational Biology and Bioinformatics
2008, 5(3):348–356.

22. Braga MDV, Gautier C, Sagot MF: An asymmetric approach to preserve
common intervals while sorting by reversals. Algorithms for Molecular
Biology 2009, 4:16.

23. Braga MDV: Exploring the Solution Space of Sorting by Reversals When
Analyzing Genome Rearrangements. France: Université Lyon 1; 2008.

24. Baudet C, Dias Z: An Improved Algorithm to Enumerate All Traces
that Sort a Signed Permutation by Reversals. In Proceedings of the 25th
SymposiumOn Applied Computing (ACM SAC 2010). Sierre, Switzerland
2010: [5 pages, Bioinformatics Track]

25. Badr G, Swenson K, Sankoff D: Listing All Parsimonious Reversal
Sequences: NewAlgorithms and Perspectives. In Proceedings of the 8th
Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG
2010), Volume 6398 of Lecture Notes in Bioinformatics. Edited by Tannier E.
Ottawa, Canada: Springer-Verlag Berlin Heidelberg; 2010:39–49.

26. Lefebvre JF, El-Mabrouk N, Tillier E, Sankoff D: Detection and validation
of single gene inversions. Bioinformatics 2003, 19:i190–i196.

27. Cáceres M, Barbadilla A, Ruiz A: Recombination Rate Predicts Inversion
Size in Diptera. Genetics 1999, 153:251–259.

28. Darling AE, Miklós I, Ragan MA: Dynamics of Genome Rearrangement
in Bacterial Populations. PLOS Genetics 2008, 4(7):1–16.

29. Sankoff D, Lefebvre JF, Tillier E, Maler A, El-Mabrouk N: The Distribution
of Inversion Lengths in Bacteria. In Proceedings of the 2nd Annual
RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG 2004),
Volume 3388 of Lecture Notes in Bioinformatics. Edited by Lagergren J.
Bertinoro, Italy: Springer-Verlag Berlin Heidelberg; 2005:97–108.

30. Braga MDV: baobabLuna: the solution space of sorting by reversals.
Bioinformatics 2009, 25(14):1833–1835. [Applications Notes].

31. Swenson KM, Lin Y, Rajan V, Moret BM: Hurdles Hardly Have to Be
Heeded. In Proceedings of the International Workshop on Comparative
Genomics (RECOMB-CG’08) Volume 5267 of Lecture Notes in Computer
Science. Paris; 2008:241–251.

doi:10.1186/1748-7188-7-18
Cite this article as: Baudet et al.: Sampling solution traces for the problem
of sorting permutations by signed reversals. Algorithms forMolecular Biology
2012 7:18.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Permutations and reversals
	Sorting permutations by signed reversals
	Enumeration of all solutions to the SPSR problem
	Deterministic approach
	Probabilistic approach

	Traces
	Normal form of a trace
	Tree representation of a set of solution traces

	Complete enumeration of solution traces for the SPSR problem
	Partial enumeration of solution traces for the SPSR problem
	New algorithms
	Quality of sampling

	Methods
	State of Art – Algorithms for traces enumeration
	Breadth-first algorithm – BFA
	Depth-first algorithm – DFA
	BFA and DFA with permutation grouping

	New algorithms – Partial enumeration of traces
	Random algorithm – RA
	Depth-first algorithm limited by time – DFALT
	Sliding window algorithm – SWA

	Tests

	Results and discussions
	Evaluating the time necessary to enumerate all traces
	Number of enumerated traces versus execution time
	Processing big permutations
	Evaluating the quality of the sampling

	Conclusions
	Competing interests
	Author's contributions
	Acknowledgements
	Author details
	References

