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Abstract

Background: Although many RNA molecules contain pseudoknots, computational prediction of pseudoknotted
RNA structure is still in its infancy due to high running time and space consumption implied by the dynamic
programming formulations of the problem.

Results: In this paper, we introduce sparsification to significantly speedup the dynamic programming approaches
for pseudoknotted RNA structure prediction, which also lower the space requirements. Although sparsification has
been applied to a number of RNA-related structure prediction problems in the past few years, we provide the first
application of sparsification to pseudoknotted RNA structure prediction specifically and to handling gapped
fragments more generally - which has a much more complex recursive structure than other problems to which
sparsification has been applied. We analyse how to sparsify four pseudoknot structure prediction algorithms,
among those the most general method available (the Rivas-Eddy algorithm) and the fastest one (Reeder-Giegerich
algorithm). In all algorithms the number of “candidate” substructures to be considered is reduced.

Conclusions: Our experimental results on the sparsified Reeder-Giegerich algorithm suggest a linear speedup over
the unsparsified implementation.

Background
Recently discovered catalytic and regulatory RNAs [1,2]
exhibit their functionality due to specific secondary and
tertiary structures [3,4]. The vast majority of computa-
tional analysis of non-coding RNAs have been restricted
to nested secondary structures, neglecting pseudoknots -
which are “among the most prevalent RNA structures”
[5]. For example, Xaya-phoummine et al. [6] estimated
that up to 30% of the base pairs in G+C-rich sequences
form pseudoknots.
However the general problem of pseudoknotted RNA

structure prediction is NP-hard. As a result, a number
of approaches have been introduced for handling
restricted classes of pseudoknots [7-13]. Condon et al.
[14] give an overview of their structure classes and the
algorithm-specific restrictions and Möhl et al. [15]
develop a general framework showing that all these

algorithms follow a general scheme, which they use for
efficient alignment of pseudoknotted RNA.
The most general algorithm (with respect to the pseu-

doknot classes handled) among the above by Rivas and
Eddy (R&E) has a running time of O(n6) time and space
consumption of O(n4). It is therefore too expensive to
directly apply this algorithm for large scale data analysis.
Unfortunately, even the most efficient algorithm by
Reeder and Giegerich (R&G) still has a high running
time of O(n4), although it strongly restricts the class of
predictable pseudoknots.
In this paper we introduce the technique of sparsifi-

cation to the problem of pseudoknotted RNA structure
prediction. Sparsification improves the expected run-
ning time and space usage of a dynamic programming
based structure prediction algorithm without introdu-
cing additional restrictions on the structure class
handled or compromising the optimality of solutions.
Sparsification has been recently applied to improve
time and space complexity of various existing RNA-
related structure prediction algorithms. In particular, it
turned out to be successful for RNA folding for
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pseudoknot-free structures [16,17], simultaneous align-
ment and folding [18] as well as RNA-RNA interaction
prediction [19].

Contributions
We study sparsification of pseudoknotted RNA structure
prediction. Algorithms developed for this problem differ
from the previously sparsified algorithms by their use of
gapped fragments and their more complex recursion
structure. Our main contribution in this paper is the
solution to the algorithmic challenges due to this
increased complexity. Among all DP based pseudoknot
prediction algorithms, we focus on the fastest algorithm
(R&G) and the most general one (R&E) and develop
sparse variants of these dynamic programming algo-
rithms. Furthermore, we consider sparsification of the
algorithm by Akutsu et al. and Uemura et al. (A&U)
[9,10] as well as the algorithm by Dirks and Pierce
(D&P) [12]. Due to sparsification, the resulting algo-
rithms need to consider only a limited number of candi-
dates substructures compared to the original algorithms.
As a result, we analyze the theoretical worst case com-
plexities in terms of the number of candidate substruc-
tures. We also present experimental results, comparing
our implementations of the original and sparsified R&G
algorithm. These results suggest a significant (roughly a
linear factor) reduction in the number of candidates
over the original algorithm.

Methods
Sparsification of the Reeder and Giegerich algorithm
The R&G algorithm [13] predicts the minimum free
energy structure allowing canonical pseudoknots for a
sequence S of length n. It extends the Zuker algorithm
by adding one more matrix K (for knot), where K(i, j)
denotes the energy for the best canonical pseudoknot
that starts at position i and ends at position j. Note that
the original presentation of the algorithm in terms of
the ADP framework does not explicitly consider a
matrix K but only a motif knot. Canonical pseudoknots
are defined as follows. Each pair of base pairs p1 = (i, i’)
and p2 = (j’, j) with i <j’ <i’ <j induces one canonical
pseudoknot that consists of two crossing stems {(i, i’), (i
+1, i’- 1),..., (i+di, i’ - 1, i’- di, i’ +1)} and {(j’, j), (j’ + 1, j -
1),..., (j’ + dj’, j - 1, j - dj’, j + 1)} where the stacking
length of the two stems, di, i’ and dj’, j, respectively, is
maximally extended as long as all base pairs are valid
Watson-Crick base pairs.
To allow for sparsification, we restrict the scoring

scheme slightly such that the energy of a canonical
pseudoknot only depends on the left ends of its base
pairs and hence can be described as PK-Energy(i, di, i’,
j’, dj ’ , j). This implies that the scoring scheme does
not distinguish between G-C and G-U base pairs in

pseudoknot-stems, since their left ends are identical.
Then,

K i j score i j i j
i j

( , ) min ( , , , )
,

= ′ ′
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As shown in Figure 1(a), for each canonical pseudoknot
starting at i and ending at j the recursion decomposes
into the pseudoknot itself and the three fragments in-
between its two crossing stems. Such pseudoknots add
one case in the computation of a matrix entry W(i, j),
which, as in the Zuker algorithm, contains the optimal
energy of a substructure starting at position i and ending
at position j. Due to the restriction to canonical pseudo-
knots, the recursion of R&G minimizes only over all pos-
sible instances of i’ and j’, because the maximal stacking
lengths di, i’ and dj’, j are uniquely determined once i’ and
j’ are fixed. Furthermore, Reeder and Giegerich note that
the maximal stacking length dx, y can be precomputed for
all x, y in O(n3) time and stored in an O(n2) table.
In order to sparsify the algorithm, we develop an

appropriate notion of a candidate such that it is not
necessary to minimize over all possible i’ and j’ but only
over the candidates.
Definition 1 (R&G candidate)

Let i j i i< ′ < ′ < ′1 2 and d i jj j′ ′≤ ′ − ′, 1 . Then ′i1 dominates
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Figure 1 Recursion for canonical pseudoknots (a) and their
sparsification (b).
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where
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We say that ′i2 is a candidate with respect to (i, j’, dj’,

j) if there does not exist any ′i1 that dominates it.

The notion of a candidate is visualized in Figure 1(b).

There, ′i1 dominates ′i2 if the score for the gray area at

the top (including the dashed part whose exact position
is not determined) is not better than the score for the
corresponding gray area at the bottom plus the green
part. Note that these scores (and hence the candidate i’)
depend only on i, j’, and dj’,j and are independent of di,i’
and j. The following lemma shows that the notion of a
candidate given in Def. 1 is suitable for sparsification, i.
e. some i’ needs to be considered in the recursion (for
all j) only if it is a candidate, because otherwise it is
dominated by a candidate that yields a better score.
Lemma 1 (R&G sparsification)

Let ′i2 be dominated by ′i1 with respect to some (i, j’, dj’, j).

Then for all j it holds score i j i j score i j i j( , , , ) ( , , , )′ ′ ≤ ′ ′1 2 .

Proof We start with the inequality of Def. 1 and
add W i j d j j( , ),′ + − ′2 1 on both sides.. Then the claim follows

immediately from W i j d W i i W i j dj j j j( , ) ( , ) ( , ), ,′ + − ≤ ′ + ′ + ′ + −′ ′1 1 2 21 1 1 .
In Figure 1(b) this corresponds to the fact that the score
for the red box is at least as good as the score from the
green and the blue box together. This triangle inequality
holds by the correctness of the (unsparsified) algorithm:
For all x < y < z we have W(x, y)+W(y+1, z) ≤ W(x, z)
since the concatenation of the best structures for the
ranges (x, y) and (y, z) always forms a valid structure for
the range (x, z) with score W(x, y)+W(y+1, z) which is
hence never better than the optimal score W(x, z) for
that range. □
The sparsified algorithm maintains lists Li of candi-

dates for each pair (j’, dj’, j) since only the lists for one i
need to be maintained in memory at the same time.
Whenever in the computation of some score(i, j’, i’, j)
the i’ is considered the first time for this i and j’, it is
checked whether it is a candidate and if so, it is added
to the respective list. For all other instances of j, i’ is
then considered only if it is contained in the list. The
sparsified algorithm is given by the following pseudo-
code (n := |S|).
1: for i := n to 1 do
2: for all dj’, j, j’ ≤ n do
3: Li(j’, dj’, j) := empty list;
4: end for

5: for j := i + 3 to n do
6: K(i, j) := ∞
7: for j’ := i + 1 to j - 2 do
8: // check new elements for candidacy

9: for i j dc j j i j d j j
: max{ , }, , , ,
= ′ + +′ ′ ′

checked 1 to

j - dj’j do

10: if score scorei c ic c
i j i i j i( , , ) ( , , )′ < ′ ′ for all i’

ÎLi(j’, dj’, j) then
11: add ic to Li(j’, dj’, j)
12: end if
13: end for

14: checked checkedi j d i j d j jj j j j
j d, , , , ,, ,

: max( , )′ ′ ′′ ′
= −

15: // iterate over all candidates
16: Ki, j’, j := ∞
17: for all i’ Î Li(j’, dj’, j) do
18: Ki, j’, j := min {Ki, j’, j, score(i, j’, i’, j)}
19: end for
20: K(i, j) := min {K(i, j), Ki, j’, j}
21: end for
22: compute matrix entries V (i, j) and W(i, j) as in

Wexler et al.
23: W(i, j) := min(W(i, j), K(i, j))
24: end for
25: end for
The candidate lists are initialized in line 2. In lines 7

to 11 all new values ic that have not been considered so
far, are tested for candidacy. Here, checked i j d j j, , ,′ ′

denotes the largest i’ that has been checked for candi-
dacy in list Li(j’, dj’, j).
Lines 14 to 17 compute scores score(i, j’, i’, j) for all

candidates i’. In line 20, we compute W(i, j) and V(i, j)
as in the sparsified pseudoknot-free structure predic-
tion approach due to Wexler et al. [16]. The computa-
tion of matrices K and W is interleaved such that all
entries K(i, j) and W(i, j) are computed before all
entries K(i’, j’) and W(i’, j’) for i ≤ i’ ≤ j’ ≤ j and i ≠ i’
or j ≠ j’.
Complexity Analysis
Whereas the original algorithm requires O(n4) time
(for n = |S|), the sparsified variant requires O(n3L)
time where L is the total size for all candidate lists of

some i i.e. L L ji i jj j j
: max | ( ) |= ∑ ’,d ’.j’ d ’, ,

. Obviously, L

≤ n. In order to maintain the asymptotic space com-
plexity O(n2) of the original algorithm, we do not
maintain all lists Li(j’, dj’, j) in memory but only the
lists with dj ’ , j ≤ k where k > 0 is a small constant.
Please note that to keep presentation simple, we didn’t
make this explicit in the pseudo-code. Since the maxi-
mal stacking length is usually small, there are only
very few instances of j with dj’, j >k such that for those
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few j it is cheap to consider all i’ as candidates. Hence,
we store O(kn) = O(n) candidate lists each requiring at
most O(n) space.
Wexler et al. [16] use the assumption that RNA fold-

ing satisfies the polymer-zeta property to derive a tighter
bound on the expected-case asymptotic complexity.
However, we focus on the practical speed-up that is
obtained by our implementation due to the following
reasons. First, it is unclear whether the energy-models
for pseudoknot prediction exhibit this property and sec-
ond it is unclear whether the asymptotic behaviour
already appears in the feasible range of input sizes. As
shown in the results, the sparsified variant runs two to
four times faster than the unsparsified variant for input
sizes up to 1000 nucleotides.

Sparsification of the Rivas and Eddy Algorithm
The class of structures predicted by the R&E algorithm
[8], here called class of R&E structures, is the most gen-
eral RNA secondary structure prediction algorithm
described in the literature [14]. To keep presentation
simple we explain the sparsification strategy for a base-
pair maximization algorithm that handles the R&E
structure class. Finally, we motivate that sparsification
can be transferred to the R&E energy minimization
algorithm.
First, we give recursions of base pair maximization

for R&E structures. Note that the recursions are inten-
tionally very close to the recursions of the R&E energy
minimization algorithm. After initialization for i ≥ j
and k ≥ l

W i j
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It is easy to check that W(1, |S|) is the maximal num-
ber of base pairs in a R&E structure of S, because the
recursions perform the same decompositions as the ori-
ginal R&E recursions. Note that W(i, j; k, l) is the maxi-
mal number of base pairs in structures with at least one
base pair that spans the gap. We label each recursion
case in a way that illustrates the type of the decomposi-
tion of this case. The idea of these labels is taken from
Möhl et al. [15], where we developed a type system for
decompositions, which there are called splits. For this
reason, we call these labels split types, however, we
won’t need any details of the typing system. The decom-
position by R&E is illustrated in Figure 2.
A fragment is defined as a set of positions of the fixed

sequence S. The fragments corresponding to matrix

=

=

12' 12 12121'21'

1G2'11'2G2 1G12'12'G1

12G2 1G21 1G1212G1

12G21 12G12 1G212 121G2

1G2 1'G1'

Figure 2 Decomposition for R&E base pair maximization
annotated with labels, i.e. split types, of the corresponding
recursion cases.
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entries in the R&E recursion can be described conveni-
ently by their boundaries. We distinguish ungapped frag-
ments F = {i,...,j}, written (i, j), and 1-gap fragments F’ =
{i,...,j} ∪ {k,...,l}, written (i, j; k, l) where i, j, k, l, are called
boundaries of respective F or F’. A split of a fragment F is
a tuple (F1, F2) such that F = F1 ∪ F2 and F1 ∩ F2∅.
For our sparsification approach, we will show that in

each recursion case, certain optimally decomposable frag-
ments do not have to be considered for computing an
optimal solution, because each decomposition using these
fragments can be replaced by a decomposition using a
smaller fragment. We define optimal decomposability with
respect to the split type of a R&E recursion case.
Definition 2 (Optimally decomposable)
A fragment F is optimally decomposable by a split of
type T (T-OD) iff there is a split (F1, F2) that occurs in
recursion case T and W(F1) + W (F2) ≥ W (F ).
A fragment F is optimally decomposable w.r.t a set of

split types  ( )-OD iff F is T-OD for some T ∈  .

Here, we emphasize that testing T-OD for a fragment
F is simple in a run of the DP algorithm. After evaluat-
ing the case T in the computation of W(F), one com-
pares the maximum of the case to W(F). For example, a
fragment (i, j; k, l) is 12G21-OD iff W(i, j; k, l) = maxj’,
k’ W (i, j’ - 1; k’ + 1, l) + W(j’, j; k, k’).
In the following we show that for the maximization in

a recursion case T, we do not need to consider T’-OD
fragments as second fragment of the split, where T’ is
from a T-specific set of split types. As an example con-
sider the recursion case 12G21, which splits fragments
(i, j; k, l) into F1 = (i, j’ - 1; k’ +1, l) and F2 = (j’, j; k, k’).
Assume that F2 is 12G21-OD. Then we can show that
every evaluation of W(F) where W(F) = W(F1) + W (F2)
can be replaced by another at least equally good evalua-

tion that splits F into ′F1 and ′ ⊂F F2 2 , where ′F2 is the

second fragment in the 12G21-split of F2. However,
note that the argument is split type specific and cannot
be applied e.g. when F2 is 12G12-OD.
For sparsifying R&E, we define the following sets of

split types.
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These sets are defined such that in a recursion case T,
whenever the second fragment of a split (F1, F2) of F
can be optimally decomposed by a split of a type in

T
RE , a different split ′ ′( )F F1 2, of type T can be applied

to F, where ′ ⊂F F2 2 . As we show later, this split will be

just as good as (F1, F2) for computing W(F).
Then, one systematically obtains sparsified recursion

equations W’(i, j) and W’(i, j; k, l) from the equations
for W(i, j) and W(i, j; k, l) by replacing symbol W by W’
and modifying them in the following way. For each case
T in the recursion of W(i, j) and W(i, j; k, l) that maxi-
mizes over W(F1)+W (F2) for respective splits of the
fragment F = (i, j) or F = (i, j; k, l), maximize only over

fragments F2 that are not T
RE -OD. In an algorithm

that evaluates the sparsified recursion, such non-

T
RE -OD fragments correspond to entries of candidate

lists. For example, case 12G21 of W is modified in the
equation for W’ (i, j, k, l) to

max
( , ; , )
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Theorem 1
Let W be the matrix of the R&E recursion and W’ its
sparsified variant, then W(1, |S|) = W’(1, |S|).
Proof We show for all 1 ≤ i, j, k, l ≤ |S|, W(i, j) = W’(i,

j) and W(i, j, k, l) = W’(i, j; k, l). First note that it holds
that W(i, j) ≥ W’(i, j) and W(i, j; k, l) ≥ W’(i, j; k, l). The
claim is shown by induction on the fragment size and a
case distinction over recursion cases. For the case of
split type 12, we show that

max ( , ) ( , )
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Let (j’, j) be 12-OD for some j’ : i ≤ j’ ≤ j. By IH, it
suffices to find a (smaller) fragment (j’’, j), where j’’ > j
and W(i, j’’ - 1) + W(j’’, j) ≥ W(i, j’ - 1) + W(j’, j). Either
(j’, j) is not 12-OD or there is a j’’, such that W(j’, j) =
W(j’, j’’ - 1) + W(j’’, j) and thus W(i, j’’ - 1)+W(j’’, j) ≥ W
(i, j’ - 1)+W(j’, j) because

W i j W j j

W i j W j j W j j

( , ) ( , )

( , ) ( , ) ( , )

′′ − + ′′
≥ ′ − + ′ ′′ − + ′′

=
Δ

1

1 1

1

-ineq

22 1-OD W i j W j j( , ) ( , ).′ − + ′

The triangle inequality (Δ-ineq) is an immediate con-
sequence of the correctness of the recursion for W.
Thus, for the decompositions of all recursion cases
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there holds such a corresponding inequation. Analogous
arguments can be given for all other modified recursion
cases. Exemplarily, we elaborate the argument for the
complex case 12G21. Let F1 = (i, j’ - 1; k’ + 1, l) and F2
= (j’, j; k, k’), such that (F1, F2) is a split of type 12G21

of (j, j; k, k). We need to show for all 12 21G
RE -OD frag-

ments F2 there are non-empty ungapped or 1-gap frag-

ments ′F1 and ′F2 , where ′ ′ = ′ ′ = /F F F F F1 2 2 1 2 0 , , and

W F F W F W F W F( ) ( ) ( ) ( )1 1 2 1 2∪ ′ + ′ ≥ + and the split
( , )F F F1 1 2 ′ ′ occurs in a recursion case of R&E. Again,
either F2 is not 12 21G

RE -OD or one of the following
cases applies. Case 1 (12G2): for some j’’, W(j’, j; k, k’) =
W(j’, j’’ - 1)+W(j’’, j; k, k’). Then, the claim holds for

′ = ′ ′′ −F j j1 1( , ) and ′ = ′′ ′F j j k k2 ( , ; , ) by triangle inequal-
ity and split ( , )F F F1 1 2 ′ ′ occurs in recursion case
12G21. Case 2 (2G21): for some k’’, W(j’, j; k, k’) = W(j’,
j; k, k’’) + W(k’’ + 1, k’). The claim holds for

′ = ′ ′′F j j k k2 ( , ; , ) . Case 3 (12G21): for some j’’, k’’, W(j’, j;
k, k’) = W(j’, j’’ - 1; k’’ + 1, k’)+W(j’’, j; k, k’’). Again, this
satisfies the claim by triangle inequality.
Algorithm
The recursion equation W’ tailors a sparsified dynamic
programming algorithm for the evaluation of W’ (1, |S|)
with very limited overhead. We maintain separate candi-
date lists for each sparsified recursion case. As already
mentioned, the T-OD properties of each fragment F can
be easily checked after evaluation of each case of W(F).
A fragment is added to a candidate list for recursion

case T iff it is not T
RE -OD. The maximizations are

restricted to run only over the candidates in the respec-
tive candidate list. Their intended use dictates the exact
nature of such candidate lists. For a case T, which splits
a fragments T into T1 and T2, there are candidate lists
for all boundaries of a fragment T2 that are not adjacent
to boundaries of T1 due to split type T. The list entries
are tuples of the adjacent boundaries and the fragment
score for T2. In order to profit from a reduced number
of candidates in space, we maintain two three-dimen-
sional slices of the matrix for W(i, j; k, l), storing entries
only for the current i and i + 1. Scores W(i, j; k, l) for
larger i are stored for candidates only. Pseudocode of
the sparsified algorithm is given in Figure 3.
R&E Free Energy Minimization
Sparsification is analogously applied to the energy mini-
mizing R&E algorithm. This algorithm distinguishes sev-
eral additional matrices that contain minimal energies
for fragments (i, j) or (i, j; k, l) under the condition that
respectively the base pair (i, j) or base pairs (i, l) and (j,
k) or one of them exist. Almost all decompositions in
the recursion for these matrices are of discussed split
types and are sparsified analogously. The only notable

exception is due to internal loops. Internal loops require
minimizing over all possible positions of the inner loop
base pair, where commonly the loop size is restricted by
a constant K such that minimizing takes constant time.
However, handling inner loops requires access to entries
of non-candidate fragments (i’, j’; k’, l’) for i ≤ i’ ≤ i + K
+ 2. This is handled by maintaining matrix slices for i to
i + K + 2 in O(n3) space, which preserves total space
complexity.
Complexity Analysis
The described algorithm profits from sparsification in
time and space. Compared to O(n6) time and O(n4)
space of the unsparsified algorithm (for n = |S|), we
obtain complexities in the number of candidates. Let ZT

denote the maximal length of a candidate lists for case
T and Z denote the total number of entries in all lists.
Then, the time complexity is O(n2(Z12 + Z1212) + n4

(Z12G2 + Z12G1+Z1G21+Z1G12+Z12G21+Z12G12+Z1G212

+Z121G2)) and space complexity is O(n3+Z). In the worst
case, Z12, Z12G2, Z12G1, Z1G21 and Z1G12 are O(n),
Z12G21, Z12G12, Z1G212, Z121G2 are O(n2), and Z1212 is O
(n3), finally Z is O(n4) in the worst case.

Sparsification of the Dirks and Pierce Algorithm
Dirks and Pierce [12] present a pseudoknot prediction
algorithm that takes O(n5) time and O(n4) space. Note
that whereas Dirks and Pierce present their decomposi-
tion for computing the partition function, we sparsify
the corresponding minimum free energy prediction
algorithm. As mentioned in [15] this algorithm can be
considered as a restriction of the algorithm by Rivas and
Eddy to the cases

12 1 2 2 12 1 1 2 1 1 12

12 1212 12 2 12 1 1 21 1 12

’ ’ ’ ’ ’G G G G and

G G G G

with an additional case 1’2G21’ that composes a
gapped fragment (i, j; k, l) from a single base pair (i, l)
and (i + 1, j; k, l - 1).
The non-constant cases 12, 1212, 12G2, 12G1, 1G21,

and 1G12 can be sparsified exactly as the correspon-
ding cases of the Rivas and Eddy algorithm with
the following sets of split

types:
 

  

12 1212

12 2 12 1 1

12 12 12 1

12

DP DP

G
DP

G
DP

G G G

G

= =

= =

{ } { }

{ }

2, 1, 21

2 GG
DP

G
DP

21 1 12 12= = { }

Note that the additional case 1’2G21’ does not need to
be sparsified, because it is computed in constant time.
Analogously to our discussion of the R&E algorithm,
one obtains space and time complexities of the sparsi-
fied algorithm in terms of the length of candidate lists
and the total number of candidates.
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Sparsification of the Akutsu and Uemura Algorithm
In this section we consider the pseudoknot prediction
algorithm that was developed by Uemura et al. [9]
based on tree adjoining grammars and later reformu-
lated by Akutsu et al. [10] as dynamic programming
algorithm. The algorithm predicts simple pseudo-knots
in O(n4) time and O(n3) space. It can also be considered
as a restriction of the algorithm by Rivas and Eddy. It is
restricted to splits of the following types (again following
the typing scheme of [15]):

12 121 12 1 1 2 12

12 1 1 2 1 1 2 12 2

’ ’ ’

’ ’ ’ ’ ’

G2’ G

G G G1 G

and ommitted trivial, constant cases. Compared to
the R&E algorithm, all cases that dominate the com-
plexity are restricted to have only one possible split
per instance (as indicated by the ‘ symbols; confer the
additional case/split type of the algorithm by Dirks
and Pierce). All non-constant cases, i.e. the first two
rules, can still be sparsified analogous to sparsification

1: initialize all candidate lists L as empty
2: for i:=n to 1 do

3: W[i][i-1]:=0
4: for j:=i to n do

5: W12’ := W [i][j − 1]; W1’21’ := W [i + 1][j − 1] + bp(i, j)
6: W12 := max(j′,w)∈L(j,12) W [i][j′ − 1] + w

7: W1212 := max(j′,k′,l′,w)∈L(j,1212) W [j′][k′][l′] + w

8: W := max{W12’, W1’21’, W12, W1212}
9: if W12 < W then

10: push L(j,12), (i,W); push L(j,1G21), (i,W)
11: push L(i,12G1), (j,W); push L(i,1G12), (j,W)
12: end if

13: W[i][j]:=W
14: initialize W[j][k][l]
15: for k:=n to j+2 do

16: for l:=k to n do

17: W1’2G2 := W1[j][k][l]; W1’2G1 := W [j − 1][k][l]
18: W1G2’1 := W [j][k + 1][l]; W1G12’ := W [j][k][l − 1]
19: W12G2 := max(j′,w)∈L(j,k,l,12G2) W [j′ − 1] + w

20: W12G1 := max(j′,w)∈L(j,12G1) W [j′ − 1][k][l] + w

21: W1G21 := max(k′,w)∈L(j,1G21) W [j][k′ + 1][l] + w

22: W1G12 := max(l′,w)∈L(j,1G12) W [j][k][l′ − 1] + w

23: W12G21 := max(j′,k′,w)∈L(j,k,12G21) W [j′ − 1][k′ + 1][l] + w

24: W12G12 := max(j′,k′,w)∈L(j,l,12G12) W [j′ − 1][k][k′ − 1] + w

25: W1G212 := max(k′,l′,w)∈L(k,l,1G212) W [j][k′ + 1][l′ − 1] + w

26: W121G2 := max(i′,j′,w)∈L(k,l,1G212) W [i′ − 1][j′ + 1][j] + w

27: W := max{W1’2G2, W1’2G1, W1G2’1, W1G12’, W12G2, W12G1, W1G21, W1G12,

28: W12G21, W12G12, W1G212, W121G2}
29: if ∀T ∈ T RE

1212
: WT < W then push L(j, 1212), (i, j, k, W )

30: if ∀T ∈ T RE

12G2
: WT < W then push L(j, k, l, 12G2), (i, W )

31: if ∀T ∈ T RE

12G21
: WT < W then push L(j, k, 12G21), (i, l, W )

32: if ∀T ∈ T RE

12G12
: WT < W then push L(j, l, 12G12), (i, k, W )

33: if ∀T ∈ T RE

1G212
: WT < W then push L(i, l, 1G212), (j, k, W )

34: if ∀T ∈ T RE

121G2
: WT < W then push L(k, l, 121G2), (i, j, W )

35: W[j][k][l] := W
36: end for

37: end for

38: end for

39: for all 1 ≤ j < k ≤ l ≤ n do W1[j][k][l] := W [j][k][l]
40: end for

Figure 3 Pseudocode for R&E-style base pair maximization.
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of the algorithm of Rivas and Eddy using split type
sets

 12 12112 12 121AU AUand= ={ } { , }.

The restriction introduced by Akutsu and Uemura
could be considered as a very simple, static form of
sparsification. For each fragment annotated with symbol
‘, only one candidate (namely the smallest possible one)
is considered. In contrast to sparsification as it is dis-
cussed in this paper, Akutsu’s and Uemura’s modifica-
tion of the R&E algorithm reduces the worst-case
complexity at the price of restricting the class of
pseudoknots.

Results and Discussion
In order to evaluate the effect of sparsification on pseu-
doknotted RNA secondary structure prediction, we
implemented original and sparsified variants of the
Reeder and Giegerich (R&G) algorithm.

Data Set
We obtained all RNA sequences from Pseu-doBase [20],
which are known to have some pseudo-knots in their
secondary structures. This set contains 294 sequences
that their length is distributed between 76 nt and 93399
nt. We randomly divided all long sequences into subse-
quences shorter than 1000 nt. Therefore the data set
that we used in our experiments contains 1563
sequences with length between 76 nt and 1000 nt.

Performance
We applied both variants of the R&G algorithm to our
data set. Figure 4 shows the running time of the algo-
rithms on a server with Intel Core Duo CPU at 2.53

GHz and 4 GB RAM. The results in Figure 4 show
that sparsification significantly improves the running
time of the R&G algorithm. As the RNA sequences get
longer, the relative performance of the sparsified algo-
rithm (with respect to the non-sparsified ones)
improves. Figure 4(b) shows the speedup of the sparsi-
fied algorithm, which fits well to a linear regression
(R2 = 0.84).

Number of candidates
For a better understanding of the effect of sparsification
on the R&G algorithm, we measured the number of
(i’, j’) pairs which are checked in each fragment [i, j] in
both original and sparsified variants of the algorithm.
Note that the number of (i’, j’) pairs is in order of O((j -
i)2) in the worst case. Figure 5 shows the average num-
ber of (i’, j’) pairs on fragments of equal length which
are checked by the two variants of the algorithm. As
expected, this amount is significantly smaller for the
sparsified algorithm compared to the original one.
Moreover, we observe that as the fragments get longer,
the difference between the average number of (i’, j’)
pairs in the sparsified and the original algorithm
increases. We define the work load per each fragment
[i, j] as the number of candidate (i’, j’) pairs. Figure 5(b),
shows a significant reduction of the work load in the
sparsified algorithms. As it can be seen for subsequences
of length 1000 nt, the work load by the sparsified algo-
rithm is reduced by a factor of about 10 compared to
the original algorithm. Note that the work load reduc-
tion at fragment length 1000 nt does not yield the same
speedup for sequences of length 1000 nt (here this
speedup is about 3.5, confer Figure 4(b)), because for a
sequence of length n, all fragments of smaller length are
processed by the algorithm.

Figure 4 Running times of the original and sparsified variants of the R&G algorithm.
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Conclusions
The presented work gives four examples for sparsifica-
tion in the context of gap fragments and a complex
recursion structure. We successfully sparsified the fast-
est and the most complex pseudo-knot structure predic-
tion algorithm for RNA, as well as two algorithms with
intermediate complexity. Since sparsification is similar
in all these algorithms, the paper motivates further gen-
eralization of sparsification for systematic application to
complex DP-algorithms as RNA structure prediction
algorithms. Even more, by providing detailed examples
the paper directly suggests such generalization. Our
results from an implementation of the sparsified Reeder
and Giegerich algorithm show a significant, presumably
even linear, expected work load reduction due to sparsi-
fication. As future work, it would be interesting to
develop optimizations for the partition function based
variants of pseudoknot prediction where sparsification is
not directly applicable.
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