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Abstract

Background: With the advent of high throughput sequencing techniques, large amounts of
sequencing data are readily available for analysis. Natural biological signals are intrinsically highly
variable making their complete identification a computationally challenging problem. Many attempts
in using statistical or combinatorial approaches have been made with great success in the past.
However, identifying highly degenerate and long (>20 nucleotides) motifs still remains an unmet
challenge as high degeneracy will diminish statistical significance of biological signals and increasing
motif size will cause combinatorial explosion. In this report, we present a novel rule-based method
that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet,
avoids costly enumeration present in existing combinatorial methods and is amenable to parallel
processing.

Results: We have conducted a comprehensive assessment on the performance and sensitivity-
specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions.
The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed
the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual
Luciferase reporter assay.

Conclusion: iTriplet is a novel rule-based combinatorial or enumerative motif finding method that
is able to process highly degenerate and long motifs that have resisted analysis by other methods.
In addition, iTriplet is distinguished from other methods of the same family by its parallelizability,
which allows it to leverage the power of today's readily available high-performance computing
systems.

Background

Here we present a rule-based method to identify degener-
ate and long motifs in nucleic acid sequences. The widely
accepted sequence motif finding problem formulation
proposed by Pevzner and Sze in [1] is adopted in this arti-
cle. We call an oligomer of length I, an Imer. A motif
model is denoted by <I, d>, where [ is the length of the
motif, and d is the maximum number of mutations

allowed with respect to the motif. An instance of a motif
is termed d-mutant. Two d-mutants of the same motif
must not differ by more than 24 differences. We call two
Imers neighbors if their difference is < 2d. Given n
sequences, each of length L (could be of variable length),
the goal is to locate the set of d-mutants in each sequence
from the sample where the largest difference between any
pair of d-mutants in the set is < 2d. In the following we
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will briefly summarize two major motif finding
approaches, viz. statistical and combinatorial. Readers
who are interested in a more comprehensive survey about
motif finding can refer to [2,3].

Position weight matrix is often used as a statistical scoring
system to identify biological signals from background.
This technique implies that biological signals consist in
part of conserved nucleotides that are that critically
important for their potency. As a result, motifs discovered
by this approach tend to contain relatively invariant
nucleotides at a few positions. Many transcription factor
binding site prediction methods are developed based on
this approach. Gibbs sampling and expectation maximi-
zation are typical techniques employed by MEME [4,5],
AlignACE [6], BioProspector [7], MDScan [8] and Motif-
Sampler [9]. The primary advantage of this approach is its
speedy runtime and minimal memory consumption.
However, statistical overrepresentation will vanish when
the size of the motif to the number of mutations ratio
decreases. One improvement of this approach is to incor-
porate phylogenetic information in background estima-
tion. Well-known examples of this approach include
FootPrinter [10] and PhyloGibbs [11]. However, such an
approach is challenged by multiple substitutions occur-
ring in distant species or motif searching in a single spe-
cies. Some other methods train a Markov model to
capture nucleotide dependency information of known
binding sites in order to make prediction for unseen cases.
One extension of the Markov model was reported in [12].
The authors incorporated several features, such as gaps
and polyadic sequence elements, to handle diversified
transcription factor binding sites.

An alternative to a statistical approach is the combinato-
rial or enumerative approach [1] where the observable
biological signals are believed to be the variation of a hid-
den motif, and they do not exhibit conspicuous conserva-
tion at any particular position, and yet they are similar to
each other. This approach is suitable for families of bio-
logical signals where the targeting proteins do not rely on
a few conserved nucleotides at fixed positions. Instead the
overall binding affinity is determined cooperatively by
nucleotides in a region. Many such examples are found in
precursor RNA processing signals including the pyrimi-
dine-rich region near 3' splice sites and the U/GU-rich
region downstream of polyadenylation sites. One funda-
mental problem faced by the enumerative approach is the
exponential growth of computing resources when the size
of the motif increases. To circumvent this, existing meth-
ods such as WINNOWER [1], MotifEnumerator [13],
MITRA [14], TIERESIAS [15], Gemoda [16] and PMS-
prune [17], employ various elegant pruning strategies to
abandon unpromising pursuits as early as possible.
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Both enumerative and statistical approaches have proven
to be valuable in analyzing real biological examples and
both approaches are complementary to each other. In
most situations when little prior knowledge is known
about the motif, we believe both approaches should be
considered. Since our focus is on solving degenerate and
long motifs, we adopt the enumerative approach that is
guaranteed to find the optimal motif by applying a novel
rule-based algorithm to identify all optimal motif candi-
dates without the expense of exploring the entire 4! space
exhaustively. In addition, our algorithm is designed to be
highly parallelizable so as to exploit today's parallel com-
puting technology in handling massive biological data. As
a proof of concept, we will evaluate our algorithm using
the simulated data described in [1]. Also we will show our
method is able to identify motifs in real promoter
sequences, and 5' and 3' untranslated regions (UTR) from
different species. Results show that our method can solve
highly degenerate and/or longer motifs that overwhelm
the capabilities of other methods. Furthermore, we have
compared the prediction accuracy of our method with the
statistical motif finding methods mentioned above and
find that our method is equal to and sometimes better
than these methods. Besides in-silico simulations, we have
also verified our prediction of downstream polyadenyla-
tion motifs for three human genes using a dual Luciferase
assay. Our software is developed in C++ and standard
template library (STL). It has been tested on Linux plat-
form. Interested readers can download the software freely
from this website http://www.rci.rutgers.edu/~gundersn

iTriplet.

Methods

iTriplet Algorithm

Our rule-based enumerative algorithm is named iTriplet.
It stands for inter-sequence triplets. A triplet consists of
three neighboring Imers (less than 2d differences from
each other) sampled from three different sequences. The
'inter-sequence’ part of the iTriplet algorithm systemati-
cally explores tripartite combinations of Imers from differ-
ent sequences in order to identify motif(s) that span all
sequences in the sample. The span of a motif refers to the
number of sequences containing its d-mutant. For clarity,
we will explain our method by limiting to only one motif
in the sample, and every sequence contains at least one
occurrence d-mutant of the motif even though our
method can deal with multiple motifs and 10-20% of
contamination. We will describe our iTriplet algorithm in
two parts: the 'inter-sequence' part will be discussed first,
followed by the Triplet algorithm.

The inter-sequence part of iTriplet
If sufficient number of sequences are given and the motif
model is not highly degenerate, i.e. small d with respect to
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I, the likelihood that an I-sized motif can span through all
sequences by chance is rare. Based on this insight, we uti-
lize the span of a motif as the indicator to identify unusual
motifs in a sample.

The inter-sequence part of iTriplet consists of two stages:
initialization stage and expansion-pruning stage. Below is
the description of the procedure.

Given a set of n sequences and a motif model <I, d>, ran-
domly designate two sequences from the sample as refer-
ence sequences, namely R1 and R2, and the rest as non
reference sequences Sy, S,, ..., S, ,.

Initialization stage: Randomly select an Imer (11) from R1
and a non reference sequence, say S;. Identify all possible
triplets based on r1, Imers from sequences R2 and S; as
illustrated in Figure 1A. For each triplet, identify the set of
motif(s), if any, common to the triplet using the Triplet
algorithm (will be discussed later). Store the returned
common motif(s) and its associated sequence IDs in a
hash table as shown in Figure 1B.

Expansion-pruning stage: Randomly select an unproc-
essed non-reference sequence, say S;. Similar to the initial-
ization stage, identify all triplets based on 71, Imers from
sequences R2 and S;. Identify the set of common motifs of
all triplets using Triplet algorithm and store them in the
hash table. Prune the hash table by removing motifs with
span not covering all processed sequences so far. If the
hash table is not empty after pruning, repeat the expan-
sion-pruning stage with the next unprocessed non-refer-
ence sequence. If the hash table is empty after pruning,
return to the initialization stage, randomly pick a different
Imer (r1) from R1, and repeat the same two-stage inter-
sequence process again until all /mers in R1 have been
processed. If all non-reference sequences have been proc-
essed and the hash table is not empty, then return
motif(s) in the hash table to the calling program.

As described above, the processing of different Imer r1 in
R1 are completely independent of each other. It means
that they can be executed simultaneously wherein not
even a single synchronization point is required. Therefore,
given M processors, the algorithm can trigger up to (M-1)
concurrent processes simultaneously. Theoretically, the
performance gain by parallelizing this step is (M-1) times
for a M-processor system where one processor is desig-
nated for overall coordination purposes. Our current par-
allel version of iTriplet is implemented based on this idea.

The Triplet part of iTriplet

The purpose of this part of the algorithm is to uncover the
complete set of motifs common to all members of the tri-
plet in a deterministic and efficient way. The clues solely
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come from the similarities and differences among the
three Imers rather than the enumeration of all possible
Imers. It is efficient because the number of motifs shared
among all three Imers should be small. By example, the
estimated probability of any three Imers to share at least
one common motif for models <12,3> and <30,9>, is 5.47
x 104and 2.97 x 104, respectively.

Before we describe the algorithm, we need to define two
main data structures used by this algorithm viz. move vec-
tor and score vector. The three Imers passed into this proc-
ess are stacked up conceptually to form I numbers of
three-nucleotide tall columns as shown in Figure 2B.
These columns must fall into one of the three patterns: (I)
with identical nucleotides denoted by P;; or (II) with all
different nucleotides, denoted by P, or (III) with two out
of three nucleotides being the same, denoted by P,
where m and n denote the indices of the two Imers with
dominant nucleotide. We will show later that common
motifs can be discovered by various ways of selecting
nucleotide from these three types of columns. Such selec-
tion is captured in a move vector which is illustrated in
Figure 2C. In addition, each move vector is associated
with a score vector which is defined as [i1, i2, i3], where
i1, i2 and i3 denote the numbers of identical positions
between the motif represented by the move vector and the
three given Imers [1, I2 and I3, respectively.

Triplet algorithm consists of three stages: 1) centroid Imer
construction, 2) exploratory scheme discovery, and 3)
motif generation. Below is the description:

Stage 1: centroid Imer construction. Given a triplet of
three Imers from the calling program, identify the three
column types P;, P, and P, as discussed above. Check if
the triplet satisfies this inequality: I-d < |P}| + |P,,,|*2/
3+|P,|*1/3 (for derivation, see Additional file 1) where
|Py|, |Pmnl and |P,.| denote the number of P, P, and P,
patterns respectively. If the given triplet fails to satisfy this
inequality, return no common motif and exit. Otherwise
take these three steps to construct the initial move and
score vectors: i) take the common nucleotides from col-
umns P, ii) take the dominant nucleotides from P, and
iii) for columns P, take the nucleotides from the Imer
which is currently farthest from the work-in-progress cen-
troid Imer produced by the previous two steps. Pass the
newly created move and score vectors to stage 2 for further
processing.

Stage 2: exploratory scheme discovery. Based on the excess
score(s) (> I-d) in one or more of the three values in the
initial score vector, formulate alternative ways to select
nucleotides from P, P, and P, patterns through the 61
rules (will be discussed later). An execution of a rule pro-
duces a new set of move vector(s) and its associated score
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Inter-sequence algorithm. (A) For each Imer rl in RI, identify 2d-mutants in sequences R2, S1, S2, ...

The rectangular box

represents the 2d-mutant of rl. The dotted line triangle represents a triplet. (B) Hash table to keep track of the span of the
putative motif. Hash table consists of two parts viz. key and value. In this case, the key is the putative motif; value is a list of
unique sequence IDs. Putative motifs are produced by the Triplet algorithm. They are common motifs to triplets.

vector. Repeat stage 2 processing of the new move vec-
tor(s) until all newly generated score vector(s) becomes [I-
d, I-d, I-d] i.e. no excess score. Pass all move and score vec-
tors generated in this stage to stage 3.

Stage 3: motif generation. Generate motif by going
through each value in the move vector, and select the
specified number of column patterns and associated
nucleotides accordingly. When all move vectors are proc-
essed, return all motifs to the calling program.
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move vector [5,2,1,2,1,0,0,1,0,0,0]

Due to 12—

Figure 2

Intuition of Triplet algorithm. (A) Intuition of Triplet algorithm. A triplet consists of 12 mers [I, 12 and 3. Il and I2, Il and
13, and 12 and I3 contain 4, 6 and 5 differences respectively as labeled in the lines connecting them. Use the 12 mer as the center
to draw an imaginary circle. Each circle denotes the set of neighboring 12 mers that are no more than 3 differences from the
center 12 mer. In other words, each circle represents the set of putative motifs that generate the center 12 mer. Note that we
do not actually generate the set of putative motifs. Centroid Imer is denoted by a diamond shape dot. The goal of the algorithm
is to uncover all members of the set in the intersection (dark gray) of the three sets. (B) Centroid Imer construction. Shown
are three patterns of columns viz. same nucleotide in three 12 mers P; (solid line vertical boxes in positions I, 5, 6 and 10), all
different nucleotides across three 12 mers P, (vertical box with dashed boundary in position | I), and two out of three 12
mers having the same nucleotides P, (dotted line vertical boxes in positions 2, 3, 4, 7, 9, and 12). The centroid Imer is con-
structed in stage | of Triplet algorithm described in the text. The number of identical positions between the centroid Imer and
I, 12 and I3, is represented by the score vector and the selection of nucleotides encoded in move vector (C) Structure of move
vector. (D) Exploratory scheme discovery from stage 2 of Triplet algorithm. Centroid Imer constructed in Figure 2B is modi-
fied by the composite operation of sac(P,,) and nc(3,1) to create three extra motifs near its neighborhood. (E) Example of
applying rule 13 to create a new move vector in (D).
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Regarding the rules mentioned in stage 2 of Triplet algo-
rithm, they are actually made of five basic operations
listed in Table 1. These five basic operations are the only
possible alternatives to the selections which produce the
centroid Imer. The basic operation can be applied individ-
ually or be combined with one other basic operation to
act like a single operation, namely a composite operation.
Basic or composite operations act on the current move
vector in the light of its score vector. To facilitate search-
ing, we pack the basic/composite operation and its impact
or changes on the current score vector, namely impact vec-
tor, into a new construct called rule as shown in Figure 2E.
These 61 rules are further organized into three non-mutu-
ally exclusive groups, each group has 42 rules, according
to which Imer in the triplet possesses excess score (full list
can be found in the Additional file 1). The decision to
select a rule is determined by the three conditions. First, it
has not been chosen already. Second, the three values of
the new score vector, obtained by the addition of the
impact vector and the current score vector, must be > I-d.
Third, the triplet contains the column pattern(s) required
by the basic and/or composite operation. Notice that
every rule will reduce the total score value of the new score
vector. It means that successive applications of these rules
will eventually create a score vector of its minimum score
values [I-d, I-d, I-d] and that marks the terminal state.

Regarding stage 3, one move vector may generate more
than one motif. For the example in Figure 2D, the new
move vector due to rule 13 is [5,2,1,2,1,0,0,1,0,0,0]. The
first value specifies to select the nucleotides from the five
P; column patterns which are found in positions 1, 5, 6, 8
and 10 (see Figure 2B). Since there are exactly five P; col-
umn patterns, only one way is possible. The second value
of the move vector specifies to choose dominant nucle-
otides from two P,, column patterns out of three and to
choose the odd nucleotide from the remaining one. It will
generate three possibilities. The rest of the values in the
move vector will be processed similarly.

We have given the full description of iTriplet algorithm.
Regarding the correctness of the algorithm, at this stage,
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we have not come up with a theoretical proof yet, however
we have conducted extensive testing of more than 14,000
cases including models <11,2>, <12,3>, <13,3>, <15,4>,
<28,8> and <40,12>; over 2,000 cases per model. In each
case, we had generated 20 sequences each of length 600
with all nucleotides occurring equally likely. In each
sequence, a single I-size d-mutant was planted at a ran-
dom location. After each run, we checked whether the
returned motif from iTriplet was the same as planted or
not. iTriplet performed correctly for all cases.

Time and Space Complexities of iTriplet

The inter-sequence part of iTriplet mainly iterates all com-
binations of triplets among sequences. Therefore, for
model </, d>, we estimate the time complexity of the inter-
sequence part of iTriplet to be O(nL3pl) where n, L and p
are the number of sequences, length of sequence and
probability to form a triplet that shares at least one motif.
As discussed before, we estimate p should be in the range
of 104, and L should normally be 102. Therefore, the
effective time complexity of the inter-sequence part ranges
from O(nLl) to O(nL2l). Stage 2 of Triplet part should gen-
erate all possible score vectors as long as the score value
between each Imer and the centroid Imer is at least I-d. In
the worst case scenario, there are d3 score vectors. The gen-
eration of actual motifs based on the move vector in step
3 should depend on the size of the motif 1. Therefore the
time complexity of Triplet is O(d3l). Hence the overall
time complexity of iTriplet is O(nL3pl2d3). For PMSprune,
the time complexity is O(nL2N(l, d)), where N(I, d) is

d n i . .
21’:0 %I —) 1j13" - After eliminating the common terms,

the main difference lies in the growth of Lpl2d3 and N(I, d)
in iTriplet and PMSprune, respectively. When the motif
model is small, N(I, d) is smaller than Lpl2d3. However,
when [ increases, the combinations of N(I, d) grows expo-
nentially. iTriplet's space complexity depends on the

Table I: Five basic operations for triplet processing of iTriplet algorithm

Operations Description

Examples based on Figure 2D if possible

sac(P,,,.) Instead of choosing the dominant nucleotide from P, , column,
choose the odd nucleotide.

compl(P,,,)  Instead of choosing the dominant or odd nucleotide from P,
column, choose nucleotides complementary to them.

nc(i, j) Instead of taking nucleotide from Imer;, choose from Imer;in a
P, column.

nc(i,0) Instead of taking nucleotide from Imer;, choose from the
complementary nucleotide of a P, column.

sac_i(P) Instead of keeping the nucleotide identical to all Imers in the

triplet, take the three complementary nucleotides.

sac(P,,), take 'G'" at position 3 from I3 instead of 'C' from Il or 2

Apply on the 27 column, compl(P,3), take nucleotides
complementary to 'G' and 'T', i.e. choose 'A' or 'C' for position 2.
Apply nc(3,1) to position | |. Instead of choose 'A' from I3,
choose 'T' from /I at position | I.

Apply nc(3,0) to position | I. Instead of choose 'A' from [3, assign
the complementary nucleotide 'G' to position | I.

Apply sac_i(P;) to position |. Take 'A', 'G' or 'T" instead of 'C' at
position |.
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degeneracy of the model, therefore it is O(N(I, d)) before
pruning. After pruning, the space requirement will shrink.

Results and Discussion

Simulated data

In order to examine how iTriplet method can solve more
degenerate and longer motifs, we compared it with some
well known enumerative methods using simulated data.
The simulated sequences were generated as described in
the Additional Materials section. Simulated datasets were
constructed using a wide range of [ and d parameters in
order to compare the performance of different methods in
dealing with various sizes of the motif and/or noisy situa-
tions. The sequential version of our method was com-
pared with three other well-known methods that have the
same focus to guarantee finding the optimal motif viz.
MotifEnumerator [13], PMSprune [17], and RISOTTO
[18]. Sequential tests were conducted on a Linux machine
equipped with an Intel P4 3 GHz processor and 2 Gbytes
of memory. All methods can successfully identify the
planted motifs in the simulated dataset unless the runtime
was longer than 6 hours. We also repeated the same set of
tests for the parallel version of iTriplet on a three-node
Linux cluster equipped with the same processor as a
sequential test. Results are tabulated in Table 2. The sec-
ond column of Table 2 is the neighborhood probability of
each model, which is the probability that any two Imers
differ by no more than 2d by chance, a good indicator to
reflect the degree of degeneracy of the model.

For short motifs (<16 nucleotides) iTriplet is comparable
to the fastest (PMSprune) and is significantly faster than
MotifEnumerator and RISOTTO. When motif length is
longer than 16, all other methods take longer than 6

Table 2: Methods comparison on simulated datasets.

http://www.almob.org/content/4/1/14

hours to process. Note that iTriplet is able to process
highly degenerate <18,6> and <24,8> models which can-
not be handled by these other three methods as well as
other statistical based methods such as MEME, MotifSam-
pler and BioProspector. Based on these results, we learned
that the performance of all methods depends on [ and d,
but to a different extent. Intriguingly, the runtime of PMS-
prune quadrupled, though still very fast, when [ increased
from 12 to 15 even though the neighborhood probability
remained relatively at the same level. A similar trend is
also observed in RISOTTO but with even higher fold
increment in runtime. Such a phenomenon is not
observed in our method. When neighborhood probability
is doubled in models <12,3> versus <14,4>, and <14,4>
versus <16,5>, the runtime of PMSprune increased 15 and
13.5 times respectively and RISOTTO increased 12 and 10
times respectively whereas iTriplet only increased 6 and 9
times, respectively. Based on these observations, we can
understand that the algorithms employed by RISOTTO
and PMSprune are quite sensitive to both I and d even
when the neighboring probability remains at the same
level. Thus RISOTTO and PMSprune take a longer time to
search for the optimal motif; whereas the combined effect
of l and d on performance was less severe for iTriplet. This
explains why RISOTTO and PMSprune encountered diffi-
culty in handling longer motif models. This does not
exclude that iTriplet is unaffected by large d (high degen-
eracy). But one distinctive feature of our algorithm is that
it can split the task into smaller subtasks which can be run
independently in parallel. When comparing sequential
and parallel versions of iTriplet, the parallel version aver-
aged 1.77 times performance gain in a three-node cluster
that is quite close to the theoretical gain 2.0. Testing based
on the simulated data revealed that different methods

Models Neighborhood Probability MotifEnumerator RISOTTO PMSprune iTriplet iTriplet
(parallel)
11,2 0.7% 6s 22s I's 2s l's
12,3 5.4% I'm 40s 4s 33s 18s
13,3 2.4% 2m 33s 2s 6s 4s
14,4 11% -a 8m I'm 3m 2m
15,4 5.6% - 6m 16s 36s 19s
16,5 19% - 82 m 13.5m 26 m 13m
18,6 28% - -b -b 3h 1.5h
19,6 18% - - - 27 m 14 m
24,8 23% - - - 4h 2h
28,8 3% - - - 19s 10s
30,9 5% - - - 23 m I.5m
38,12 7% - - - I h 33m
40,12 3% - - - 5m 4m

Neighborhood probability refers to the probability that two Imers differ by no more than 2d differences. The formula to calculate neighborhood
probability is stated in the Additional file |. Time is measured in seconds (s), minutes (m) or hours (h). (a) MotifEnumerator ran out of memory for
| greater than 13. (b) Program took more than 6 hours to handle for the model <18,6> or longer. For the parallel version of iTriplet, reported

runtime is the longest lapse time required for all nodes to finish.
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have different tradeoffs in tackling the general <I, d> motif
problem therefore further investigation is still needed to
cope with various challenges of this problem.

Real biological sequences

Besides simulated datasets, we tested our method using
multiple sets of real biological sequences. One issue with
real biological sequences is the lack of prior knowledge
about the size and maximum numbers of mutations per-
mitted by the motif. The optimal motif(s) comes from the
model having the smallest neighborhood probability and
produces the least number of motifs. In order to pin down
the optimal motif, the algorithm must be run for a range
of I and d. But we have found that the search of the opti-
mal ! and d can be done methodically by making use of
the neighborhood probability of each model. In the situ-
ation when iTriplet has found too many motifs for the
specified model then we can conclude that the model is
too lax and so a more stringent model should be used, by
increasing I or reducing d or both at the same time. Alter-
natively, once a satisfactory model is found, one can look
for shorter models with similar neighborhood probability
if the shorter alternative gives a similar result. In order to
ease the effort for searching for the optimal model, iTri-
plet provides an autonomous mode option. Under auton-
omous mode, the program will explore various models
using the strategy just described, and return the best mod-
els with motif length from 6 to 40 bases and maximum
number of differences from 1 to 12. But the user also has
the option to limit the size of motif to a specific range.
Although many models are examined, only a very limited
numbers of models, usually none or one, can provide the
optimal motif unless the given sequences contain multi-
ple motifs. Several reasons are that a slight change in the
size and/or the maximum number of mutations will result
in a substantial change in neighborhood probability
which can be seen in Table 2. As mentioned in the Back-
ground section, we have included promoter and 5' UTR
regions from four genes commonly chosen as test cases for
motif finding algorithms [10,14,17]. In addition, we have
also added a set of 3' UTR sequences in our test in order to
understand how our method performs in other regions of
a gene. Table 3 summarizes the prediction by iTriplet for
various genes and genomic regions.

Multiple motifs are often identified by iTriplet for real bio-
logical sequences. Four reasons account for this: 1) the
number of sequences considered is small, mostly 4 in our
test therefore resulting in a higher chance to encounter
random span, 2) a naturally occurring recognition site is
not necessarily represented by one consensus, 3) it is pos-
sible for the biological sequence to carry more than one
signal especially in the 3' UTR, and 4) the presence of low
complexity repeats.

http://www.almob.org/content/4/1/14

Therefore we need a scoring system to filter out random
from genuine motifs. Since only a small number of
sequences are given, the set of true motif instances must
resemble each other more than a set of random Imers;
otherwise no conclusion can be made. As we have dis-
cussed in the inter-sequence algorithm section, if mem-
bers of the triplet are very similar to each other, the
intersection will become big, i.e. high numbers of com-
mon motifs. Based on this property, we derived a straight-
forward scoring system based on the numbers of common
motifs uncovered to support whether the finding is statis-
tically significant. Due to this, the 5' and 3' overlapping
neighbors of the true motif are often included as part of
the prediction as well. Therefore in some cases of the
genes listed in Table 3, the predicted motif is longer than
the model specified. Each prediction is a consensus of a
number of common motifs. The method of constructing
the consensus is similar to the frequency plot of Weblogo
[19]. Nucleotides with frequency at a position greater than
30% will be included in the consensus sequence. As can
be seen from Table 3, our predictions for promoter and 5'
UTR sequences, and 3' UTR regulatory elements are
largely consistent with published experimental data.

Sensitivity and specificity test

We also measured the prediction accuracy of iTriplet in
predicting transcription factor binding sites in E. Coli.
These binding sites are experimentally validated and doc-
umented in the RegulonDB database [20]. The test was
conducted using the three-level testing framework
described in [21]. Under this testing framework, the pre-
diction made by a method is measured at the nucleotide,
binding site and motif levels. In the first and second lev-
els, i.e. nucleotide and binding site levels, sensitivity, spe-
cificity, performance coefficient and F-measure are
computed based on the true positive (TP), false positive
(FP) and false negative (FN) information gathered by
comparing the predicted and actual binding sites. Per-
formance coefficient and F-measure were originally pro-
posed by [1,22] and [21] respectively. Both of them have
the advantage to combine sensitivity as well as specificity
perspectives into a single number so as to ease interpreta-
tion. The formula for these four measurements can be
found in the Additional Materials section. Note that at the
binding site level, a prediction is considered correct when
the predicted binding site overlaps with the actual binding
site by at least one nucleotide. These four measurements
were calculated for each transcription factor individually.
Averaged measurements of all transcription factors are
used for method comparison. The Kihara group [21] also
suggested a third level assessment that is motif level. The
rationale of this extra level test is to assess the adaptability
of the method to make correct predictions for a wide
range of transcription factors. The motif level measures
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Table 3: iTriplet prediction using real biological sequences.

Gene: Preproinsulin (IEBI) promoter+5' UTR Remarks
iTriplet GTYYGGAAAYTGCAGCYTCAGCCCC <25,2> model
PMSprune CAGCCTCAGCCCCTT Ref. [17]
MITRA CCTCAGCCCCC Ref. [14]
Published CTCAGCCCCCAGCCATCTGCCGACCCCCCC Transfac ID: R04457
Gene: DHFR (promoter+5' UTR) Remarks
iTriplet RWSTSGCGCSAAACY <15,3> model
PMSprune ATTTCGTGGGCA Ref. [17]
MITRA TGCAATTTCGCGCCAAAC Ref. [14]
Published ATTTCGCGCCAAA Transfac ID: RO1928
Gene: Metallothionein promoter+5' UTR Remarks
iTriplet TTTIGCRCTCGYCCC <15,1> model
PMSprune CTCTGCACACGGCCC Ref. [17]
MITRA TGCGCCCGG Ref. [14]
Published TGCGCCCGG Transfac ID: R08298
Gene: c-fos serum response element promoter+5' UTR Remarks
iTriplet CCATATTAGGACATCTGCGT <20,1> model
PMSprune CCAAATTTG Ref. [17]
MITRA CCATATTAGGACA Ref. [14]
Published CAGGATGTCCATATTAGGACATC Transfac ID: R00466
3'UTR Regulatory Elements iTriplet Prediction only Published Remarks
AU-rich (ARE) TTTTATTTATTTTT WWTTATTTATTWW <14,3> model
Cytoplasmic Polyadenylation element (CPE) TTTTAAT TTTTAT and TTTTAAT <6,1> model
Pumillio binding element (PBE) TKTWAATA TGTAAATA <8,1> model

Motif predicted by iTriplet is presented in consensus sequence. Bold and underlined sequence represents correctly predicted nucleotide. Transfac

IDs are obtained from TRANSFAC database [37]

the fraction of correct predictions out of all binding
sequences and transcription factors. iTriplet was com-
pared with the top three performers, i.e. MEME, BioPros-
pector and MotifSampler, listed in Table 1 of [21], and
WEEDER [23]. For each method, the parameter setup was
adopted from [21] except that no background sequence
information was used for BioProspector. Motif length was
set to 15, the same length used in [21] except WEEDER
where the maximum supported length is 12. We chose the
maximum differences in the range from 3 to 5. For accu-
racy measurements, the top five predictions were used for
the three selected methods. But in our case, we selected
only the highest score consensus motif(s) instead of the
top five used in [21]. Although only BioProspector and
MotifSampler exhibit variation in prediction even for the
same input sequences, in order to maintain fair treatment,
we still repeat the test ten times for all methods. Table 4
shows the averaged measurements of iTriplet together
with four other motif finding methods. iTriplet has dem-
onstrated better prediction accuracy than the other four

methods at both nucleotide as well as binding site levels
except the F-measure is second at the nucleotide level.
However, our mSr and sSr scores are ranked third mainly
because these two measurements tend to favor methods
with high sensitivity regardless of specificity. In the
extreme situation, if a method predicts all nucleotides are
part of a motif, it will score 1 for mSr and sSr. This point
is further evidenced by the disproportionality of sensitiv-
ity and specificity of the other three methods except
WEEDER at both nucleotide and motif levels. Therefore
we think PC and F-measure are fairer measurements of
prediction accuracy than mSr and sSr.

In vitro verification of predicted polyA downstream
elements

To examine whether motifs predicted by iTriplet had bio-
logical activity, we chose to examine sequences important
in the 3' end processing of mammalian pre-mRNA, in par-
ticular sequences found just downstream of the cleavage
and polyadenylation site. Almost all eukaryotic mRNAs
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contain a post-transcriptionally-added polyA tail that is
important for many aspects of mRNA function. According
to one bioinformatic study, 54% and 32% of genes in
human and mouse, respectively, contain more than one
polyadenylation site [24]. The polyA tail is added at the
polyA site (PAS) in the nucleus in a 2 two-step reaction
consisting of a large cleavage complex that cleaves the pre-
mRNA into two fragments followed by polyA tail addition
to the upstream fragment [25]. Two main sequence motifs
are important for cleavage/polyadenylation of mamma-
lian mRNAs. The highly conserved and well-understood
AAUAAA motif (called the polyA signal) is found 10-25 nt
upstream of the PAS. The second motif is found 10-30 nts
downstream of the PAS but is poorly understood due to
its low conservation both in sequence and position.
Although current bioinformatic approaches support the
view that this motif is U/GU-rich [26], they provide only
a limited understanding of what motif(s) lies in this
downstream region. First, the exact identity of this puta-
tive downstream motif for a given mammalian gene is
often ambiguous and indeed it is a distinct possibility that
there will be multiple motifs including auxiliary motifs.
Second, in some cases where the predicted motif was
examined by an extensive mutational analysis, the data
supported the existence of additional motifs important
for polyA site function [27]. Thus the prediction of this
downstream motif represents a type of problem suitable
for analysis by iTriplet. To this end the downstream
sequences of a set of genes was analyzed by iTriplet with
the predicted motifs being indicated in Figure 3. Accord-
ing to a NMR structural study of the U/GU-rich binding
protein CstF-64 [28], we believe the binding site should
not be longer than eight nucleotides. Hence we applied a
series of models ranging from 6 to 8 nucleotides long to
nine genes of interest to us viz. U1A, SPR40, CDC7, DATF,
LBP1, GAPDH, RAF, Mark1 and SmE. Results showed that
model <8,2> yielded the best fit with the consensus TCT-
GATTT and this motif agrees with previous analysis per-
formed by the Graber lab [26] that the downstream region
consists of a transition from UG-rich to U-rich in the 5' to
3" direction. MEME [4,5] was used to process the same set
of sequences with the resulting motif being BTRDG-
SCWSA that lacks such a transition.

http://www.almob.org/content/4/1/14

To test whether the TCTGATTT motifs identified by iTri-
plet were functional, the dual Luciferase reporter system
was used where Renilla Luciferase mRNA contained the
entire 3'UTR plus sequences past the PAS of the gene of
interest. A co-transfected Firefly Luciferase reporter was
included that serves as an internal normalization control.
As diagrammed in Figure 3, the plasmid pRL-GAPDHwt
was made from a standard pRL-SV40 Renilla expression
plasmid by replacing the SV40-derived 3'UTR and down-
stream polyA signal sequences with the human GAPDH
3'UTR and polyA signal region (NM_002046) including
116 nt past the polyA site. iTriplet predicted that GAPDH
has a motif we call GAPDH Motif A that would potentially
be important for polyA site activity. To determine if
GAPDH Motif A is functional, we mutated it as shown to
make plasmid pRL-GAPDHmt. Plasmids were transfected
into HeLa cells and Luciferase activity was measured; val-
ues for Renilla Luciferase were normalized to those
obtained from the co-transfected Firefly Luciferase control
plasmid. The pRL-GAPDHmt plasmid expresses 43% less
Renilla Luciferase than pRL-GAPDHwt, indicating Motif A
enhances Renilla Luciferase expression by about 2.2-fold.

The same analysis was done in panels B and C but for the
human RAF and human U1A genes, respectively. As can
be seen the RAF Motif A enhances expression 3.2 fold and
the U1A Motif A enhances expression by 5.1 fold. Here we
have demonstrated the predictive power of iTriplet for
these three genes however we do not exclude the existence
of other binding sites that can also affect polyA activity of
these genes.

Conclusion

We have presented a novel rule-based algorithm called
iTriplet to solve the challenging degenerate and long
motif finding problem that was unsolved before. In addi-
tion, we have confirmed our prediction for real biological
signals experimentally. The runtime of iTriplet is compa-
rable to other well-known methods of the same design
philosophy and is significantly better at analyzing longer
motifs (>16 nucleotides). To our knowledge, iTriplet is
the most parallelizable motif finding method in the fam-
ily of guaranteed optimal motif finding algorithms devel-

Table 4: Prediction accuracy of iTriplet versus four others motif finding methods.

Algorithms Nucleotide level Binding level Motif level
nPC nSn nSp nF sPC sSn sSp sF mSr sSr
iTriplet 0.195 0.292 0.322 0.286 0.319 0.489 0418 0.422 0.853 0.591
MEME 0.180 0.551 0.214 0.296 0.258 0.733 0.280 0.397 1.000 0.817
WEEDER 0.128 0.274 0.245 0.208 0.263 0.538 0.332 0.367 0.833 0.532
BioProspector 0.102 0.372 0.129 0.179 0.212 0.704 0.224 0.328 0.986 0.670
MotifSampler 0.052 0.257 0.068 0.091 0.106 0.422 0.1 0.162 0.461 0.392

PC, Sn, Sp and F are performance coefficient, sensitivity, specificity and F-measure level respectively. Prefixes 'n' and 's' represent nucleotide or
binding site level measurements respectively. mSr and sSr are motif and sequence level accuracy respectively.
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Figure 3

Confirmation of predicted polyA downstream elements by dual Luciferase reporter system. (A) pRL-GAPDHwt
was made from a standard pRL-SV40 Renilla expression plasmid by replacing the SV40-derived 3'UTR and polyA signal
sequences with the human GAPDH 3'UTR (NM_002046) and | |6 nt past the PAS. pRL-GAPDHmt matches pRL-GAPDHwt
but having Motif A mutated as shown. Plasmids were transfected into Hela cells and Luciferase activity measured 24 hours
later. Values for Renilla Luciferase were normalized to those obtained from a co-transfected Firefly Luciferase plasmid. The
pRL-GAPDHwt plasmid expresses 2.2 fold more Renilla than pRL-GAPDHmt plasmid thus Motif A is enhancing expression by
2.2 fold. (B) pRL-RAFwt (NM_002880) was made like pRL-GAPDHwt but from the human RAF gene sequences as indicated.
pRL-RAFmt matches pRL-RAFwt but having Motif A mutated as shown. These plasmids were transfected and analyzed as in
panel A. (C) pRL-UlAwt (NM_004596) was made like pRL-GAPDHwt but from the human UIA gene sequences as indicated.
pRL-U I Amt matches pRL-U I Awt but having Motif A mutated as shown. These plasmids were transfected and analyzed as in
panel A.
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oped so far. Furthermore we have shown that our method
is very competitive in prediction accuracy when compared
with other popular motif finding methods. Overall, our
method has the superiority like other exact optimal motif
finding methods to find the optimal motif in the absence
of statistical overrepresentation and yet without sacrific-
ing prediction accuracy. That said, no single method or
approach is able to solve the general <I, d> motif problem
completely in terms of guaranteed solution, speed, mem-
ory consumption and prediction accuracy. Thus, further
research effort is needed to overcome various hurdles of
this problem.

Additional Materials

Simulation data

We generated multiple sets of simulated sequences
according to the <I, d> motif model formulated by
Pevzner and Sze [1]. Each dataset consists of 20
sequences, each 600 nucleotides long. All nucleotides
occur equally likely. In each sequence, a single I-size d-
mutant is planted at a random location. We have prepared
datasets for a wide range of <I, d> motif models, i.e.
<11,2>, <12,3>, <13,3>, <14,4>, <15,4>, <16,5>, <18,6>,
<19,6>, <24,8>, <28,8>, <30,9>, <38,12>and <40,12>.

Untranslated region sequence data

In addition to simulated data, we also prepared and tested
several sets of real biological data that can be split into
two groups, one 5' upstream of the start codon, i.e. 5' UTR
and promoter; and the other from the 3' UTR. For the 5'
UTR-promoter group, we chose four genes that are com-
monly tested in other motif finding algorithms
[10,14,17], namely, preproinsulin, DHFR, metallothio-
nine, and c-fos. Homologous regions from four species
were included for analysis using the Homologene data-
base http://www.ncbi.nlm.nih.gov/sites/ent
rez?db=homologene from NCBI. To obtain the upstream
promoter region, BLAT [29] was used to map the cDNA to
the species genome provided by Genome browser [30].
Based on the 5' starting point of the cDNA, we then
extracted promoter sequence from the genome. Further
details of this sequence set are found in the Additional file
1.

Another set of real biological sequences is taken from the
3' UTR where AU-rich elements (AREs), cytoplasmic poly-
adenylation elements (CPEs), and Pumillio binding ele-
ments (PBEs) [31] were chosen. The AREs were derived
from 30 experimentally validated human and mouse 3'
UTRs [32]. These genes were also confirmed by the ARE
database ARED 2.0 http://brp.kfshrc.edu.sa/ARED/[33].
Based on the accession numbers provided by ARED, we
retrieved the cDNA sequences from NCBI's RefSeq data-
base [34]. The 5' end of the 3'UTR begins right after the
stop codon, However, the 3' end of the 3' UTR is not obvi-

http://www.almob.org/content/4/1/14

ous because we have found that most of the cDNA
sequences deposited in RefSeq database lack a poly(A)
tail. In order to accurately determine the 3' end of the 3'
UTR, we utilized expressed sequence tag (EST) data from
the UCSC Genome Browser [35]. We first mapped each
cDNA to the genome using BLAT. The true end of the 3'
UTR should coincide with the endpoint of the EST. The
more ESTs that end at the same spot as the cDNA, the
higher confidence we have about the true end of the 3'
UTR. The set of sequences we obtained are variable in
length ranging from 92 to 1608 bases bringing the total
sequence space to 23,022 bases. For CPEs and PBEs, we
have used the five cyclin genes, B1, B2, B3, B4, and B5
from Xenopus laevis [31]. Complete annotation of the
sequences can be found in the Additional file 1.

Run-time performance

We compared the performance of our method with three
other methods with the same enumerative design philos-
ophy, viz. MotifEumerator, RISOTTO and PMSprune.
Source codes were downloaded from these sites, MotifE-
numerator from http://faculty.cs.tamu.edu/shsze/motife
numerator/, RISOTTO from http://kdbio.inesc-id.pt/
~asmc/pub/software/RISO/riso-me-src.zip, and PMS-
prune from http://www.engr.uconn.edu/~jid02003/
Jaime/pmsprune.c. They were compiled in the Linux x86
platform according to the instructions documented in the
respective websites.

Transfection and Luciferase assays

Cell culture and transfections were done as previously
described in [36]. For Luciferase assays, the cells were har-
vested after 24 hours and Luciferase measured using the
Promega dual Luciferase kit (Promega, Madison, WI)
measured on a Turner BioSystems Luminometer (Turner
BioSystems, Sunnyvale, CA).

Sensitivity and specificity test

For the sensitivity and specificity test, we adopted the
three-level (nucleotide, binding site, and motif) testing
framework proposed by the Kihara group [21]. Two sets of
data, ECRDB70 and ECRDB62A, were downloaded from
their website http://dragon.bio.purdue.edu/pmotif. These
data were originally derived from the RegulonDB data-
base [20]. The ECRDBG62A dataset comprises 713 inter-
genic sequences containing binding sites for 62
transcription factors in E. Coli K-12. We filtered out dupli-
cated sequences, transformed reverse strands into forward
direction, and dropped transcription factors with less than
three binding sequences. The final reconstructed dataset
contains 379 distinct sequences from 36 transcription fac-
tors. At the nucleotide and binding site level, four differ-
ent assessments were performed. Sensitivity (Sn) is
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defined as T%P NG where TP, FN stands for true pos-
itive and false negative respectively. Specificity (Sp) is
defined as T%P + P where FP is false positive. We fol-

lowed two other assessments that were described in [21]
to combine Sn and Sp. Performance coefficient (PC) is

defined as T%P + FP + pN + Which was originally pro-

posed in [1,22]. The last assessment is called F-measure
(F), which tends to penalize the imbalance of Sn and Sp.

F is defined as 2*8n* S%n +Sp° Both PC and F fall into

the range of [0,1], with value 1 indicating perfect predic-
tion. In addition to the nucleotide and binding site levels,
the Kihara group proposed two other accuracy measure-
ments viz. sequence accuracy (sSr) and motif accuracy

(mSr). sSr is defined as N%\] where Ns is the number of

sequences having their motifs correctly predicted, and N is
the total number of binding sequences of a transcription
factor. The overall sSr is the average sSr of all transcription

factors. mSr is defined as ™V %A' where Np is the number

of transcription factors with at least one correctly pre-
dicted binding site in the binding sequence set and M is
the total number of transcription factors in the dataset.
We compared our method with WEEDER [23] and the top
three best-performing methods previously evaluated in
[21]: MEME, BioProspector and MotifSampler. MEME,
BioProspector, MotifSampler and WEEDER were down-
load from http://meme.nbcr.net/downloads/, http://
motif.stanford.edu/distributions/bioprospector/, http://
homes.esat.kuleuven.be/~thijs/download/linux 3.2/
MotifSampler and  http://159.149.109.9/modtools/
downloads/weeder1.3.1 tar.gz respectively. For WEEDER,
we specified the organism to be E. Coli K12 "BEC" and the
type of analysis "large".

Availability and Requirements

Source code of iTriplet is freely available and requires no
license requirement. The current version of iTriplet is only
available on RedHat linux platform. It requires GNU g++
compiler version 3.4.4 or above and Python version 2.5.1
or above. Interested readers can download the software
from our website via the following link http://
www.rci.rutgers.edu/~gundersn/iTriplet. Detailed infor-
mation about how to build and run the software, descrip-
tion of parameters and output can be found in the
captioned website.
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