
RESEARCH Open Access

Phylogenetic comparative assembly
Peter Husemann1,2*, Jens Stoye1,3

Abstract

Background: Recent high throughput sequencing technologies are capable of generating a huge amount of data
for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the
overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time
consuming to close all the gaps in order to acquire the whole genomic sequence.

Results: Here we propose an algorithm that takes several related genomes and their phylogenetic relationships
into account to create a graph that contains the likelihood for each pair of contigs to be adjacent.
Subsequently, this graph can be used to compute a layout graph that shows the most promising contig adjacen-
cies in order to aid biologists in finishing the complete genomic sequence. The layout graph shows unique contig
orderings where possible, and the best alternatives where necessary.

Conclusions: Our new algorithm for contig ordering uses sequence similarity as well as phylogenetic information
to estimate adjacencies of contigs. An evaluation of our implementation shows that it performs better than recent
approaches while being much faster at the same time.

Background
Today the nucleotide sequences of many genomes are
known. In the first genome projects, the process of
obtaining the DNA sequence by multi-step clone-by-
clone sequencing approaches was costly and tedious.
Nowadays, the most common approach for de-novo
genome sequencing is whole genome shotgun sequencing
[1,2]. Here, the genome is fragmented randomly into
small parts. Each of these fragments is sequenced, for
example, with recent high throughput methods [3,4]. In
the next step, overlapping reads are merged with an
assembler software into a contiguous string. However,
instead of the desired one sequence of the whole gen-
ome, often many contigs remain, separated by gaps. The
main reasons for these gaps are lost fragments in the
fragmentation phase and repeating sequences in the
genome. In a process called scaffolding, the relative
order of the contigs as well as the size of the gaps
between them is estimated. In a subsequent finishing
phase the gaps between the contigs are closed with a
procedure called primer walking. For the ends of two
estimated adjacent contigs, specific primer sequences
have to be designed that function as start points for two
polymerase chain reactions (PCRs) for Sanger

sequencing [5]. These PCRs ideally run towards each
other until the sequences overlap. To close a gap com-
pletely, new primer pairs have to be generated again and
again since the maximum read length for Sanger
sequencing is restricted. This makes the process expen-
sive and work intensive. It is thus advisable to reduce
the pairs of contigs that have to be considered. Given n
contigs and no further information about their order,
there are  (n2) possibilities to apply primer walking. If
the order is known, it suffices to do  (n) primer walks
to fill the gaps.
An algorithm that estimates a reasonable order for the

contigs is thus a good help for sequencing projects. The
estimation is usually based on the sequences of closely
related species that are assumed to have a high degree
of synteny. A few tools have been developed which use
one or several related reference genomes to devise an
ordering of the contigs: Projector2 [6], for example, is a
web service that maps contig ends on a template gen-
ome using BLAST [7] or BLAT [8]. Features of Projec-
tor2 are an optional repeat masking for contig and
template sequences, a visualization of the mapping, and
an automated primer-design step for gap-closing pur-
poses. Prior to the automated primer design, difficult
regions for primer walking are removed, like, for exam-
ple, repetitive sequences (phage DNA, IS elements or* Correspondence: phuseman@cebitec.uni-bielefeld.de

1AG Genominformatik, Technische Fakultät, Bielefeld University, Germany

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

© 2010 Husemann and Stoye; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:phuseman@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/2.0

gene duplications) or sequences with unbalanced GC
content. The program OSLay [9] takes a set of BLAST
matches between the contigs and a reference sequence
or scaffold and computes from this a layout for the con-
tigs. The algorithm minimizes the height differences of
so-called local diagonal extensions, which are basically
matches from the border of a contig to the reference
sequence. The resulting layout is visualized and can be
imported into a Consed [10] project to aid gap-closure.
Zhao et al. [11] present a method to find an ordering
for a set of contigs using several related sequences as
references. For each reference genome a fitness matrix is
computed giving distances between the contigs, based
on their BLAST matches. All matrices are combined
into a single fitness matrix to search an optimal path of
contig connections with their heuristic PGA (phero-
mone trail-based genetic algorithm).
Our work in this field commenced when analyzing

data from in-house sequencing projects for different
species of the Corynebacteria genus. We observed sev-
eral aspects making it hard to find an ordering of the
contigs. Zhao et al. [11] show that poor sequence cover-
age can be overcome by using multiple reference gen-
omes, but problematic for this approach are major
rearrangements in the genomic sequences of more dis-
tantly related species. Another challenge are repeating
regions in the sequence of the newly sequenced genome.
We developed an algorithm that uses the information of
all similar regions between a set of contigs and several
related reference genomes to estimate an ordering of
the contigs. The novel idea is to incorporate the phylo-
genetic distance of the species in order to alleviate the
impact of rearrangements to the ordering. While gener-
ating one ‘optimal’ order of the contigs is the predomi-
nant approach to aid the closure of gaps, we propose a
more flexible format to describe contig adjacencies that
is also capable of dealing with repeating contigs.
The algorithm we present here is based on a simple

data structure, the contig adjacency graph, that is intro-
duced in the next section. There we also give an optimal
solution for finding a linear ordering of the contigs
using this graph. However, a linear ordering is not suffi-
cient to reflect all relations of real contig data. Therefore
we propose a heuristic by which the most promising,
but not necessarily unique, adjacencies are revealed in a
layout graph. In section ‘Results and discussion’ we
show the evaluation of applying our method to real
sequencing data and compare the results with those
obtained by PGA.

Methods
A natural strategy to devise an ‘optimal’ linear ordering
of the contigs, based on one or several related reference
genomes, works in three steps: At first, all similar

regions between the contigs and each reference genome
are determined. Then a graph is created, containing
edge weights that reflect the neighborhood of the con-
tigs. In the last step a weight maximizing path through
the graph is calculated, which defines the desired order
of the contigs. In the following, we describe these three
steps in more detail. In particular, in Section ‘Contig
adjacency graph’, we define a novel edge weight function
that incorporates the phylogenetic distance of the
involved species.
Matching contigs against a reference
Let Σ ={A, C, G, T} be the alphabet of nucleotides. We
denote by Σ* the set of all finite strings over Σ, by |s|:=
ℓ the length of string s = s1 ... sℓ, and by s [i, j]:= si... sj
with 1 ≤ i ≤ j ≤ ℓ the substring of s that starts at posi-
tion i and ends at position j. Suppose we are given a set
of contigs  ={c1, ..., cn}, ci � Σ*, and a set of already
finished reference genomes R ={g1, ..., gm}, gr � Σ*. The
relation of the reference genomes is given by a phyloge-
netic tree  that contains the evolutionary distances of
the species. Note that the tree can be generated even if
some genomes are not completely assembled yet, for
example from 16S-rRNAs. To infer information about
the order and orientation of the contigs, these are
mapped onto each reference genome by calculating local
alignments. Let s = c [sb, se] be a substring of contig c
and t = g [tb, te] be a substring of reference genome g.
The tuple m = ((sb, se), (tb, te)) is called a matching
region or simply match if s and t share sufficient
sequence similarity. The length of a match, |m|:= te-tb
+1, is defined as the length of the covered substring in
the reference genome. Sufficient sequence similarity
could be defined, for example, by a BLAST hit of signifi-
cance above a user-defined threshold. Another possibi-
lity, that we employ in our implementation, is to use the
swift algorithm [12] for matching. It utilizes a q-gram
index and provides for each match m the number of
exactly matching q-grams, denoted as qhits(m), which
can be used as a quality estimation for that match. Note
that each contig can have several matches on a refer-
ence genome. For sb> se we define c [sb, se] to be the
reverse complement of c [se, sb] and call m a reverse
match. Further we assume w.l.o.g. that tb< te for all g
[tb, te], otherwise we can replace the involved contig
sequence by its reverse complement. For brevity of nota-
tion, mi

r denotes a match between contig ci �  and
reference genome gr � R, and i

r
i
r

i s
rm m { , , }, ,1 

denotes the (possibly empty) set of all such matches.
Each match mi

r = ((sb, se), (tb, te)) implies a projection
of the contig ci onto the reference genome gr . The pro-
jected contig π (mi

r) = ((tb- sb), (te+ |ci| - se)) refers to
the implied pair of index positions on gr . For reverse
complement matches, the projection can be defined
similarly. Figure 1 shows an example of two projected

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 2 of 12

contigs as well as their distance, which will be defined
next.
The distance of two projected contigs π (m) = (tb, te)

and π (m’) = ( t tb e,) is defined as follows:

d m m

t t t t

t t t t

m m

b e b b

b e b b((), ())

min{| |,| |}

   
   
   

 

if

if

iif t tb b 








.

If the matches refer to different reference genomes,
the distance of their projections is undefined. Note that
the term distance is used here in the sense of ‘displace-
ment’, d is not a metric in the mathematical sense. For
example, d is negative if the projected contigs overlap.
Contig adjacency graph
In the following we define the edge-weighted contig
adjacency graph G  , , = (V, E) that contains for each
contig ci �  two vertices: li as the left connector and ri
as the right connector of contig ci. The set of vertices V
is then defined as V = L ∪ R, where L ={l1, ..., ln} and R
= {r1, ..., rn}.
The graph G  , , is fully connected: E = (

V

2
). We

split these edges into two subsets: the intra contig edges
I ={{l1, r1}, ..., {ln, rn}} which connect for each contig its
left and its right connector; and the set of adjacency
edges A = E\I that connect the contigs among each
other.
Now we define a weight function for the edges. For

each intra contig edge e � I we set the weight w(e) = 0.
For the remaining edges let e = {vi, vj} � A with vi � {li,
ri} and vj� {lj, rj} be an adjacency between contigs ci and
cj. Then the weight of this adjacency edge is defined as

w e w v vr i j

g r

() (,)




where the (symmetric) function wr(vi, vj) defines a
likelihood score for the contigs ci and cj being adjacent,
with respect to their connectors vi and vj . Each score
wr is based on the matches to reference gr and employs

the phylogenetic distance d between the contig spe-
cies and the reference genome species as a weight fac-
tor:

w v v s d m m d mr i j i
r

j
r

m m

i
r

i
r

i
r

j
r

j
r

(,) ((), ()), (
,

   
 
   

 

qhits)) () qhits mj
r

where d is the distance between the projected contigs
and s(d, d) is a suitably defined scoring function. In
order to define s we will give some further biological
motivations. The scoring function s models the likeli-
hood that two contigs are adjacent based on the dis-
tance d of their projected contigs. Projected contigs that
are not adjacent have a high distance and should obtain
a low score. Adjacent contigs should gain a high score
for usually having a distance close to zero. However, the
distance of two projected contigs can reach positive
values due to insertions in the reference’s genome. Simi-
larly, the distances can be negative if the projections
overlap, which is the case if there are insertions in the
newly sequenced genome. Both cases can be seen in Fig-
ure 2. Note that an insertion in the one genome corre-
sponds to a deletion in the other.
A second important aspect that is included in our

model are rearrangements between the related species,
which can lead to misleading adjacencies of projected
contigs. Assuming that between closer related species
less rearrangements have taken place, we use the phylo-
genetic tree distance d to weight the match
information.
To model the two mentioned considerations, we use a

Gaussian distribution with an expected value of zero:

s d d
d

e

d
d

(,) :




















1

2

1
2

2

 


where s is the standard deviation for the size of dele-
tions or insertions. A higher tree distance d allows
larger insertions and deletions, but scores the reliability
of the matches to more distantly related genomes to a
lesser degree.
However, this model neglects the fact that in the frag-

mentation phase, for example in parallel pyrosequen-
cing, often fragments disappear, such that there are no
reads for this fragment. If a fragment is not sequenced,
the same situation arises as if there is an insertion into
the reference genome, which causes positive distances.
To include this detail we use two superimposed Gaus-
sian distributions for the scoring. The first distribution
models insertions into the contigs and into the reference
genome, the second models lost fragments during
sequence assembly. The influence of each model is
determined by a weighting factor �:

Figure 1 Projection of a match. Projections π (m1) and π (m2) of
the contigs c1 and c2 based on their matches m1 and m2. The
distance d reflects the displacement of the projections.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 3 of 12

s d d
d

e

d
d

e

d

(,) :
()




 


 
























1

1 2

1
2 1

2 2

1
2 2

2


 

 
 











2

.
(1)

The expected value μ of the second Gaussian distribu-
tion is equal to the average size of the lost fragments.
The standard deviations s1 and s2 can be estimated

from sequencing projects.
Finding a tour through the graph
The contig adjacency graph with the described edge
weights can be used to find a linear ordering of the con-
tigs. This can be achieved by computing a tour through
the graph that incorporates all contigs and maximizes
the total weight. With minor enhancements of the
graph, this becomes equivalent to finding a shortest
Hamiltonian cycle.
The modifications are as follows: At first all edge

weights have to be converted to distances. This is done
by replacing each edge weight w by m - w where m is
the maximum weight in the graph. To ensure that each
contig is incorporated exactly once, and only in one
direction, we add an intermediate node between the left
and the right connector of each contig. The modified
graph is then defined as G  , , = (V’, E’) with V’ = V
∪ {vi| 1 ≤ i ≤ n} and E’ = A ∪ {{li, vi}, {vi, ri}| 1 ≤ i ≤ n}.
The distance of all edges that lead to an intermediate
node vi is set to 0. It is easy to see that a shortest
Hamiltonian cycle in the modified graph defines an
ordering as well as the orientation of all contigs, and
thus any TSP algorithm can be used to find an optimal
linear layout of the contigs.
Fast adjacency discovery algorithm
As described in the previous section, a linear ordering of
the contigs, which is optimal with respect to the adja-
cency edge weights, can be computed using a suitable
optimization algorithm. However, our analysis of real
data in the results section shows that a linear order of
the contigs is not necessarily possible, mainly due to
arbitrary placement of repeated or rearranged regions. A
method that provides a unique layout where possible,
but also points out alternative solutions where

necessary, may be more useful in practice. We present
an approach following this overall strategy in this
section.
The basis of our algorithm is a greedy heuristic for the

TSP, known as the multi-fragment heuristic [13], that
proceeds as follows: First the edges of the graph are
sorted by increasing distance and then added in this
order into an initially empty set of path fragments.
Whenever an involved node would exceed the maximal
degree of two, or if a path fragment would create a
cycle, the edge is skipped. The only exception to the lat-
ter is the final Hamiltonian cycle of length n.
This best connection first procedure creates multiple

low distance path fragments which are merged sooner
or later. We chose this approach because it seems nat-
ural to incorporate those adjacencies first into an order-
ing that are most promising to be investigated for gap
closure.
As already indicated, repeating or rearranged regions

may prohibit an unambiguous linear ordering of the
contigs. Repeating contigs create cycles in a possible
path, and rearrangements can lead to conflicting adja-
cencies of a contig. To model both, we relax the con-
straints of the multi-fragment heuristic: First, we do not
check for cycles, which permits repeating contigs to be
incorporated adequately. Secondly, when inserting an
edge, we allow one of the incident nodes, but not both,
to exceed the degree of two, which allows to also
include conflicting information into our layout. The
result of this modified heuristic is a subgraph of the
contig adjacency graph L ⊂ G  , , that we call the lay-
out graph. The algorithm to generate the layout graph is
formally described in Figure 3. Note that the resulting
layout graph is not necessarily connected.
The layout graph can be analyzed to make assump-

tions about repeating contigs and rearrangements. Con-
flicting edges can give hints about these two problems,
whereas the information about unambiguously incorpo-
rated contigs can be used to generate primer pairs for
gap closure. Displaying also the ambiguities allows to

Figure 2 Insertion distance. (a) An insertion in the reference genome leads to a positive distance, whereas (b) an insertion in a contig leads to
a negative distance.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 4 of 12

investigate the conflicting connections further. Instead
of pinning the result down to a single, possibly wrong,
order of the contigs we prefer to output the best possi-
bilities. Nonetheless it should be kept in mind that rear-
rangements can cause seemingly good adjacencies that
do not belong to a correct layout.
Integrating additional information
In sequencing projects often additional information
occurs which can be helpful for the scaffolding of a gen-
ome. After introducing two of such information types,
we outline how they may be incorporated into our
approach.
1. Recent protocols for parallel pyrosequencing pro-

duce mate pair information. Fragments of a defined size
are sequenced from both ends thus providing the approx-
imate distance as well as the orientation of both reads
relative to each other. This information simplifies the
assembly and sometimes indicates adjacencies of contigs.
2. After an initial assembly of the reads, often fosmid

libraries are employed to accomplish the finishing of a
genome. Fragments of the genome with a size between
35 and 40 kb are used as inserts for the fosmids in
order to sequence the ends of each inserted fragment. If
those end sequences can be mapped to different contigs,
it is possible to infer the distance and orientation of
contigs towards each other. Fosmid libraries have the
additional advantage that they can be used for primer
walking even if the gaps between the contigs exceed the
usual size to do primer walking on the genome. But of
course this advantage is paid for with a high amount of
work to create the library.
The information from mate pairs, fosmid libraries or

on a larger scale even radiation hybrid maps can be

included into our approach by modifying the weights of
the computed contig adjacency graph. This influences
also the predicted adjacencies in the layout graph which
is the outcome of our algorithm. If expert information
indicates that two contigs are not adjacent, it suffices to
set the appropriate edge weight to zero. This contig
connection will not occur in the result afterwards. On
the contrary, if for example fosmid end sequencing
shows that two contigs are adjacent and quite close, the
incorporation of that edge into the layout graph can be
forced by setting the corresponding edge weight to the
maximum weight of the graph.

Results and discussion
Datasets
To evaluate our proposed method, we prepared three
datasets, each consisting of a set of contigs to be
layouted and a set of reference genomes which are
related to the contig’s genome. From sequencing pro-
jects conducted at Bielefeld University, we obtained the
contig sequences for three genomes of the Corynebac-
teria genus: C. aurimucosum (NC_012590), C. urealyti-
cum [14], and C. kroppenstedtii [15]. The complete
genomes of these species have already been finished and
are available from NCBI [16,17]. This enables us to
compute a reference order for each set of contigs that
serves as a ‘standard of truth’. The reference order was
devised by mapping the contigs onto their correspond-
ing finished genome and placing each contig on that
region where it gained the most matches. We would like
to note that such a reference order is not necessarily
unique since contigs often contain or even consist of
repeating regions which map non-uniquely to multiple
locations. On the contrary, some of the contigs do not
even match at all and could for this reason not be
included in the reference order: Five out of originally
113 contigs were affected in the C. aurimucosum gen-
ome. Two of them are very small (241 and 304 bases,
respectively) but the other three have a considerable size
of 28 kb in total. The explanation for the latter not
matching is that the sequences belong to the C. aurimu-
cosum plasmid pET44827. On the finished C. kroppen-
stedtii genome, two very small contigs (118 and 222
bases) out of 11 could not be matched. For C. urealyti-
cum we used all contigs larger than 500 bases since
many smaller contigs could not be placed appropriately.
This way 154 of originally 223 contigs with a total size
of 22 kb were not used which equals less than 0.01% of
the finished genome. Moreover, the N50 contig size,
which is a more robust measure than the mean or med-
ian to characterize the contig’s size distribution, stays
the same for the reduced set. In all following experi-
ments the contig sets were composed of only those con-
tigs that also appear in the reference order. The contig

Figure 3 Contig adjacency discovery algorithm. Heuristic to
compute the layout graph which shows the most promising contig
adjacencies.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 5 of 12

sets together with some important properties are shown
in Table 1.
As reference genomes for ordering the contigs, the

three above mentioned finished genomes were used and
were extended by choosing four more publicly available
Corynebacteria genomes, C. diphtheriae, C. efficiens, C.
glutamicum, and C. jeikeium, that we downloaded from
NCBI. The complete set of reference genomes, including
their accession numbers, is shown in Table 2. Obviously,
whenever a genome is to be reconstructed from its set
of contigs, this genome is removed from the dataset of
reference genomes. For our algorithm the phylogenetic
relationship between the species plays an important
role. Figure 4 shows the evolutionary tree of all
employed genomes. The tree was generated with the
EDGAR framework [18] applying Neighbor Joining [19]
to a set of core genes. As a more detailed illustration for
the varying degree of rearrangements and synteny
between the employed species, Figure 5 shows four
example synteny plots for the contigs of C. urealyticum.
While Figure 5(a) shows a high degree of synteny and
only few rearrangements to the C. jeikeium genome, Fig-
ure 5(d) shows low synteny combined with many major
rearrangements in the C. aurimucosum genome. Figures
5(b) and 5(c) show similar rearrangements but differing
levels of synteny with respect to the genomes of C. effi-
ciens and C. diphtheriae. It is clearly observable that due
to rearrangements a mapping of the contigs on the dis-
played related genomes would provide incorrect adja-
cencies of some contigs.

Experimental setup
In the following we address the outcome of three differ-
ent experiments: At first we used PGA [11] to order the
contigs, given the finished genome as reference. Sec-
ondly, we applied OSLay [9] and Projector2 [6] to find
an ordering of the contigs, each time with the closest
genome as reference sequence. Finally, as an evaluation
of our proposed method, we compare the performance
of PGA and our implementation treecat using all refer-
ence genomes except for the one to be finished.

In each experiment, the mentioned programs were run
to devise an ordering of the contigs. The output was
then compared to the reference order. We counted all
connections which also occur in the corresponding
reference order as true positives (TP), all others as false
positives (FP). From these values we calculated the sensi-
tivity (also called true positive rate, TPR TP

P , where P
is the number of connections in the reference order) as
well as the precision (also called positive predictive
value, PPV TP

TP FP ). All four values are given in the
result tables for each experiment. For PGA, which is a
randomized algorithm, the results were often varying, so
we give the mean values for applying the program 20
times. Additionally the best result, which yielded the
highest TP while having the lowest FP, is given in
parentheses.
Assessing the difficulty of comparative assembly
Uniqueness of a linear order
Our first experiment serves as a demonstration how dif-
ficult it is to order the contigs of the given datasets.
PGA was applied on each contig set with only one refer-
ence, the already finished genome of the contigs, which
ought to provide the ‘perfect’ information.

Table 1 Contig sets

Contig
Organism

Contigs Total Length N50 Contig Size

C. aurimucosum
ATCC 700975

108 2 716 204 bp 96 704 bp

C. kroppenstedtii
DSM 44385

9 2 434 935 bp 546 376 bp

C. urealyticum
DSM 7109

69 2 294 755 bp 86 391 bp

The three contig sets that were used to evaluate our algorithm. All
corresponding genomes have already been finished. The N50 contig size
gives the size of the largest contig such that at least half of the total size is
covered by contigs larger than that contig. This measure is more robust than
the mean or median if many small contigs exist.

Table 2 Reference genomes

Reference Organism Sequence Length Accession Nr.

C. aurimucosum ATCC
700975

2 790 189 bp NC_012590

C. diphtheriae NCTC
13129

2 488 635 bp NC_002935

C. efficiens YS-314 3 147 090 bp NC_004369

C. glutamicum ATCC
13032

3 282 708 bp NC_006958

C. jeikeium K411 2 462 499 bp NC_007164

C. jeikeium K411
plasmid pKW4

14 323 bp NC_003080

C. kroppenstedtii DSM
44385

2 446 804 bp NC_012704

C. urealyticum DSM
7109

2 369 219 bp NC_010545

Overview of the reference sequences of the Corynebacteria genus that were
employed for our study.

Figure 4 Phylogenetic tree. Phylogenetic tree of the employed
Corynebacteria. For all species marked with an asterisk (*) the
underlying contig data were available. The tree was calculated with
EDGAR [18], the image was generated with PHY.FI [23].

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 6 of 12

A run of PGA proceeds as follows: First BLAST is
used to match the contigs on each given genome. After
that PGA computes five paths for the contigs that opti-
mize a fitness matrix which is comparable to our contig
adjacency graph. For that purpose a genetic algorithm is
used, possibly giving different connections with each
run. The connections of all five paths are included into
the result together with a weight giving the percentage
how often this connection occurred.
The results of this experiment are shown in Table 3.

Both sensitivity and precision are comparably low for all
datasets. We see the reason for this mainly in repeating
sequences flanking the contigs. Sometimes almost the
whole sequence of a contig is repeating which leads to
cycles in a potential path that orders the contigs. This
can clearly be observed in Figure 6 which visualizes the
contig connections that PGA predicts for the example
of C. urealyticum. The node labels in this graph are the

ranks of the corresponding contigs with respect to the
reference order of the contigs. The correct path should
therefore be 0, 1, ..., 68. Some nodes are missing in this
graph since PGA filters all contigs of length less than 3
500 bases. The edge labels give the percentage how
often a connection occurs in the five paths. In this
example it is observable that there are loops of connec-
tions where the contigs are almost uniquely orderable
but there also occur parts where such a linear order can
not be achieved. This experiment shows that it is not
feasible to generate a linear ordering if repeating regions
would create cycles in a potential path. If the contig
adjacencies are not unique, then, to our opinion, it
would be better to show the most probable alternatives
instead of relying on a linear path. This, however
increases the false positive rate of results created that
way. In fact PGA does show alternatives by combining
the results of five paths but each path corresponds still

Figure 5 Synteny plots. Pairwise synteny plots of the contigs of C. urealyticum and four chosen complete genomes of the Corynebacteria
genus. The contigs are stacked on the vertical axis in reference order, separated by horizontal lines. The ticks below each synteny plot indicate
uncovered regions.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 7 of 12

to a linear ordering. One has to decide what is more
valuable: A single linear ordering which could also be
wrong or the display of possible alternatives with the
risk of producing some false positives. We believe that
the latter pays off when trying to manually close the
gaps during genome finishing.

Single reference based ordering
The second experiment was designed to underline that
the incorporation of several related genomes is favorable
to the use of only a single reference sequence. There-
fore, we applied OSLay [9] and Projector2 [6] on our
datasets using the closest phylogenetic neighbor as refer-
ence sequence.
To generate the OSLay results, the contigs were

mapped using nucmer from the MUMMER package
[20]. We used OSLay then to compute an optimal synte-
nic layout of the contigs using the standard parameters
of the implementation. The adjacencies were finally
extracted from the supercontigsList.x.txt files. The Pro-
jector2 results were generated using its web-service with
standard parameters. The matching was performed by
running BLAT on the server.
The results for OSLay and Projector2 are shown in

Table 4. Both programs do not predict many connec-
tions that also occur in the reference order. Although a
direct comparison is not fair we will see in the next
experiment that the use of multiple related genomes as
reference sequences improves the resulting layouts.

Evaluation
Implementation treecat
We implemented our proposed algorithm in Java. The
software treecat (tree based contig arrangement tool)
contains a re-implementation of the fast local alignment

algorithm swift [12], the contig adjacency graph creation,
a branch and bound exact TSP algorithm, and the fast
layout graph heuristic described in section ‘Fast adja-
cency discovery algorithm’. The software is open source
(GPL) and available within the Comparative Genomics -
Contig Arrangement Toolsuite (cg-cat, http://bibiserv.
techfak.uni-bielefeld.de/cg-cat) on the Bielefeld Bioinfor-
matics Server (BiBiServ). Input to treecat are the
FASTA [21] sequences of the contigs and of the related
references as well as a phylogenetic tree in Newick for-
mat. Each reference can consist of several sequences, for
example several chromosomes. When the algorithm is
run, first all matches from the contigs to each reference
are computed. For the following results, matches were
considered to have a minimal length of 64 bases and a
maximum error rate of 8%. The matches are cached
which allows a visualization like in Figure 5 and avoids
a new computation if subsequent steps are re-run with
different parameters. As the second step, after the
matching, the contig adjacency graph is constructed as
defined in the Methods section. The following (empiri-
cally estimated) parameters were used for the scoring
function (1) to compute the results: The standard devia-
tion of the insertion/deletion size was set to s1 = 10 000
bases and the expected lost fragment size to μ = 2 000

Table 3 PGA results - Perfect reference

Organism PGA

TP FP TPR PPV

C. aurimucosum 19.3 (20) 44.2 (40) 0.18 (0.19) 0.30 (0.33)

C. kroppenstedtii 3.0 (3) 3.0 (3) 0.33 (0.33) 0.50 (0.50)

C. urealyticum 24.2 (25) 33.4 (31) 0.35 (0.36) 0.42 (0.45)

Results of applying PGA using the already finished genome as reference
sequence. The values are averaged over 20 times applying PGA. The best
result of these runs is given in parentheses.

Figure 6 PGA with perfect reference . C. urealyticum contig
connections generated by PGA when using the finished genome as
reference sequence. Here, the best result (25 TP, 31 FP) achieved in
20 runs is displayed. The contig nodes are numbered in reference
order.

Table 4 OSLay and Projector2 results

Organism Closest Reference OSLay Projector2

TP FP TPR PPV TP FP TPR PPV

C. aurimucosum C. glutamicum 0 1 0.00 0.00 10 20 0.09 0.33

C. kroppenstedtii C. jeikeium 0 0 0.00 undef. 1 2 0.11 0.33

C. urealyticum C. jeikeium 6 6 0.09 0.50 8 18 0.12 0.31

Results of OSLay and Projector2 using the phylogenetically closest genome as reference sequence.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 8 of 12

http://bibiserv.techfak.uni-bielefeld.de/cg-cat
http://bibiserv.techfak.uni-bielefeld.de/cg-cat

bases with a standard deviation of s2 = 1 000 bases. The
lost fragment weighting factor � was set to 0.1. In the
last step, the computed adjacency graph is used to
devise the contig layout graph which can then be visua-
lized with the open source software package GraphViz
[22].
Comparison of PGA and treecat
In this experiment we applied our new algorithm to the
three evaluation datasets and compared the results to
the output of PGA. All sequences of Table 2, except the
genome of the contigs to be layouted, served as refer-
ences to find a layout for one of the contig sets in Table
1. PGA was run using the standard parameters given in
[11], for treecat the parameters were used as stated
above. The results of this comparison are listed in Table
5 and the running times of both programs, for matching
and layouting, are shown in Table 6. The comparison
shows that our method achieves in general better results
than PGA, even compared to the best PGA result out of
20 runs, while being much faster.

As an illustration of the results, Figures 7 and 8 show
the resulting graphs of PGA and treecat, respectively,
for the example of the C. urealyticum contigs. In both
graphs the number of a node is again the rank of the
corresponding contig with respect to the reference
order. In Figure 8 some additional information about
the size and the repetitiveness of the contigs is given.
The second line of a node indicates the size of a contig
in kb, contigs smaller than 3.5 kb are drawn in gray.
Contigs of which more than 95% of the sequence is
repeating on at least one reference genome have a

rectangular node. The edge weights in Figure 8 are the
weights calculated with the scoring function (1) in loga-
rithmic scale.
Comparing the graphs of both programs visually gives

the impression that the treecat result is a little less clut-
tered. This impression becomes even stronger if all
small nodes in gray are ignored.
There are a few details to mention when investigating

the resulting graphs for ordering the C. urealyticum
contigs. PGA’s graph contains a connection placing con-
tig 26 next to contig 52 which is obviously incorrect.
Our approach does not show this connection. Manual
inspection shows that this is due to the evolutionary dis-
tances that we incorporate for the edge scoring since
phylogenetically closer genomes do not contain this
adjacency. This is further supported by the fact that the
connection is also not present when PGA uses the ‘per-
fect’ reference, see Figure 6.
In our graph the connection from contig 4 to contig

56 as well as the connection from contig 7 to contig 58
has a high score but is not correct. This is explainable
due to the big inversion, see Figure 5(a), in the C. jei-
keium genome which is the next phylogenetic neighbor
to C. urealyticum and therefore has a high influence on
our result.
Further investigation of the treecat result in Figure 8

gives additional details: For the contigs 12 to 26, an
almost unique path can be observed that orders most of
the inner contigs. Repeating contigs like 27 or 62 show
a star-like adjacency pattern which can be explained by
different adjacencies of the corresponding repeat occur-
rences. However, there are also larger non-repeating
contigs, like contig 12, that show such a star pattern. In
this case several different repeating contigs neighbor
this contig on different references. The graph shows a
double connection 46 to 47, which can be explained by
a repeating reverse complement match of a part of con-
tig 46 that lies once before contig 47 and once behind
it. This results in a high edge weight for the left connec-
tors {l46, l47}, as well as the right connectors {r46, r47} of
these contigs. Some connections, like 52 to 55, seem to
imply missing contigs, but further investigation reveals
that contigs 53 and 54 are partially repeating contigs
which fit between the mentioned contigs but as well
next to other contigs. There are adjacencies in the

Table 5 PGA and treecat results using multiple references

Organism PGA treecat

TP FP TPR PPV TP FP TPR PPV

C. aurimucosum 14.5 (16) 66.5 (70) 0.13 (0.15) 0.18 (0.19) 17 66 0.16 0.20

C. kroppenstedtii 2.0 (2) 4.0 (4) 0.22 (0.22) 0.33 (0.33) 3 6 0.33 0.33

C. urealyticum 20.9 (25) 72.5 (76) 0.30 (0.36) 0.22 (0.25) 27 70 0.39 0.28

Evaluation of applying PGA and treecat for ordering the sets of contigs with the help of the remaining genomes as references. PGA’s results are averaged over
20 runs, the best run (highest TP with lowest FP) is given in parentheses. The overal best result is printed in bold face.

Table 6 PGA and treecat results using multiple refer-
ences: Times

Organism PGA treecat

Matching Layouting Matching Layouting

C. aurimucosum 436.2 s 184.1 s 104.4 s 0.9 s

C. kroppenstedtii 208.4 s 25.6 s 83.4 s 0.4 s

C. urealyticum 458.8 s 161.5 s 100.0 s 1.2 s

Running times for PGA and treecat to generate the results of Table 5. The
matching for PGA, done with BLAST, was measured only once, the times for
layouting are the mean of 20 runs. The times for treecat are the mean of
three runs. All times are given in seconds for performing the experiments on
a sparcv9 processor operating at 750 MHz under Solaris.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 9 of 12

Figure 7 PGA with multiple references. The best result (25 TP, 76 FP) PGA generated in 20 runs for ordering the C. urealyticum contigs when
using all other genomes as reference sequences. The contig nodes are numbered in reference order.

Figure 8 treecat with multiple references. C. urealyticum contig connections generated by treecat when using all other genomes as reference
sequences. The contig nodes are numbered in reference order. Contigs smaller than 3.5 kb have gray nodes, repeating contigs for which at
least 95% of the sequence occurs more than once on a reference genome have rectangular nodes. Edge weights are given in logarithmic scale.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 10 of 12

layout graph that have a high difference in the rank of
the reference order. For example the connection from
contig 16 to 44 seems erroneous but it can be explained
by a 1.5 kb repeating substring of contig 44. Similar
observations can be made in several other places.

Conclusions
In this paper, we presented an algorithm that orders a
set of contigs, given several related reference genomes
and a phylogenetic tree of the involved species. In parti-
cular, we proposed a more flexible output for the order-
ing of contigs since our results demonstrate that for real
world data the search for one linear optimal ordering of
the contigs is not feasible. Consequently, our algorithm
allows alternative connections in a layout which is
necessary because of repeating regions and rearrange-
ments between the species. Secondly, we introduced a
novel scoring function for the contig adjacency estima-
tion that is biologically motivated in two ways: It con-
tains a sophisticated weighting scheme for the distances
of projected contigs and it integrates the phylogenetic
distances of the species to alleviate the effects caused by
rearrangements. An evaluation of our algorithm shows
that its implementation treecat is considerably faster
than a recent approach from the literature while it is at
the same time generating better results. We believe that
with our approach of including phylogenetic information
into the problem of contig layouting, we have gone one
step further in using all available information for this
important task within genome finishing.
Nevertheless, in sequencing projects, often additional

information emerges which is not yet included in our
approach. For example, information derived from mate
pairs, fosmid libraries or radiation hybrid maps might
give valuable hints on the orientation and the distance of
contigs while not being biased by evolutionary events.
Concerning the phylogenetic tree, rearrangements
between the genomes were not predicted by the methods
presented in this paper. This leads to ambiguous infor-
mation for the ordering of contigs and thus to weak or
misleading adjacency scores which need to be curated
manually. A strategy for the discovery of rearrangements
is thus desired in future work. Furthermore, due to hori-
zontal gene transfer some regions of a genome can have
different evolutionary histories than others. Detecting
such regions and treating them in a special way might be
advisable in an even more sophisticated approach.

Acknowledgements
The authors wish to thank Christian Rückert, Susanne Schneiker-Bekel, Eva
Trost, and Andreas Tauch for the sequence data, Jochen Blom and Burkhard
Linke for the phylogenetic tree, and Travis Gagie and Roland Wittler for
helpful discussions.
A preliminary version of this work appeared in the WABI’09 proceedings.

Author details
1AG Genominformatik, Technische Fakultät, Bielefeld University, Germany.
2International Graduate School in Bioinformatics and Genome Research,
Bielefeld University, Germany. 3Institute for Bioinformatics, Center for
Biotechnology (CeBiTec), Bielefeld University, Germany.

Authors’ contributions
PH conceived the algorithm, implemented the software, performed the
evaluation, and drafted the manuscript. JS supervised this work, provided
the initial idea and contributed to the editing of the manuscript. Both
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 7 August 2009
Accepted: 4 January 2010 Published: 4 January 2010

References
1. Staden R: A strategy of DNA sequencing employing computer programs.

Nucleic Acids Res 1979, 6(7):2601-2610.
2. Anderson S: Shotgun DNA sequencing using cloned DNase I-generated

fragments. Nucleic Acids Res 1981, 9(13):3015-3027.
3. Mardis ER: The impact of next-generation sequencing technology on

genetics. Trends Genet 2008, 24(3):133-141.
4. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing

technology. Trends Genet 2008, 24(3):142-149.
5. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating

inhibitors. Proc Natl Acad Sci USA 1977, 74(12):5463-5467.
6. van Hijum SAFT, Zomer AL, Kuipers OP, Kok J: Projector 2: contig mapping

for efficient gap-closure of prokaryotic genome sequence assemblies.
Nucleic Acids Res 2005, 33:W560-W566.

7. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment
search tool. J Mol Biol 1990, 215:403-410.

8. Kent WJ: BLAT - The BLAST-Like Alignment Tool. Genome Res 2002,
12(4):656-664.

9. Richter DC, Schuster SC, Huson DH: OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics 2007, 23(13):1573-1579.

10. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence
finishing. Genome Res 1998, 8(3):195-202.

11. Zhao F, Zhao F, Li T, Bryant DA: A new pheromone trail-based genetic
algorithm for comparative genome assembly. Nucleic Acids Res 2008,
36(10):3455-3462.

12. Rasmussen KR, Stoye J, Myers EW: Efficient q-Gram Filters for Finding All
epsilon-Matches over a Given Length. J Comp Biol 2006, 13(2):296-308.

13. Bentley JL: Fast Algorithms for Geometric Traveling Salesman Problems.
Informs J Comp 1992, 4(4):387-411.

14. Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, Goesmann A, Arnold W,
Bekel T, Brinkrolf K, Brune I, Götker S, Kalinowski J, Kamp PB, Lobo FP,
Viehoever P, Weisshaar B, Soriano F, Dröge M, Pühler A: The lifestyle of
Corynebacterium urealyticum derived from its complete genome sequence
established by pyrosequencing. J Biotechnol 2008, 136(1-2):11-21.

15. Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P,
Gartemann KH, Arnold W, Blom J, Brinkrolf K, Brune I, Götker S, Weisshaar B,
Goesmann A, Dröge M, Pühler A: Ultrafast pyrosequencing of
Corynebacterium kroppenstedtii DSM44385 revealed insights into the
physiology of a lipophilic corynebacterium that lacks mycolic acids. J
Biotechnol 2008, 136(12):22-30.

16. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler G,
Tatusova TA, Rapp BA: Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res 2000, 28:10-14.

17. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL:
GenBank. Nucleic Acids Res 2000, 28:15-18.

18. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Goesmann A:
EDGAR: A software framework for the comparative analysis of microbial
genomes. BMC Bioinformatics 2009, 10:154.

19. Saitou N, Nei M: The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.

20. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL: Versatile and open software for comparing large genomes.
Genome Biol 2004, 5(2):R12.

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/461197?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6269069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6269069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/271968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/271968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17463020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9521923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9521923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18367281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18367281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18367281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18430482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18430482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18430482?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592169?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19457249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19457249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3447015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3447015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759262?dopt=Abstract

21. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85(8):2444-2448.

22. Gansner ER, North SC: An Open Graph Visualization System and Its
Applications to Software Engineering. Softw Pract Exper 1999, 30:1203-
1233.

23. Fredslund J: PHY.FI: fast and easy online creation and manipulation of
phylogeny color figures. BMC Bioinformatics 2006, 7:315.

doi:10.1186/1748-7188-5-3
Cite this article as: Husemann and Stoye: Phylogenetic comparative
assembly. Algorithms for Molecular Biology 2010 5:3.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Husemann and Stoye Algorithms for Molecular Biology 2010, 5:3
http://www.almob.org/content/5/1/3

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16792795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16792795?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Matching contigs against a reference
	Contig adjacency graph
	Finding a tour through the graph
	Fast adjacency discovery algorithm
	Integrating additional information

	Results and discussion
	Datasets
	Experimental setup
	Assessing the difficulty of comparative assembly
	Uniqueness of a linear order
	Single reference based ordering

	Evaluation
	Implementation treecat
	Comparison of PGA and treecat

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

