
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
A weighted average difference method for detecting differentially 
expressed genes from microarray data
Koji Kadota*, Yuji Nakai and Kentaro Shimizu

Address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Email: Koji Kadota* - kadota@bi.a.u-tokyo.ac.jp; Yuji Nakai - yunakai@iu.a.u-tokyo.ac.jp; Kentaro Shimizu - shimizu@bi.a.u-tokyo.ac.jp

* Corresponding author    

Abstract
Background: Identification of differentially expressed genes (DEGs) under different experimental
conditions is an important task in many microarray studies. However, choosing which method to
use for a particular application is problematic because its performance depends on the evaluation
metric, the dataset, and so on. In addition, when using the Affymetrix GeneChip® system,
researchers must select a preprocessing algorithm from a number of competing algorithms such as
MAS, RMA, and DFW, for obtaining expression-level measurements. To achieve optimal
performance for detecting DEGs, a suitable combination of gene selection method and
preprocessing algorithm needs to be selected for a given probe-level dataset.

Results: We introduce a new fold-change (FC)-based method, the weighted average difference
method (WAD), for ranking DEGs. It uses the average difference and relative average signal
intensity so that highly expressed genes are highly ranked on the average for the different
conditions. The idea is based on our observation that known or potential marker genes (or
proteins) tend to have high expression levels. We compared WAD with seven other methods;
average difference (AD), FC, rank products (RP), moderated t statistic (modT), significance analysis
of microarrays (samT), shrinkage t statistic (shrinkT), and intensity-based moderated t statistic
(ibmT). The evaluation was performed using a total of 38 different binary (two-class) probe-level
datasets: two artificial "spike-in" datasets and 36 real experimental datasets. The results indicate
that WAD outperforms the other methods when sensitivity and specificity are considered
simultaneously: the area under the receiver operating characteristic curve for WAD was the
highest on average for the 38 datasets. The gene ranking for WAD was also the most consistent
when subsets of top-ranked genes produced from three different preprocessed data (MAS, RMA,
and DFW) were compared. Overall, WAD performed the best for MAS-preprocessed data and the
FC-based methods (AD, WAD, FC, or RP) performed well for RMA and DFW-preprocessed data.

Conclusion: WAD is a promising alternative to existing methods for ranking DEGs with two
classes. Its high performance should increase researchers' confidence in microarray analyses.

Background
One of the most common reasons for analyzing microar-
ray data is to identify differentially expressed genes

(DEGs) under two different conditions, such as cancerous
versus normal tissue [1]. Numerous methods have been
proposed for doing this [2-27], and several evaluation
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studies have been reported [28-32]. A prevalent approach
to such an analysis is to calculate a statistic (such as the t-
statistic or the fold change) for each gene and to rank the
genes in accordance with the calculated values (e.g., the
method of Tusher et al. [3]). A large absolute value is evi-
dence of a differential expression. Inevitably, different
methods (statistics) generally produce different gene
rankings, and researchers have been troubled about the
differences. Another approach is to rank genes in accord-
ance with their predictive accuracy such as by performing
gene-by-gene prediction [24].

Although the two approaches are not mutually exclusive,
their suitabilities differ; the former approach is better
when the identified DEGs are to be investigated for a fol-
low-up study [24], and the latter is better when a classifier
or predictive model needs to be developed for class pre-
diction [17]. The method presented in this paper focuses
on the former approach – many "wet" researchers want to
rank the true DEGs as high as possible, and the former
approach is more suitable for that purpose.

Methods for ranking genes in accordance with their
degrees of differential expression can be divided into t-sta-
tistic-based methods and fold-change (FC)-based meth-
ods. Both types are commonly used for selecting DEGs
with two classes. They each have certain disadvantages.
The t-statistic-based gene ranking is deficient because a
gene with a small fold change can have a very large statis-
tic for ranking, due to the t-statistic possibly having a very
small denominator [24]. The FC-based ranking is defi-
cient because a gene with larger variances has a higher
probability of having a larger statistic [24]. From our expe-
rience, a disadvantage that they share is that some top-
ranked genes which are falsely detected as "differentially
expressed" tend to exhibit lower expression levels. This
interferes with the chance of detecting the "true" DEGs
because the relative error is higher at lower signal intensi-
ties [4,33-36]. Although many researchers have addressed
this problem, false positives remain to some extent in the
subset of top-ranked genes.

Our weighted average difference (WAD) method was
designed for accurate gene ranking. We evaluated its per-
formance in comparison with those of the average differ-
ence (AD) method, the FC method, the rank products
(RP) method [12,37], the moderated t statistic (modT)
method [9], the significance analysis of microarrays t sta-
tistic (samT) method [3], the shrinkage t statistic
(shrinkT) method [23], and the intensity-based moder-
ated t statistic (ibmT) method [20] by using datasets with
known DEGs (Affymetrix spike-in datasets and datasets
containing experimentally validated DEGs).

Results and discussion
The evaluation was mainly based on the area under the
receiver operating characteristic (ROC) curve (AUC). The
AUC enables comparisons without a trade-off in sensitiv-
ity and specificity because the ROC curve is created by
plotting the true positive (TP) rate (sensitivity) against the
false positive (FP) rate (1 minus the specificity) obtained
at each possible threshold value [38-40]. This is one of the
most important characteristics of a method. The evalua-
tion was performed using 38 different datasets [41-73]
containing true DEGs that enabled us to determine the TP
and FP.

Seven methods were used for comparison: AD was used to
evaluate the effect of the "weight" term in WAD (see the
Methods section), FC was recommended by Shi et al. [74],
RP [12] and modT [9] were recommended by Jeffery et al.
[29], samT [3] is a widely used method, and shrinkT [23]
and ibmT [20] were recently proposed at the time of writ-
ing. All programming was done in R [75] using Biocon-
ductor [76].

Datasets
The evaluation used two publicly available spike-in data-
sets [41,42] (Datasets 1 and 2) and 36 experimental data-
sets that each had some true DEGs confirmed by real-time
polymerase chain reaction (RT-PCR) [43-73] (Dataset 3–
38). The first two datasets are well-chosen sets of data
from other studies [20,23]. Dataset 1 is a subset of the
completely controlled Affymetrix spike-in study done on
the HG-U95A array [41], which contains 12,626
probesets, 12 technical replicates of two different states of
samples, and 16 known DEGs. The details of this experi-
ment are described elsewhere [41]. The subset was
extracted from the original sets by following the recom-
mendations of Opgen-Rhein and Strimmer [23]. Dataset
2 was produced from the Affymetrix HG-U133A array,
which contains 22,300 probesets, three technical repli-
cates of 14 different states of samples, and 42 known
DEGs. Accordingly, there were 91 possible comparisons
(14C2 = 91). Dataset 2 was evaluated on the basis of the
average values of the 91 results.

Since these experiments (using Datasets 1 and 2) were
performed using the Affymetrix GeneChip® system, one of
several available preprocessing algorithms (such as
Affymetrix Microarray Suite version 5.0 (MAS) [77],
robust multichip average (RMA) [38], and distribution
free weighted method (DFW) [40]) could be applied to
the probe-level data (.CEL files). We used these three algo-
rithms to preprocess the probe-level data; MAS and RMA
are most often used for this purpose, and DFW is currently
the best algorithm [40]. Of these, DFW is essentially a
summarization method and its original implementation
consists of following steps: no background correction,
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quantile normalization (same as in RMA), and DFW sum-
marization. The probeset summary scores for Datasets 1
and 2 are publicly available on-line [42]. Accordingly, a
total of six datasets were produced from Datasets 1 and 2,
i.e., Dataset x (MAS), Dataset x (RMA), Dataset x (DFW),
where x = 1 or 2.

Datasets 3–38 were produced from the Affymetrix HG-
U133A array, which is currently the most used platform.
All of the datasets consisted of two different states of sam-
ples (e.g., cancerous vs. non-cancerous) and the number
of samples in each state was > = 3. Each dataset had two
or more true DEGs and these DEGs were originally
detected on MAS- or RMA-preprocessed data. The raw
(probe-level) data are also publicly available from the
Gene Expression Omnibus (GEO) website [78]. One can
preprocess the raw data using the MAS, RMA, and DFW
algorithms. Detailed information on these datasets is
given in the additional file [see Additional file 1].

Evaluation using spike-in datasets (Datasets 1 and 2)
The AUC values for the eight methods for Datasets 1 and
2 are shown in Table 1. Overall, WAD outperformed the
other methods. It performed the best for five of the six
datasets and ranked no lower than fourth best for all data-
sets. RP performed the best for Dataset 2 (RMA). The R-
codes for analyzing these datasets are available in the
additional files [see Additional files 2 and 3].

The largest difference between WAD and the other meth-
ods was observed for Dataset 1 (MAS). Because MAS uses
local background subtraction, MAS-preprocessed data
tend to have extreme variances at low intensities. As
shown in Table 2, increasing the floor values for the MAS-
preprocessed data increased the AUC values for all meth-
ods except WAD. Nevertheless, the AUC values for WAD
at the four intensity thresholds were clearly higher than
those for the other methods. These results indicate that

the advantage of WAD over the other methods is not
merely due to a defect in the MAS algorithm.

The basic assumption of WAD is that "strong signals are
better signals." This assumption may unfairly favorable
when spike-in datasets are used for evaluation. One can
only spike mRNA at rather high concentrations because of
technical limitations such as mRNA stability and pipetting
accuracy, meaning that spike-in transcripts tend to have
strong signals [79]. The basic assumption is therefore nec-
essarily true for spike-in data. Indeed, a statistic based on
the relative average signal intensity (e.g., a statistic based
on the "weight" term, w, in the WAD statistic; see Meth-
ods) for Dataset 1 (MAS) could, for example, give a very
high AUC value of 90.0%. We also observed high AUC
values based on the w statistic for the RMA- (87.3% of
AUC) and DFW-preprocessed data (80.4%).

Evaluation using experimental datasets (Datasets 3–38)
Nevertheless, we have seen that several well-known
marker genes and experimentally validated DEGs tend to
have strong signals, which supports our basic assumption.

Table 1: AUC (percent) values for Datasets 1 and 2 for eight methods

MAS RMA DFW

Method Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

WAD 96.772(1) 97.684(1) 99.980(1) 98.240(4) 100.00(1) 99.953(1)
AD 83.381(6) 96.430(8) 99.897(6) 98.631(2) 100.00(1) 99.948(2)
FC 83.092(7) 96.445(7) 99.655(8) 98.617(3) 100.00(1) 99.948(2)
RP 81.981(8) 96.626(6) 99.757(7) 99.161(1) 99.993(4) 99.938(3)

modT 93.257(4) 97.561(4) 99.928(5) 98.109(7) 99.983(7) 98.459(6)
samT 94.002(3) 97.547(5) 99.944(3) 98.139(6) 99.988(5) 98.656(4)

shrinkT 92.379(5) 97.617(3) 99.955(2) 97.846(8) 99.984(6) 98.558(5)
ibmT 94.693(2) 97.618(2) 99.941(4) 98.183(5) 99.983(7) 98.455(7)

Numbers in parentheses show the rankings. Signal intensities smaller than 1 in the MAS-preprocessed data were set to 1 so that the logarithm of 
the data could be taken.

Table 2: AUC (percent) values for Dataset 1 (MAS) for different 
signal intensity thresholds

Signal intensity threshold

Method 1 5 10 15

WAD 96.772(1) 99.052(1) 99.228(1) 98.506(1)
AD 83.381(6) 89.215(6) 92.996(7) 94.915(6)
FC 83.092(7) 88.353(8) 92.381(8) 94.455(7)
RP 81.981(8) 88.516(7) 93.131(6) 95.456(5)

modT 93.257(4) 94.776(2) 95.284(3) 95.977(4)
samT 94.002(3) 94.731(4) 95.074(5) 96.028(3)

shrinkT 92.379(5) 94.114(5) 95.537(2) 96.437(2)
ibmT 94.693(2) 94.770(3) 95.260(4) 94.318(8)

AUC values when floor signal values in MAS-preprocessed data were 
1, 5, 10, and 15, corresponding to substitutions of 4.1, 24.7, 40.2, and 
50.8% of signals.
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If there is no correlation between differential expression
and expression level, the AUC value based on the w statis-
tic should be approximately 0.5. Actually, of the 36 exper-
imental datasets, 34 had AUC values > 0.5 when the w
statistic was used (Figure 1, light blue circle) and the aver-
age AUC value was high (72.7%). These results demon-
strate the validity of our assumption.

This high AUC value may not be due to the microarray
technology because any technology is unreliable at the
low intensity/expression end. Inevitably, genes that can be
confirmed as DEGs using a particular technology tend to
have high signal intensity. That is, it is difficult to confirm
candidate genes having low signal intensity [48,80].
Whether a candidate is a true DEG must ultimately be
decided subjectively. Therefore, many candidates having
low signal intensity should not be considered true DEGs.

Apart from the above discussion, a good method should
produce high AUC values for real experimental datasets.
The analysis of Datasets 3–38 showed that the average
AUC value for WAD (96.737%) was the highest of the
eight methods when the preprocessing algorithms were
selected following the original studies (Table 3). WAD
performed the best for 12 of the 36 experimental datasets.

The 36 experimental datasets can be divided into two
groups: One group (Datasets 3–26) had originally been
analyzed using MAS-preprocessed data and the other
(Datasets 27–38) had originally been analyzed using
RMA-preprocessed data. Table 4 shows the average AUC
values for MAS-, RMA-, and DFW-preprocessed data for
the two groups (Datasets 3–26 and Datasets 27–38). The
values for the MAS- (RMA-) preprocessed data for the first

Effect of the weight (w) term in WAD statistic for 36 real experimental datasets (Datasets 3–38)Figure 1
Effect of the weight (w) term in WAD statistic for 36 real experimental datasets (Datasets 3–38). AUC values for 
the weight term (w, light blue circle) in WAD, AD (black circle), and WAD (red circle) are shown. Analyses of Datasets 3–26 
and Datasets 27–38 were performed using MAS- and RMA-preprocessed data, respectively, following the choice of preproc-
essing algorithm in the original papers. The average AUC values for their respective methods as well as the other methods are 
shown in Table 3. Note that WAD statistics (AD with the w term) can overall give higher AUC values than AD statistics.

Table 3: Results for Dataset 3–38 using eight methods

Method Average AUC (%) No. of datasets best performed

WAD 96.737 12
AD 94.758 1
FC 94.659 4
RP 93.182 2

modT 95.541 1
samT 95.866 7

shrinkT 95.439 4
ibmT 96.060 5

Analyses of Datasets 3–26 and Datasets 27–38 were performed using 
MAS- and RMA-preprocessed data, respectively, following the choice 
of preprocessing algorithm in the original papers. Accordingly, the 
average AUC value was calculated from those for Datasets 3–26 
(MAS) and Datasets 27–38 (RMA). The best performing methods for 
each dataset is given in the additional file [see Additional file 1].
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(second) group were overall the best among the three pre-
processing algorithms. This is reasonable because the best
performing algorithms were practically used in the origi-
nal papers [43-73]. The exception was for RP [12] in the
first group: the average AUC values for RMA- (92.540) and
DFW-preprocessed data (92.534) were higher than the
value for MAS-preprocessed data (91.511).

Interestingly, the FC-based methods (AD, WAD, FC, and
RP) were generally superior to the t-statistic-based meth-
ods (modT, samT, shrinkT, and ibmT) when RMA- or
DFW-preprocessed data were analyzed. This is probably
because the RMA and DFW algorithms simultaneously
preprocess data across a set of arrays to improve the preci-
sion of the final measures of expression [81] and include
a variance stabilization step [38,40]. Accordingly, some
variance estimation strategies employed in the t-statistic-
based methods may be no longer necessary for such pre-
processed data. Indeed, the t-statistic-based methods were
clearly superior to the FC-based methods (except WAD)
when the MAS-preprocessed data were analyzed: The MAS
algorithm considers data on a per-array basis [77] and has
been criticized for its exaggerated variance at low intensi-
ties [82].

It should be noted that we cannot compare the three pre-
processing algorithms with the results from the 36 real
experimental datasets. One might think the RMA algo-
rithm is the best among the three algorithms because (1)
the average AUC values for the RMA (the average is
91.978) were higher than those for DFW (91.274) in the
results for Datasets 3–26 and (2) the average AUC values
for DFW (93.465) were also higher than those for MAS
(89.587) in the results for Datasets 27–38 (Table 4). How-
ever, the lower average AUC values for DFW compared
with the RMA in the results for Datasets 3–26 were mainly
due to the poor affinity between the t-statistic-based

methods and the DFW algorithm. The average AUC values
for DFW were quite similar to those for RMA only when
the FC-based methods were compared. In addition, the
higher average AUC values for DFW (93.465) than for
MAS in the results for Datasets 27–38 were rather by virtue
of the similarity of data processing to RMA: DFW employs
the same background correction and normalization pro-
cedures as RMA, and the only difference between the two
algorithms is in their summarization procedure.

It should also be noted that there must be many addi-
tional DEGs in the 36 experimental datasets because the
RT-PCR validation is performed only for a subset of top-
ranked genes. Accordingly, we cannot compare the eight
methods by using other evaluation metrics such as the
false discovery rate (FDR) [83] or compare their abilities
of identifying new genes that might have been missed in
a previous analysis. Such comparisons could also produce
different results with different parameters such as number
of top ranked genes or different gene ranking methods
used in the original study. For example, the FC-based
methods (AD, WAD, FC, and RP) and the t-statistic-based
methods (modT, samT, shrinkT, and ibmT) produce
clearly dissimilar gene lists (see Table 5). This difference
suggests that the FC-based methods should be advanta-
geous for six datasets (Datasets 3–6 and 27–28) whose
gene rankings were originally performed with only the FC-
based methods. Likewise, the t-statistic-based methods
should be advantageous for 15 datasets (Datasets 19–26
and 32–38). The RT-PCR validation for a subset of poten-
tial DEGs were based on those gene ranking results.
Indeed, the average rank (3.92) of AUC values for the FC-
based methods on the six datasets and for the t-statistic-
based methods on the 15 datasets was clearly higher than
that (5.08) for the t-statistic-based methods on the six
datasets and for the FC-based methods on the 15 datasets
(p-value = 0.001, Mann-Whitney U test). This implies a

Table 4: Average AUC values for Datasets 3–26 and 27–38

Datasets 3–26 Datasets 27–38

Method MAS RMA DFW MAS RMA DFW Average

WAD 96.740(1) 91.373(6) 91.407(5) 92.416(1) 96.732(2) 94.090(4) 93.793 
AD 93.755(6) 93.098(2) 92.239(2) 87.411(7) 96.766(1) 94.222(2) 92.915
FC 93.625(7) 93.117(1) 92.239(2) 88.230(6) 96.726(3) 94.221(3) 93.026
RP 91.511(8) 92.540(3) 92.534(1) 84.552(8) 96.526(4) 94.665(1) 92.055

modT 95.673(5) 91.381(5) 90.109(7) 90.895(4) 95.277(7) 92.355(7) 92.615
samT 95.947(3) 91.231(8) 89.959(8) 90.305(5) 95.702(5) 92.052(8) 92.533

shrinkT 95.733(4) 91.316(7) 91.451(4) 90.968(3) 94.851(8) 93.684(5) 93.001
ibmT 96.344(2) 91.771(4) 90.252(6) 91.921(2) 95.491(6) 92.427(6) 93.034

Average 94.916 91.978 91.274 89.587 96.009 93.465

Analyses of Datasets 3–26 and Datasets 27–38 were performed using MAS- and RMA-preprocessed data, respectively, following the choice of 
preprocessing algorithm in the original papers.
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comparison using a total of the 21 datasets (Datasets 3–6,
19–28, and 32–38) should give an advantageous result for
the t-statistic-based methods since those methods were
used in the original analysis for 15 of the 21 datasets. Nev-
ertheless, the best performing methods across the 36
experimental datasets including the 21 datasets seem to
be independent of the originally analyzed methods, by
virtue of WAD's high performance. Also, the overall per-
formances of eight methods for the two artificial spike-in
datasets (Datasets 1 and 2) and for the 36 real experimen-
tal datasets (Datasets 3–38) were quite similar (Tables 1
and 4). These results suggest that the use of genes only val-
idated by RT-PCR as DEGs does not affect the objective
evaluations of the methods.

To our knowledge, the number (32) of real experimental
datasets we analyzed is much larger than those analyzed
by previous methodological studies: Two experimental
datasets were evaluated for the ibmT [20] method and one
was for the shrinkT [23] method. Although those studies
performed a profound analysis on a few datasets, we think
a superficial comparison on a large number of experimen-

tal datasets is more important than a profound one on a
few experimental datasets when estimating the methods'
practical ability to detect DEGs, as the superficial compar-
ison on a large number of datasets can also prevent selec-
tion bias regarding the datasets. Therefore, we think the
number of experimental datasets interrogated is also very
important for evaluating the practical advantages of the
existing methods. A profound comparison on a large
number of experimental datasets should be of course the
most important. For example, a comparison of significant
Gene Ontology [84] categories using top-ranked genes
from each of the eight methods would be interesting. We
think such a comparison would be important as another
reasonable assessment of whether some top-ranked genes
detected only by WAD might actually be differentially
expressed. The analysis of many datasets is however prac-
tically difficult because of wide range of knowledge it
would require, and this related to the next task.

Effect of different preprocessing algorithms on gene 
ranking
In general, different choices of preprocessing algorithms
can output different subsets of top-ranked genes (e.g., see
Tables 1 and 4) [85]. We compared the gene rankings of
MAS-, RMA-, and DFW-preprocessed data. Table 6 shows
the average number of common genes in 20, 50, 100, and
200 top-ranked genes for the 36 experimental datasets.
Although all methods output relatively low numbers of
common genes, the numbers for WAD were consistently
higher than those for the other methods. This result indi-
cates the gene ranking based on WAD is more robust
against data processing than the other methods are.

From the comparison of WAD and AD, it is obvious that
the high rank-invariant property of WAD is by virtue of
the inclusion of the weight term: The gene ranking based
on the w statistic is much more reproducible than the one
based on the AD statistic. Relatively small numbers of
common genes were observed for the other FC-based
methods (AD, FC, and RP) (Table 6). This was because
differences in top-ranked genes between MAS and RMA
(or DFW) were much larger than those between RMA and
DFW (data not shown).

Effect of outliers on the weight term in WAD statistic

Recall that the WAD statistic is composed of the AD statis-
tic and the weight (w) term (see the Methods section).
Some researchers may be suspicious about the use of w

because it is calculated from a sample mean (i.e., ) for

gene i, and sample means are notoriously sensitive to out-
liers in the data. Actually, the w term is calculated from
logged data and is therefore insensitive to outliers. Indeed,
we observed few outliers in two datasets (there were 31
outliers in Dataset 14 and 7 outliers in Dataset 29; they

xi

Table 5: Average number of genes common to each pair of 
methods for Datasets 3–38

(a) MAS AD FC RP modT samT shrinkT ibmT

WAD 52.0 39.1 49.7 37.7 45.2 39.8 42.8
AD 61.9 84.1 34.4 47.1 37.2 33.2
FC 58.2 29.5 39.1 31.2 28.1
RP 30.5 41.8 32.4 29.8

modT 79.9 92.7 78.1
samT 83.5 65.0

shrinkT 74.8

(b) RMA AD FC RP modT samT shrinkT ibmT

WAD 62.2 50.4 60.2 31.7 32.6 30.8 33.4
AD 78.8 84.7 35.2 36.2 33.9 38.0
FC 72.3 32.2 32.8 30.8 34.5
RP 36.8 37.6 35.4 39.4

modT 88.3 93.0 88.4
samT 87.6 83.6

shrinkT 85.1

(c) DFW AD FC RP modT samT shrinkT ibmT

WAD 84.3 83.9 72.1 13.6 13.4 14.6 13.9
AD 98.6 77.3 13.7 13.5 14.7 14.0
FC 77.0 13.6 13.4 14.6 13.9
RP 18.1 17.9 20.1 18.8

modT 94.1 83.2 93.4
samT 81.1 91.0

shrinkT 83.0

The averages were calculated from top 100 genes. Due to the 
symmetric nature of the matrix only the upper triangular part is 
presented.
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corresponded to (31 + 7)/(22,283 clones × 36 datasets) =
0.0047%) when an outlier detection method based on
Akaike's Information Criterion (AIC) [85-87] was applied

to the average expression vector  calculated

from each of the 36 datasets. In addition to the automatic
detection of outliers, we also visually examined the distri-
bution of the average vectors and concluded there were no
outliers. Also, the differences in the AUC values between
AD and WAD were less than 0.1% for the two datasets
(Datasets 14 and 29). We therefore decided that all the
automatically detected outliers did not affect the result.
The average expression vectors and the results of outlier
detection using the AIC-based method are available in the
additional files [see Additional files 4 and 5].

Choice of best methods with preprocessing algorithms
In this study, we analyzed eight gene-ranking methods
with three preprocessing algorithms. Currently, there is no
convincing rationale for choosing among different pre-
processing algorithms. Although the three algorithms
from best to worst were DFW, RMA, and MAS when artifi-
cial spike-in datasets (Datasets 1 and 2) were evaluated
using the AUC metric with the eight methods (Table 1),
their performance might not be generalizable in practice
[79]. Indeed, a recent study reported the utility of MAS
[82]. Also, a shared disadvantage of RMA and DFW is that
the probeset intensities change when microarrays are re-
preprocessed because of the inclusion of additional
arrays, but modification strategies to deal with it have
only been developed for RMA [81,88,89]. We therefore
discuss the best methods for each preprocessing algo-
rithm.

For MAS users, we think WAD is the most promising
method because it gave good results for both types of
dataset (artificial spike-in and real experimental datasets,
see Tables 1, 2, and 4). The second best was ibmT [20].
Although there was no a statistically significant difference
between the 36 AUC values for WAD from the real exper-
imental datasets and those for the second best method

(ibmT) (one-tail p-value = 0.18, paired t-test; see Table
7a), it is natural that one should select the best performing
method for a number of real datasets.

For RMA users, FC-based methods can be recommended.
Although these methods (except WAD) were inferior to
the t-statistic-based methods when the results for the
older spike-in dataset (Dataset 1, which is obtained from
the HG-U95A array) were compared, they were better for
both the newer spike-in dataset (Dataset 2, which is from
the HG-U133A array) and the 36 real experimental data-
sets (Datasets 3–38, which is also from the HG-U133A
array). We think that the results for the real experimental
datasets (or a newer platform) should take precedence
over the results for the artificial datasets (or an older plat-
form). AD or FC may be the best since they are the best for
the 36 real datasets (see Tables 4 and 7b).

For DFW users, RP can be recommended since it was the
best for the 36 real experimental datasets (see Tables 4 and
7c). However, the use of RP for analyzing large numbers
of arrays can be sometimes limited by available computer
memory. The other FC-based methods can be recom-
mended for such a situation.

The variance estimation is much more challenging when
the number of replicates is small [29]. This suggests that
the FC-based methods including WAD tend to be more
powerful (or less powerful) than the t-statistic-based
methods if the number of replicates is small (or large). We
found that WAD was the best for some datasets which
contain large (> 10) replicates (e.g., Datasets 5, 7, and 26)
while FC and RP tended to perform the best on datasets
with relatively small replicates (e.g., Datasets 34 and 10,
whose numbers of replicates in one class were smaller
than 6) [see Additional file 1]. These results suggest that
WAD can perform well across a range of replicate num-
bers.

It is important to mention that there are other preprocess-
ing algorithms such as FARMS [39] and SuperNorm [90].
FARMS considers data on a multi-array basis as does RMA
and DFW, while SuperNorm considers data on a per-array
basis as does MAS. Although the FC-based methods were
superior to the t-statistic-based methods, the latter meth-
ods might perform well for FARMS- or SuperNorm-pre-
processed data. The evaluation of competing methods for
these preprocessing algorithms will be our next task.

In practice, one may want to detect the DEGs from gene
expression data, produced from a comparison of two or
more classes (or time points), and the current method
does not analyze these DEGs. A simple way to deal with

them is to use  and

( ,..., )x xp1

AD i x xi
q

i
q( ) max( ) min( )= −

Table 6: Average number of common genes in results of three 
preprocessing algorithms for Datasets 3–38

Method Top 20 Top 50 Top 100 Top 200

WAD 8.2 19.8 38.0 73.1 
AD 4.5 10.7 20.0 37.9
FC 5.0 12.2 22.0 40.6
RP 4.6 11.1 20.6 40.5

modT 4.4 13.1 27.6 60.3
samT 4.0 11.9 24.4 52.4

shrinkT 4.5 13.6 29.0 62.4
ibmT 5.3 15.2 32.0 66.7
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 in WAD for the q class problem (q = 1, 2,

3, ...) (see the Methods section for details). Of course,
there are many possible ways to analyze these DEGs. Fur-
ther work is needed to make WAD universal.

Conclusion
We proposed a new method (called WAD) for ranking dif-
ferentially expressed genes (DEGs) from gene expression
data, especially obtained by Affymetrix GeneChip® tech-
nology. The basic assumption for WAD was that strong
signals are better signals. We demonstrated that known or
potential marker genes had high expression levels on aver-

age in 34 of the 36 real experimental datasets and applied
our idea as the weight term in the WAD statistic.

Overall, WAD was more powerful than the other methods
in terms of the area under the receiver operating character-
istic curve. WAD also gave consistent results for different
preprocessing algorithms. Its performance was verified
using a total of 38 artificial spike-in datasets and real
experimental datasets. Given its excellent performance,
we believe that WAD should become one of the methods
used for analyzing microarray data.

x mean xi i
q= ( )

Table 7: Statistical significance between two methods for Datasets 3–38

a) MAS Inferior

WAD AD FC RP modT samT shrinkT ibmT

Superior WAD - 2.1E-07 6.7E-07 2.3E-06 2.2E-02 1.7E-02 2.0E-02 1.8E-01
AD 1.0E+00 - 8.1E-01 2.9E-04 1.0E+00 1.0E+00 1.0E+00 1.0E+00
FC 1.0E+00 1.9E-01 - 2.6E-04 1.0E+00 1.0E+00 1.0E+00 1.0E+00
RP 1.0E+00 1.0E+00 1.0E+00 - 1.0E+00 1.0E+00 1.0E+00 1.0E+00

modT 9.8E-01 8.6E-04 4.0E-03 1.4E-04 - 4.7E-01 9.0E-01 1.0E+00
samT 9.8E-01 2.5E-04 2.0E-03 6.6E-05 5.3E-01 - 6.9E-01 1.0E+00

shrinkT 9.8E-01 4.0E-04 2.2E-03 9.0E-05 1.0E-01 3.1E-01 - 1.0E+00
ibmT 8.2E-01 4.7E-05 2.6E-04 2.6E-05 2.2E-04 2.3E-03 2.9E-04 -

(b) RMA Inferior

WAD AD FC RP modT samT shrinkT ibmT

Superior WAD - 9.8E-01 9.8E-01 8.9E-01 3.0E-01 3.1E-01 2.5E-01 4.4E-01
AD 2.3E-02 - 4.7E-01 8.3E-02 9.2E-03 1.1E-02 7.2E-03 2.8E-02
FC 2.4E-02 5.3E-01 - 8.8E-02 1.1E-02 1.3E-02 8.4E-03 3.1E-02
RP 1.1E-01 9.2E-01 9.1E-01 - 8.4E-02 9.7E-02 6.6E-02 1.7E-01

modT 7.0E-01 9.9E-01 9.9E-01 9.2E-01 - 5.6E-01 6.5E-02 1.0E+00
samT 6.9E-01 9.9E-01 9.9E-01 9.0E-01 4.4E-01 - 2.1E-01 8.3E-01

shrinkT 7.5E-01 9.9E-01 9.9E-01 9.3E-01 9.4E-01 7.9E-01 - 1.0E+00
ibmT 5.6E-01 9.7E-01 9.7E-01 8.3E-01 3.2E-03 1.7E-01 1.9E-03 -

(c) DFW Inferior

WAD AD FC RP modT samT shrinkT ibmT

Superior WAD - 1.0E+00 1.0E+00 1.0E+00 1.3E-01 1.2E-01 4.5E-01 1.6E-01
AD 2.5E-03 - 1.6E-01 9.6E-01 5.1E-02 4.7E-02 2.1E-01 6.9E-02
FC 2.6E-03 8.4E-01 - 9.6E-01 5.1E-02 4.7E-02 2.1E-01 6.9E-02
RP 8.7E-04 4.2E-02 4.1E-02 - 3.0E-02 3.0E-02 1.1E-01 4.4E-02

modT 8.7E-01 9.5E-01 9.5E-01 9.7E-01 - 8.6E-02 9.9E-01 8.5E-01
samT 8.8E-01 9.5E-01 9.5E-01 9.7E-01 9.1E-01 - 9.9E-01 1.0E+00

shrinkT 5.5E-01 7.9E-01 7.9E-01 8.9E-01 6.1E-03 1.0E-02 - 2.6E-02
ibmT 8.4E-01 9.3E-01 9.3E-01 9.6E-01 1.5E-01 5.2E-04 9.7E-01 -

The p-values between the 36 AUC values from a possibly superior method and those from a possibly inferior method were calculated by a one-tail 
paired t-test. The null hypothesis is that the mean of the 36 AUC values for one method is the same as that for the other method. There are two 
p-values for two methods compared. For example, in (a) MAS-preprocessed data, the p-value is 1.8E-01 when the alternative hypothesis is that the 
mean of the 36 AUC values for WAD is greater than that for ibmT while the p-value is 8.2E-01 when the alternative hypothesis is that the mean of 
the 36 AUC values for ibmT is greater than that for WAD. Combinations having p < 0.05 are highlighted in bold.
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Methods
Microarray data
The processed data (MAS-, RMA-, and DFW-preprocessed
data) for Datasets 1 and 2 were downloaded from the
Affycomp II website [42]. The raw (probe level) data for
Dataset 3–38 were obtained from the Gene Expression
Omnibus (GEO) website [78]. All analyses were per-
formed using log2-transformed data except for the FC
analysis. In Datasets 3–38, the 'true' DEGs were defined as
those differential expressions that had been confirmed by
real-time polymerase chain reaction (RT-PCR). For exam-
ple, we defined 16 probesets (corresponding to 15 genes)
of 20 candidates as DEGs in Dataset 9 [48] because the
remaining four probesets (or genes) showed incompati-
ble expression patterns between RT-PCR and the microar-
ray. For reproducibility, detailed information on these
datasets is given in the additional file [see Additional file
1].

Weighted Average Difference (WAD) method

Consider a gene expression matrix consisting of p genes
and n arrays, produced from a comparison between

classes A and B. The average difference ( ),

defined here as the average log signal for all class B repli-

cates ( ) minus the average log signal for all class A rep-

licates ( ), is an obvious indicator for estimating the

differential expression of the ith gene, .

Some of the top-ranked genes from the simple statistic,
however, tend to exhibit lower expression levels. This is
not good because the signal-to-noise ratio decreases with
the gene expression level [3] and because known DEGs
tend to have high expression levels.

To account for these observations, we use relative average
log signal intensity wi for weighting the average difference
in xi.

where  is calculated as , and the max (or

min) indicates the maximum (or minimum) value in an

average expression vector  on a log scale.

The WAD statistic for the ith gene, WAD(i), is calculated
simply as

WAD(i) = ADi × wi.

The basic assumption for our approach to the gene rank-
ing problem is that ''strong signals are better signals'' [36].
The WAD statistic is a straightforward application of this
idea. The R-source codes for analyzing Datasets 1 and 2
are available in additional files [see Additional files 2 and
3].

Fold change (FC) method
The FC statistic for the ith gene, FC(i), was calculated as
the average non-log signal for all class B replicates divided
by the average non-log signal for all class A replicates. The
ranking for selecting DEGs was performed using the log of
FC(i).

Rank products (RP) method
The RP method is an FC-based method. The RP statistic
was calculated using the RP() function in the "RankProd"
library [37] in R [75] and Bioconductor [76].

Moderated t-statistic (modT) method
The modT method is an empirical Bayes modification of
the t-test [9]. The modT statistic was calculated using the
modt.stat() function in the "st" library [23] in R [75].

Significance analysis of microarrays (samT) method
The samT method is a modification of the t-test [3], and it
works by adding a small value to the denominator of the
t statistic. The samT statistic was calculated using the
sam.stat() function in the "st" library [23] in R [75].

Shrinkage t-statistic (shrinkT) method
The shrinkT method is a quasi-empirical Bayes modifica-
tion of the t-test [23]. The shrinkT statistic was calculated
using the shrinkt.stat() function in the "st" library [23] in
R [75].

Intensity-based moderated t-statistic (ibmT) method
The ibmT method is a modified version of the modT
method [20]. The ibmT statistic was calculated using the
IBMT() function, available on-line [91].
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AUC: area under ROC curve; DEG: differentially expressed
gene; DFW: distribution-free weighted (method); FC: fold
change; FP: false positive; ibmT: intensity-based moder-
ated t-statistic; MAS: (Affymetrix) MicroArray Suite ver-
sion 5; modT: moderated t-statistic; RMA: robust multi-
chip average; ROC: receiver operating characteristic; RP:
rank products; samT: significance analysis of microarrays;
shrinkT: shrinkage t-statistic; TP: true positive; WAD:
weighted average difference (method)
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Average expression vectors and the results of outlier detection for Datasets 
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of the original average expression vectors, an outlier vector (consisting of 
1 for over-expressed outliers, -1 for under-expressed outliers, and 0 for 
non-outliers) is provided. This sheet does not contain "-1".
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