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|. Background
The basic mechanism underlying the functioning of DNA
microarrays is that of hybridization. Hybridization is

Abstract

Background: The improvement of microarray calibration methods is an essential prerequisite for
quantitative expression analysis. This issue requires the formulation of an appropriate model
describing the basic relationship between the probe intensity and the specific transcript
concentration in a complex environment of competing interactions, the estimation of the
magnitude these effects and their correction using the intensity information of a given chip and,
finally the development of practicable algorithms which judge the quality of a particular
hybridization and estimate the expression degree from the intensity values.

Results: We present the so-called hook-calibration method which co-processes the log-difference
(delta) and -sum (sigma) of the perfect match (PM) and mismatch (MM) probe-intensities. The MM
probes are utilized as an internal reference which is subjected to the same hybridization law as the
PM, however with modified characteristics. After sequence-specific affinity correction the method
fits the Langmuir-adsorption model to the smoothed delta-versus-sigma plot. The geometrical
dimensions of this so-called hook-curve characterize the particular hybridization in terms of simple
geometric parameters which provide information about the mean non-specific background
intensity, the saturation value, the mean PM/MM-sensitivity gain and the fraction of absent probes.
This graphical summary spans a metrics system for expression estimates in natural units such as the
mean binding constants and the occupancy of the probe spots. The method is single-chip based, i.e.
it separately uses the intensities for each selected chip.

Conclusion: The hook-method corrects the raw intensities for the non-specific background
hybridization in a sequence-specific manner, for the potential saturation of the probe-spots with
bound transcripts and for the sequence-specific binding of specific transcripts. The obtained chip
characteristics in combination with the sensitivity corrected probe-intensity values provide
expression estimates scaled in natural units which are given by the binding constants of the
particular hybridization.

defined as the binding between complementary single-
stranded nucleic acids. In the case of microarrays one
strand is anchored at the surface and the second one is dis-
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solved in solution, referred to as probe and target, respec-
tively. The experimental technique of detecting
hybridized probes relies on the fluorescence intensity
measurement to infer the transcript abundance specific
for a selected gene. The relationship between transcript
abundance and intensity is affected by parasitic effects
owing to the "technical" variability of repeated measure-
ments and systematic biases which disturb the one-to-one
relationship between the input and the output quantity of
the measurement [1].

The task of making estimates of the input quantity (tran-
script concentration) of a measurement from observa-
tions of its output (intensity) is called calibration.
Calibration of microarray measurements thus aims at
removing consistent and systematic sources of variations
to allow mutual comparison of measurements acquired
from different probes, arrays and experimental settings.
Calibration is also called preprocessing because it usually
constitutes the first step in the microarray analysis pipe-
line. It potentially influences the results of all subsequent
steps of "higher-level" analyses as well as the biological
interpretation of these results, and is therefore a crucial
step in the processing of microarray data. The improve-
ment of microarray calibration methods is an essential
prerequisite for obtaining absolute expression estimates
which in turn are required for the quantitative analysis of,
e.g., transcriptional regulation.

Most of the established preprocessing methods rely on
algorithms of mainly empirical nature based on the sim-
ple assumption of a linear signal response on the tran-
script concentration in the sample [2-5]. In the last years
numerous studies on the physical background of microar-
ray hybridization are published with the perspective of
developing improved analysis algorithms [6-12]. For
example it has been shown that the probes saturate at
higher transcript concentrations which gives rise to a non-
linear relation between intensity and transcript concentra-
tion. Moreover, benchmark studies have indicated that
the proper correction for non-specific background inten-
sity contributions is presumably the most problematic
preprocessing step with no satisfactory solution so far.

The immediate aim of most of these papers and also of
our previous work [1,13-18], has been to study the physi-
cal (and chemical) processes responsible for converting
concentrations of specific target RNA of known sequences
to measured fluorescence intensities after hybridization.
However, the ultimate, still not-achieved aim of these
physical approaches has been to provide scientists with
feasible calibration methods which estimate absolute spe-
cific target concentrations in the presence of a complex
non-specific background from fluorescence intensity data.

http://www.almob.org/content/3/1/12

Proper calibration of microarray data includes several
tasks: Firstly it requires the determination of the model
describing the basic relationship between the probe inten-
sity and the specific transcript concentration under con-
sideration of relevant parasitic effects which should be
straightened out.

Secondly, the magnitude of these effects should be esti-
mated using the intensity information of a given chip or
of a series of chips, and, thirdly, one needs practicable
algorithms which judge the quality of a particular hybrid-
ization and estimate the expression degree from the inten-
sity values.

Moreover, except MAS5 all popular preprocessing meth-
ods [2-5] rely on multichip-algorithms for calibration, i.e.
they process a series of chips at once together to separate
chip- and probe-level effects from each other. The
obtained expression measures are consequently context-
sensitive and require a minimum number of chips for
appropriate data-processing (usually more than four). As
a consequence the results are constricted to a particular
series of chips, i.e. they depend on the particular selection
of chips and require re-calculation upon adding or remov-
ing chips. The development of single chip calibration
methods is therefore an important additional task to pro-
vide virtually context-insensitive expression measures
which can be compared between chips and experimental
series without reprocessing. This issue requires appropri-
ate metrics for expression measures to enable direct com-
parison of data from different experiments in consistent
units.

This paper addresses these tasks and presents a new single-
chip calibration method for microarrays based on a phys-
ical model of hybridization. Our so-called hook-method
provides a graphical summary of the hybridization char-
acteristics of each microarray which directly transforms
into a sort of natural metrics for intensity calibration with
the potential to estimate expression values on an absolute
scale. This metrics uses mismatched probes on Affymetrix
GeneChip arrays as internal reference for judging the
hybridization of the perfect matched probes over the
whole potential concentration range.

In the first part of the paper we outline the calibration
model and validate its relevance using single probe
benchmark data. In the second part we apply the model to
single chip data and describe the analysis algorithm step
by step. Table 1 summarizes the essential notations and
symbols used in the paper. Examples which illustrate the
performance of the method are presented in the accompa-
nying publication [19].
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Table I: Notations
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Superscripts

Assigns main symbols to...

P =PM, MM Probe type

h=N,S Non-specific or specific hybridization
Subscripts Assigns main symbols to...

p, G, set Probe-, chip- or probe-set-level

0 Values after sequence correction

Main symbols
P
Ip , M., O,
P P.h
Lo,pv Lp
SSE[Y NC
P P,S PN
er. eyt or
XoPS, X PN
P P,S P,N
Xp , Xp , Xp
(8] [N

Probe intensity, maximum intensity upon saturation and optical background
Linearized (de-saturated) intensities

Specific and non-specific signals
Probe occupancy: total and due to specific and non-specific hybridization

Fraction of specific and of non-specific transcripts among the total amount of bound transcripts
Binding strength: total and due to specific and non-specific hybridization

Concentration of specific and non-specific transcript
Binding constants of a probe for specific and non-specific transcripts

P,S PN
KP ’ KP
s, n PM/MM-sensitivity gain for specific and non-specific binding
R S/N-ratio
A X Hook coordinates
Ageare Zstare Starting values of the hook coordinates
A(0), £(0)
A(), Z() End values of the hook coordinates
o fp Vertical and horizontal dimensions of the hook curve
Ds, Discrimination score

Ph Contribution of middle base B to the signal
€13 (By)

Ph Positional dependent sensitivity propfile; k is the start position of sequence motiv b, which consists of m adjacent

Sey" (b nucleotides
5Af) Sequence specific contribution to the intensity
Y, Sensitivity

N .S Density distributions of the non-specific and specific signals
pp » Pe
w, o p Mean value, standard deviation and coefficient of PM/MM-correlation of the normal distributions of the non-specific

background signals
A, A5 decay lengths of the exponential distribution (referring to the S/N-ratio and to the Z-signal)
& Mean specific signal
Operation
g log(x) Generalized logarithm
<..> Arithmetic mean
2. Calibration model for microarray data P

The competitive two-species Langmuir model of
microarray hybridization

(1)

X
P p : P
p#=M.-©)+O, with ©F="P

1+XP .

We emphasize on Affymetrix GeneChip microarray data

obtained after the chips have been hybridized, scanned
and the images have been summarized into hundred-
thousands of paired intensity values of perfect match
(PM) and of mismatched (MM) probes. The intensities of
probe "p" on chip "c" are well described using the Lang-
muir adsorption isotherm [12,14,20-22],

Here the superscript denotes the probe-type (P = PM,
MM). The indices "p" and "c" assign probe- and chip-spe-
cific parameters, respectively. The probe-index implies the
chip specificity as well, i.e. p = p, c. This model predicts
that the fraction of "occupied", i.e. dimerized oligonucle-
otides of a probe spot, ®,F (also called surface probe cov-
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erage or occupancy), is directly related to the observed
intensity, I,"* [14,18]. The proportionality constant, M,
specifies the maximum intensity referring to complete
occupancy, O, = 1, if all oligonucleotides of the respec-

tive probe spot on the given chip are dimerized. The min-
imum intensity referring to the absence of bound

transcripts, ©," = 0, gives rise to the "optical" background
intensity, O.. Throughout the paper we will consider only
"net" intensities which have been corrected for the optical

background before further analysis, III; = Ig * -0, using,

for example, the zone-algorithm provided by Affymetrix
[23].

The surface coverage changes as a hyperbolic function of
the "binding strength", X 7, which additively decomposes
into contributions due to specific and non-specific
hybridization

Xp=X7%+ XN, (2)

Since the binding strengths follow the mass action law
they are related to the concentration of specific and non-
specific transcripts, [S], and [N],, respectively, and to the
respective effective association constants of duplex forma-
tion, K,Ph (h = S, N) (see [1] for details),

Xp® =[] Ky Ky™ =[N] K™, 3)

The latter equation assumes that the large number of dif-
ferent non-specific RNA-fragments in the hybridization
solution effectively acts like a single species with the com-
mon concentration [N]_for all probes of the chip [15,16].
Contrarily, the concentration of specific transcripts, [S],,,
refers to a particular probe sequence, i.e., it represents a
"single probe"-property. Microarrays of the GeneChip-
type use so-called probe sets of several probes (usually N,
= 11) for estimating the expression of each considered
gene. One expects therefore that all probes of a set probe
the same, common transcript concentration, i.e. [S]g, =
[S],, for p € set assuming that effects as alternative splicing
have been appropriately considered during probe design.

The competitive two-species Langmuir adsorption iso-
therm (Eq. (1)) considers the effects of non-specific
"background" hybridization and of saturation at small
and large concentrations of specific transcripts, respec-
tively. The maximum intensity at saturation, M., depends
on factors such as the number of oligonucleotides per
probe spot (which in turn is related to the density of oli-
gomers and to the spot size), the mean number of optical
labels per bound target and the settings of the scanner.
These factors affect the PM and MM nearly in the same

http://www.almob.org/content/3/1/12

fashion giving rise to virtually identical values of M. at
complete saturation of the probe spots under equilibrium
conditions (X,P>> 1) [16,18].

Recent studies report significantly higher limiting inten-
sity values of the PM, compared with that of the MM, i.e.
MPM > MMM [22]. They interpreted this result assuming a
probe-dependent partial dissociation of the duplexes dur-
ing the post-hybridization washing phase. Another, addi-
tional explanation might be the truncation of a
considerable amount of the probe oligomers due to
incomplete synthesis because this effect causes the asymp-
tote-like flattening of the hybridization isotherms at inter-
mediate and large transcript concentrations in a sequence-
dependent manner [1,9].

We will apply in the following analysis the special-case of
the common intensity asymptote for all probes of the chip
according to Eq. (1). Possible consequences of deviations
from this assumption for the data analysis will be
addressed in a separate study.

Matched and mismatched microarray probes

The probes on expression microarrays of the GeneChip-
type are usually designed in a pairwise fashion. Each
probe pair consists of 25-meric PM- and MM-probes
where the PM-sequence is assumed to perfectly match a
25-meric section of the target gene. The MM-sequence dif-
fers from that of the PM by a single complementary mis-
match in the centre of the sequence. The different middle
bases of both probes of one pair cause different base pair-
ings in the respective probe/target-duplexes and thus dif-
ferent binding constants (see below and [16]). Let us
define the pairwise PM/MM ratio of the binding constants
of specific and non-specific hybridization,

i XEM,S KEM,S L XBM,N KgM,N
Sp = YMM,S =  MM,S and. np = YMMN =  MM,N "’
p P P P

(4)

respectively, which specify the noted effect of different
base-pairings formed by the PM and MM. For example,
the binding strength of the complementary Watson-Crick
(WC) base-pairings in the middle of the specific duplexes
of the PM exceeds that of the specific duplexes of the MM
which form a weaker self-complementary mismatch at
this position [15-18]. For the ratio of the specific binding
constants one consequently obtains s, > 1. Contrarily, for
the ratio of the non-specific binding constants one gets n,,
< 1 for purines (Adenine, Guanine) and n,,> 1 for pyrim-
ides (Thymine, Cytosine) in the middle of the PM
sequence owing to the purine-pyrimidine asymmetry of
Watson-Crick (WC) base-pair interactions in RNA/DNA
duplexes [13,24]. Hence, the parameters s, and n,, specify
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the PM/MM-affinity gain of a selected probe pair upon
specific and non-specific binding, respectively. Both, PM
and MM probes obey the hyperbolic adsorption isotherm,
Eq. (1) [18]. With Eq. (4) one obtains for the binding
strengths of the PM and MM probes

X MER)=XpMN - (R+1) and

XpMR) = XPMN (R /s, +1/n,) ©)

Eq. (5) scales the intensity of the PM and MM probes as a
function of the relative hybridization degree,

PM,S PM,S
RERgM:Xp :[S]p -Kp . (6)
XPMA T[N, kPN

This S/N-ratio, R, provides the specific binding strength of
the PM in units of the non-specific one. It can serve as a
relative measure of the expression degree because it is
directly related to the concentration of specific transcripts,
[S],- It scales the expression degree in a probe-specific
fashion.

Part a of Figure 1 shows the courses of the intensities of a
typical PM/MM pair as a function of the parameter R (see
Eq. (6)). The PM intensity sigmoidally increases from its
minimum value, [,(R = 0), to I (R = «0) = M,, at small and
large abscissa values, respectively. The respective probes
referring to these limiting cases are either exclusively non-
specifically hybridized or completely saturated with sur-
face coverages of ©,"M(0) = X ,PMN/(1 + X ,PMN) ~ X PMN
and ©,PM(x0) = 1, respectively. The concentration and S/N-
ratio referring to the inflection point of the isotherm at
half-way between these values are

1+xPMN

50% 50%
(81, == Pais = pvs and R=
Kp ’

()

respectively. They specify the condition at which 50% of
the free probes available in the absence of specific tran-
scripts become occupied. The approximations at the right-
hand side of Eq. (7) refer to small X,PMN << 1.

The MM intensity responds in a very similar fashion as
that of the PM with increasing R (see part a of Figure 1).
The limiting surface coverage of exclusively non-specifi-
cally hybridized MM probes at R = 0 is changed compared
with that of the PM (see Eq. (4)), ®,MM(0) = X,PMN/(n,, +
X,PMN) ~ X PMN/n . The isotherm of the MM is clearly
shifted to larger abscissa values in the intermediate R-
range owing to the smaller binding strength for specific

http://www.almob.org/content/3/1/12

logR=log(S/N)

Figure |

PM- and MM-probe intensities (part a), their log-difference
(part b) and -sum (part c) as a function of the specific target
concentration (S/N-ratio). The curves are calculated using
the Langmuir-model (Eq. (1)). The difference-plot reveals the
hybridization regimes of non-specific (N), mixed (mix) and
specific (S) hybridization, of saturation (sat) and the asymp-
totic (as) range. The parameters o and S used in Eq. (10)
specify the data range spanned by the log-difference and -
sum.

hybridization (s, > 1, see above). For the inflection point
of the isotherm one obtains in analogy to Eq. (7)

PM,N PM,N
[S]SO% o A1+XP _ Sp . RS =87PA 1+Xp zsip‘ 1 ,
P P KEM,S KEM,S np XBM,N np XBM,N
(8)

which shows that the horizontal shift between the PM-
and MM-isotherms is log(s,) and log(s,/n,) in the log-
scale of [S] and R, respectively.
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The delta- and sigma-transformations

The MM probes were designed as reference for estimating
the non-specific background contribution to the respec-
tive PM intensity [2,5,25]. The "simple" subtraction of the
MM-intensity from that of the PM however partly failed as
correction method because both probes differently
respond to non-specific and specific hybridization due to
their complementary middle bases which, for example,
gives rise to negative PM-MM intensity differences [15].

According to the Langmuir model, the behaviour of the
PM and MM can be understood on the basis of the same
hybridization rules where both probe types however differ
with respect to their effective association constants for
probe/target dimerization (see above). The intensities of
the PM and MM are consequently expected to correlate in
a well defined fashion. This mutual relation is determined
by the mismatch design of the reference probe, the partic-
ular probe sequences and by the concentrations of specific
and of non-specific RNA fragments in the sample solution
used for hybridization on the particular chip [18].

Let us empirically analyze the relation between the PM
and MM signals in terms of two simple linear combina-
tions of the log-intensities of a probe pair, namely their
difference and average value,

— _ PM MM
A, =Alogl, =logl ™ —logly ©)
- _1 PM MM )’
X,=Zlogl, = E(loglIJ +logly )
(log=log,,is the decadic logarithm). The intensity model
predicts for this transformation (see Egs. (1) and (5))

PM
. BEM(R)
__ A Start Linear P
Bp " (R)

and p
; 1
Zp(R) = Zp + Z(R) - log{ BI(R)- BYM(R)}
(10)
with the "start", "linear" and the "saturation terms"

Ay =logn, and Iy =logM - f,

(R+1)

Alinear () _ jog
P (R107%P +1

} and Z;i"e“(R) :%log{(R+1).(R.10’°‘p +1)}

1 start

N ﬁ,r;ﬁ,,‘

PM () —
BM(R)=1+10

(R+1) and ByM(R)=1+10

respectively. The limiting values of £(R) and A(R) in the
absence of specific transcripts (R = 0) are

http://www.almob.org/content/3/1/12

AL(0)=A)" +0, and Z,(0)=Z™ +o0y
1+xEMN 1
—————— and oy=

with o, =log =

lOg((l+XgM'N).(1+XEM’N/nP))'

(11)

In the limit of weak non-specific binding (X,PN << 1) the
o-terms vanish and the limiting A- and 2-coordinates are
given by their start values. The probe-specific exponents in
Eq. (10) are defined as

PM,N
1+Xp /np

S 1
a, = log% and B, = Elognp —longM’N

12

2]

fraction X, coverage ©

0 1

z.- 2:(0)2

Figure 2

A-vs-Z plot of the PM- and MM-isotherms shown in Figure |
(part a, see Eq. (9)). The parameters o and 5 now specify the
height and width of the A-vs-X trajectory of the PM/MM-
probe pair. Part b shows the fraction of specific transcripts
bound to PM- and MM-probes (xs°, P = PM, MM; and their
log-mean, <...>) and the total fraction of occupied probe-oli-
gomers (OP, and of their mean). Note that the fraction of
specific transcripts steeply increases in the mix-range
whereas the occupancy mainly increases in the sat-range (see
Egs. (17) and (16), respectively).
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In summary, the hyperbolic intensity functions of the PM
and MM can be transformed into A and X coordinates
which are governed by essentially four parameters, the
start values A start= A (0) and X start= ¥, (0) and the expo-
nents ¢, and f3,. They were chosen to provide a simple
geometrical interpretation of the A-vs-X trajectory in terms
of its start-coordinates and its vertical and horizontal
dimension with respect to the start values (see below and
Figure 1 and Figure 2).

The hybridization regimes

Part b and c of Figure 1 show the transformed intensities
taken from part a of the figure as a function of the param-
eter R = R PM. The course of the log-difference, A (R), can
be roughly divided into five regimes which reflect differ-
ent hybridization characteristics of the PM and the MM
probes with increasing degree of specific hybridization
(see Figure 1, part b):

(1) N-regime: In the non-specific-regime, at small values
R — 0, both, the PM and MM nearly exclusively hybridize
with non-specific transcripts. Saturation can be typically
neglected in this range (B,"~ 1, see Egs. (10) and (11)).
The limiting ordinate value for X ;N << 1 estimates the
ratio of the binding constants referring to the respective
pair of complementary middle bases in the PM and MM
sequences, A,(0) ~ log n,, (see Eq. (4)). We will use the
approximation of weak non-specific binding throughout
the paper.

(2) mix-regime: In the subsequent mixed-regime, both,
specific and non-specific transcripts significantly contrib-
ute to the observed intensity of the probes. The log-differ-
ence A increases with increasing amount of specific
transcripts. The positive slope of A (R) implies 0A/0R ~ (1-
10-%) > 0, and thus a, > 0 or equivalently s, > n, (see Eq.
(12)). The increase of A,(R) consequently reflects the sim-
ple fact that the specific binding constant of the PM
exceeds that of the respective MM, i.e., K .PMS > K MMSS if
one assumes K,PMN~ K MMN (see below and Eq. (4)).

(3) S-regime: In the specific-regime the probes predomi-
nantly hybridize with specific transcripts. As a conse-
maximum at

quence, A reaches a

P

0.5(0,+B, )

R=R_ ., =10 with the ordinate value

141070-5( Bpap )
141070-5( Bp+ap )

(13)

Ap(Rmax) = Ap(0) + af, — log

This rough approximation assumes A,(0) << 1 </, and
R« >> 1. At conditions of weak saturation Eq. (13) sim-

http://www.almob.org/content/3/1/12

plifies with 05 (4, - «) > 1 into

P
Ay (Rpa ) = A" (00) = A, (0) + @, > 0. At these con-

ditions the height of the maximum directly provides the
log-transformed PM/MM-ratio of the specific binding
constants, a,,.

(4) sat-regime: In the saturation-regime the probes
become progressively saturated with bound transcripts
(B,P > 1). This effect first and foremost affects the PM due
to their higher specific binding constant (see above). As a
consequence A, starts to decrease.

(5) as-regime: At very large expression degrees both, PM
and MM reach their maximum intensity upon complete
saturation. In this asymptotic-regime the trajectory
reaches the abscissa for R — o, A () = 0 (see Eq. (10)).

The respective log-sum of the intensities, Z (R), is shown
in part c of Figure 1. It varies in a similar, sigmoidal fash-
ion as the individual log-intensities of the PM and MM
(compare part a and c of Figure 1). Here the mix-, S- and
sat-regimes merge into one region of increasing X whereas
the N- and as-regimes provide the minimum and maxi-
mum values, X (0) = Z;*" and Z(«0) = log M,, respec-

tively. With Egs. (11) and (12) one obtains for the
difference

By= 2 () -Z,(0)>0 (14)

B, specifies the span between the maximum and mini-
mum X-values. The X-coordinate of the maximum of
Ap(R) at R = R, becomes

Zp(Rmax)zZp(O)Jr%ﬂp, (15)

Egs. (15) and (14)
2y (Riax ) = Zp(0) = 3(Z, () =£,(0)) >0, ie, the

provide

maximum of A,(R) roughly bisects the total range of the

Y-coordinate.

The A-vs-2 trajectory

In the next step we plot the transformed intensities into A-
vs-X coordinates (see Figure 2, part a). This presentation,
also known as M-vs-A plot (difference-vs-sum), reflects
the binding isotherms of a PM/MM-probe pair. The
obtained A-vs-X trajectory shows a characteristic curved
shape with start-, end- and maximum-points referring to
the S/N-ratios R = 0, R = and R=R_,,, respectively. They
consequently define the N-, as- and S-hybridization
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regimes. The mix- and sat-regimes can be attributed to the
increasing and decreasing parts of the A-vs-X trajectory,
respectively.

The parameters &, and S, define the height and the width
of the obtained A-vs-X curve (see also Egs. (13) and (14)).
The A- and X-coordinates of the characteristic points
depend on the PM/MM-ratios of the binding constants
(see Eq. (4)), on the maximum intensity, () = logM,,
and on the mean intensity of the chemical background
due to non-specific hybridization, Z,(0) « log(I,"(0)) +
log(I,MM(0)). Hence, the A-vs-X trajectory links the
observed probe intensities with essential hybridization
characteristics in terms of simple geometric parameters.

The horizontal scale of the A-vs-X trajectory

In the Appendix A we show that the difference between
the actual Z-coordinate and its "asymptotic-value", % -
Z,(), estimates the mean probe coverage of the PM and
MM probes

<®p>=10(2"’2(°")), (16)

whereas the difference between the X-coordinate and its
"start value", X,-X,(0) characterizes the relation between
the amount of specific and non-specific hybridization in
terms of the fraction of specifically occupied binding sites
of the respective probe spot

(17)

(x3)= 1-10-(Zp~Zp(0))
P 1-10Pp '

Egs. (16) and (17) provide mean values averaged over the
respective PM/MM-probe pair. The "individual" coverages
of the PM and MM probes, GPPM and G)pMM, and the
respective fraction of specifically hybridized oligomers,
x,"MS and x,MMS, in addition depend on the relative A-
coordinates A-A(e0) and A-A(0), respectively (see Egs. (42)
and (45) in the Appendix A).

Part b of Figure 2 shows the surface coverage and the frac-
tion of specifically occupied oligomers for the A-vs-X tra-
jectory plotted in part a of the figure. Note that xP Sand ®@P
exponentially scale with the coordinate differences 2-X(0)
and X-X(0), respectively (see Egs. (17) and (16), respec-
tively).

Consequently, the fraction of specifically occupied probes
steeply increases in the raising part of the A-vs-X trajectory
(mix-regime) whereas the probe coverage steeply
increases in its decaying part (sat-regime). The contribu-
tion of non-specific hybridization and/or the effect of sat-
uration of a particular probe can be essentially neglected

http://www.almob.org/content/3/1/12

if the distance of its X-coordinate from the start and/or
end points exceeds unity. Particularly, one obtains <x,5> >
0.9 for £-£(0) > 1 and < ©®,> < 0.1 for E(»)-X < 1.

The horizontal shift between the PM-and MM-curves in
part b of Figure 2 illustrates the "delayed response" of the
MM with respect to the specific transcript concentration:
The MM reach a certain ordinate-level of the surface cov-
erage and of the fraction of specifically bound probes at
larger abscissa values and thus at larger concentrations of
specific transcript concentrations than the PM (see also
Egs. (7) and (8)).

The fraction of specifically bound probes directly trans-

forms into the mean S/N-ratio of the PM and MM (see
Appendix A and also Eq. (6)),

10{(2P_EP(O))}—1
1—10{(21?_2?(”))} |

For abscissa values ¥ < X(«) -1, Eq. (18) simplifies into

(R)= (18)

log(<R> + 1) = 2-Z(0). Hence, the X-axis nearly linearly
scales with the logarithm of the mean S/N-ratio. For the S/
N-ratio of the PM, this equation modifies into

log(Rp™ +1) =~ (£-2(0)) + 1 (A-A(0)) (see Eq. (46)
below), i.e., it depends in addition on the vertical coordi-
nate of the A-vs-X trajectory.

For intermediate abscissa values, 2(0) + 1 < £ < Z() -1,
the occupancy of the probe spots (Egs. (16) and (42))
provide an approximation of the binding strength of spe-
cific hybridization of the PM and MM probes (©,F~ X PS5,
see also Eq. (1)) and of their mean

IOgXEMIS z7(Zl>("")72p)+%Ap

’ IOgXQAMIS zf(zp('x’)’zp)fpr

and logXE E%(logng'S +logX£’1M's):7(Zp(m)72p)
(19)

In summary, the position of a probe-point along the -
coordinate estimates the hybridization degree of the
respective probe spot in terms of relative concentration
measures characterizing either the S/N-ratio (Eq. (18)),
the relative occupancy of the probe oligomers with spe-
cific transcripts (Eq. (17)), their overall degree of occu-
pancy of (Eq. (16)) and the specific binding strength of
the considered probe pair (Eq. (19)).

The probe coverage (Eq. (16)) provides an additional
interpretation of the horizontal dimensions of the A-vs-X
trajectory: For the N-point one obtains with X = %(0) the
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coverage due to  non-specific  hybridization,

<®§(R = 0)> ~10(BO=) _gF, , because (almost)

exclusively non-specific transcripts bind to the probes.
Note that this "non-specific" coverage is exponentially
related to the "width"-exponent, S, (see Eq. (14)), and
thus to the horizontal distance between the N- and the as-
points. The remaining, not-occupied and thus free oli-
gomers serve as potential binding sites for specific targets,

ie., <®gee(R = 0)> =1-10"" . The horizontal dimen-

sion of the A-vs-X trajectory consequently specifies the
maximum amount of free probes available for specific

Q) w—

log s

: 'A(0)=Iog n

2(0)=(-log 1™(0)+0.5l0g n)

o =00 s a

¥(«)=log M
2

Figure 3

Part a: A-vs-X trajectories upon decreasing contribution of
the non-specific background. The width of the curve, £,
defines the logarithm of the binding strength of non-specific
hybridization in the absence of specific transcripts (Eq. (12)).
Part b shows two trajectories of different height. The PM/
MM-gain parameter s defines the height in the absence of sat-
uration. The narrowing of the trajectories decreases the
maximum (see Eq. (13)).

http://www.almob.org/content/3/1/12

binding at R = 0 and thus the measurement range of the
probe spots for estimating the expression degree. The nar-
rowing of the model curves reflects the diminishing capac-
ity of the respective probes for specific transcript binding.
Figure 3 (part a) illustrates the narrowing of the A-vs-X tra-
jectory upon increasing the non-specific background con-
tribution. The special ideal case f = -0 consequently refers
to hybridization without non-specific background.

The vertical scale of the A-vs-2 trajectory

The A-coordinate of a probe is directly related to the so-
called discrimination score DS used by Affymetrix as a rel-
ative measure of the PM-MM intensity difference.

A —log 250 L2 e i Ds ™

=lo = . wit = .

=08 1-DSp, In10 7 p IEM_’_IévIM
(20)

The discrimination score roughly estimates the fraction of
the signal due to specific hybridization (see [26]). The
approximation on the right hand side of Eq. (20) seems
save for small values DS << 1.

The discrimination score serves as the basic parameter in
the MAS5-algorithm to calculate the so-called detection
call (DC) which judges the "presence" or "absence" of a
gene. Hence, the vertical scale of the A-vs-X trajectory is
related to the detection call: the higher the A -value of a
probe the higher the probability of the presence of the
respective specific transcript in the hybridization solution.
We will discuss this point more in detail in the accompa-
nying paper in connection with our alternative method
for classifying the genes into present and absent ones (see
below).

The vertical scale of the A-vs-X trajectory admits an addi-
tional interpretation in terms of different strengths of the
base pairings of the PM and MM probes. Particularly, the
A-coordinates of the N- and the S-points estimate the ratio
of the binding constants of the PM and MM upon specific
and non-specific hybridization according to Egs. (4), (11)
and (13). We have previously shown that the log-ratio of
the binding constants of the PM and MM probes can be
interpreted in terms of the effective free energy difference
for duplex formation with the respective targets
[15,16,18]. For the MM-design used for GeneChip expres-
sion arrays it roughly refers to the effective free energy
change upon replacement of the Watson Crick (WC) pair-
ing in the middle position of the probe/target duplexes
with the respective self complementary (SC) pairing in the
specific duplexes and with the complementary WC-pair-
ing in the non-specific duplexes, respectively, i.e.,
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logs,, = 7Asl"§C’SC(BP) and logn, = —Asl"gc’WC(Bp)
with

AeliT(B,) = (3 0(By) ~ e} (By) ) and  AeliTO(B,) = (3N (By) - 5N (BY) )

(21)
Here Ag,;WG-SC denotes the dimensionless free energy gain
(given in units of the thermal energy, RT) upon replace-
ments of the type Bebc — Bcebe (i.e. WC — SC) for the
base B, = A, T, G, C at sequence position 13 of the probe
(for example, Ceg — Geg; upper case letters refer to the
DNA-probe; lower case letters refer to the bound RNA-
fragment, b = a, u, g, ¢ the superscript "c" indicates the
respective complement). Accordingly, Ag;WCWC is the
respective free energy change upon WC-reversals, Bebc —
Beeb (for example, Ceg — Gec).

Hence, the ordinate position of the starting point of the A-
vs-X trajectory estimates the effective free energy change
upon replacing the central base in complementary WC-
pairings, i.e. A, (0) ~ -ASVEWCE(B)) (see Egs. (11) and
(21)). The relative ordinate value of the maximum is
related to the respective free energy change upon replacing
the central WC-pairing in the specific PM-duplexes by the
respective SC-pairing in the MM-duplexes, i.e. A (R;,,,) »
_AGWC-SC,

Figure 3 illustrates that the maximum height of the A-vs-X
trajectory starts to decrease for relatively small widths
referring to large strengths of non-specific hybridization
(B, < 3) because saturation onsets almost in the mix-
range. In such cases the observed vertical dimension of the
trajectory potentially underestimates the height-parame-
ter a, (see Eq. (13)) which however can be obtained by
appropriate curve fitting using Eq. (10) (see below).

In summary, the A-vs-X trajectory spans a sort of natural
or intrinsic metric system between distinctive points
which characterizes the binding thermodynamics of the
probes of the particular microarray. The horizontal
dimension characterizes the measurement range of the
respective probe whereas the vertical dimension reflects
the free energy gain due to the change of the central base
pairing in the respective duplexes of the PM and MM
probes.

A-vs-X trajectories of individual probes

Each probe is characterized by its "individual" A-vs-X tra-
jectory which describes the intensity change upon increas-
ing content of S-transcripts in the range 0 < R < 0. We used
the Affymetrix HG-133 spiked-in data-set to study the R-
dependence of selected probes http://www.affyme
trix.com/support/technical/sample data/datasets.affx.
This data set was generated by Affymetrix to calibrate the
observed intensities on the basis of known transcript con-
centrations. Particularly, transcripts referring to 42

http://www.almob.org/content/3/1/12

P 95%
1,5 non-specific (N)
@
<
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P
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T-%()

1: TATAATCTTTTATACAGTGTCTTAC
2: GAGGATTCATCTTGCACATCTGAGA
3: GACAGGTCCTTTTCGATGGTACATA

4: GCACAAGTTTTTCTACACTCAGTGT
5: GTGATGCTCAATGGATCCCGCAGTA
6: TAGGCCATTTGGACTCTGCCTTCAA

Figure 4

Upper panel: A-vs-Z trajectories of six selected probe-pairs
taken from the HG-U 133 spiked-in experiment (Affymetrx).
The sequences of the PM-probes are shown in the insertion
below. The probe-pairs are numbered with increasing C and
decreasing A content of the respective PM-probe (see of
insertion on the right). The symbols are the experimental
data. The lines are calculated using Eq. (10). Lower panel:
Variability of the A-vs-X trajectories of all 498 spiked-in
probes. The boxplot indicates the scattering of the start- and
maximum-coordinates for R = 0 and R = R, respectively.
The A-vs-X trajectories are averaged over all probe-pairs
with the middle base A, T, G and C of the PM, respectively.
The variability due to the middle base refers to the 75%/25%
quantiles of the distribution of the individual probe trajecto-
ries. The consideration of the nearest neighbours in terms of
the middle triple extends this range: only the trajectories
with the largest and smallest maximum value (for middle tri-
ples CCC and CGC, respectively) are shown (see also ref.

[18)).

selected genes were titrated with increased concentration
onto a series of chips using the Latin-squares design. The
non-specific background was taken into account by add-
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ing a HeLla-cell line extract to all hybridizations which
does not contain the spiked-in transcripts.

Part a of Figure 4 shows the trajectories of six selected
probes together with fits by means of Eq. (10) (compare
curves and symbols). The probe-labels 1 to 6 are chosen
to increase with increasing number of C and decreasing
number of A per probe sequence (see Figure 4). The
observed intensities and thus also the trajectories are func-
tions of the binding constants for DNA/RNA duplex for-
mation, which in turn depend on the sequences of the 25
meric probes. For example, the binding affinity of Ceg
WC-pairings exceeds that of Aeu pairs in the hybrid
duplexes. In general, the probes with a higher amount of
cytosines are therefore expected to bind the RNA frag-
ments more strongly than probes with a higher amount of
adenines. Equation (3) predicts for the increase of K,"N
(and of logX,"MN, see Eq. (3)) the decrease of the horizon-
tal dimensions, £, of the respective probe-trajectory.

Indeed, the increase of the cytosine-content causes the
narrowing of the trajectories by the shifting of their start-
point, £,(0), towards larger abscissa values at invariant
Z,(0) = const., which is assumed to be constant across all
probes because of their common maximum binding
capacity. Note that the width of the trajectories and thus
the binding strength of the non-specific background var-
ies over about two orders of magnitude, logX ,"MN~ -4 to
-2, for the six selected probes.

The A-coordinates of the starting- and maximum-points
of the selected probe-trajectories show considerable varia-
tion without obvious correlation to their sequence charac-
teristics. We calculated the trajectories of all spiked-in
probes (~500) using the results of our previous analysis of
the hybridization isotherms (see refs. [18] and [16] for
details) to estimate the variance of the positions of their
starting- and maximum-points. The boxplot in part b of
Figure 4 visualizes the center and the width of the distri-
butions of the obtained A,(0)- and A (R,,,,)-data in verti-
cal and horizontal directions.

The respective coordinates of the individual probe-trajec-
tories depend mainly on the particular probe pairings of
the middle bases in the non-specific and specific duplexes,
respectively (see Egs. (11) - (13) and (21)). To filter out
the underlying sequence effects we calculated "mean" tra-
jectories for all probe pairs with a certain middle base (see
Figure 4, part b). These middle-base related mean trajecto-
ries are shifted each to another in vertical direction accord-
ingto C~T> G ~ A for the N-, and C > G ~ T > A for the
S-point, respectively. This systematic trend is in agreement
with Eq. (21) which predicts that the vertical positions of
the N- and S-points are functions of the middle base of the
respective probe sequences. The observed relations reflect

http://www.almob.org/content/3/1/12

the purine-pyrimidine asymmetry of binding strength of
complementary WC-pairings at the N-point (i.e., Ag ;W&
WC(B) # Ag 3 WGWE(BC)) and the higher stability of the WC-
pairings compared with SC-mismatches at the S-point,
A& WESC(B) (see Eq. (21)). Note that the specific binding
constants of PM exceed that of the MM on the average by
the factor of s ® 7 whereas for non-specific binding one
obtains a mean ratio of n ~ 1.2.

The comparison of the middle-base related trajectories
with the width of the N- and S-boxes indicates that the sys-
tematic effect due to the middle-base explains the variabil-
ity of the A(0)- and A,(Ry,,,)-coordinates in the limits of
their 25% and 75% quartiles. The consideration of the
nearest neighbors of the middle base further broadens this
range: For illustration we show the respective mean trajec-
tories for the "middle triples" CCC and CGC which pro-
vide the strongest and weakest binding affinities among
the 64 possible combinations of three adjacent bases,
respectively (see [18] and [13]).

In summary, the transformed intensity data of individual
probes are well described by the A-vs-X trajectories pre-
dicted by the Langmuir-isotherms. The presented data
illustrate the probe-specific variability of the A-vs-X trajec-
tories due to sequence effects. The positions of the start-
and maximum-points can be attributed to the differences
between the PM and MM probe-sequences which affect
the respective binding constants in a middle-base depend-
ent fashion.

3. The hook-algorithm for single-chip calibration
The A-vs-X trajectories describe the behaviour of PM/MM-
probe intensities as a function of the RNA-concentration
on a relative scale. The analysis of probe-specific trajecto-
ries seems not applicable for probe data which are taken
from a single chip because each probe pair refers exactly
to only one concentration and thus to only one point
along its "individual" A-vs-X trajectory. On the other
hand, the large number of probes per chip (and the pres-
ence of considerable amounts of specific targets) lets us
suggest that their hybridization degrees usually cover the
whole potentially possible concentration range. Our idea
is to characterize the performance of a particular hybridi-
zation experiment in terms of its mean A-vs-X trajectory
averaged over all probes of one particular microarray in
analogy to the "individual" A-vs-X trajectory of each single
probe. The horizontal and vertical dimensions of this
mean A-vs-X trajectory are expected to provide the hybrid-
ization metrics of the considered chip in terms of charac-
teristic concentration measures (e.g. the mean level of
non-specific background or the mean occupancy and sat-
uration level of the probe spots) and of characteristic
effective free energy differences due to the used mismatch-
design of the probe pairs.
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Upper panel: A-vs-<X>__ plot of the intensity data of one
complete chip taken from the HG-U133 spiked-in experi-
ment (Affymetrix): Probe intensity data (black dots), probe-
set log-averaged data (light dots) and moving average over
~100 probe-sets (line). The latter plot is enlarged in the
lower panel: It is called (raw) hook curve because of its char-
acteristic shape. The N-, mix-, S- and sat-hybridization
regimes are indicated (compare with Figure 2). The break-
point is used to classify the probesets into absent and
present ones (see text).

The raw hook curve

To construct the mean A-vs-X trajectory we plot the PM-
MM log-intensity difference of all probe pairs of a partic-
ular chip, A, versus the set-averaged log intensity of the
respective probe set, <¥>,, in a first step (see Eq. (9) and
part a of Figure 5). Additional set-averaging of the log-dif-
ference, <A>,,, reduces the scatter width of the data points
along the ordinate roughly by the factor of ~ VN, ~ 3 (see
the yellow dots in Figure 5). In the next step we smoothed
these data by calculating the moving average over a sliding

http://www.almob.org/content/3/1/12

window of N ., = 100 subsequent probe sets along the
abscissa to extract the mutual dependence between <A>,,
and <X>,,. The resulting plot is called (raw-) hook-curve
because of its typical shape (see part b of Figure 5). Each
probe-set is characterized by its "hook"-coordinates, Zhook
= <I>, e and ANk = <A >0 (>

The shape of the hook curve basically agrees with that of
the A-vs-X trajectory (compare with Figure 2). We attribute
the rising and decaying part and the maximum in-
between to the mix-, sat- and S-regimes, respectively,
which refer to the mean hybridization level of the respec-
tive probes on the chip. The hook-curve obviously does
not reach the asymptotic as-regime with A(«) = 0. This
result does not surprise because complete saturation is
usually circumvented by reasonably chosen hybridization
conditions. Otherwise the probes completely lose their
sensitivity to detect changes of the transcript concentra-
tion [14].

At small abscissa values the hook curve starts with a virtu-
ally horizontal part (slope(N) < 0.1) which is separated
from the subsequent mix-range (slope(mix) > 0.6) by a
distinct break-point. In the appendix we show that the
observed initial tiny slope can be explained by the relative
strong correlation between the intensities of non-specifi-
cally hybridized PM- and MM-probes in the absence of
specific transcripts (p > 0.7, see Eq. (49)) which in turn
seems reasonable in view of the nearly equal sequences of
both probe-types which suggest similar variations of the
sequence-specific bindings strengths from probe pair to
probe pair. On the other hand, for the mix-region the
hybridization model predicts a considerably increased
slope of slope(mix) ~ 1.15- &, ~ 0.9 > slope(N) = 0.8 (see
Egs. (47) and (49) with- > 0.8 and p> 0.7, respectively).
Hence, the break in the course of the hook-curve can be
explained by the onset of specific hybridization for probes
(and probe-sets) located on the right from this point.

Accordingly, the break-point between the N- and mix-
ranges was used to classify the probe-sets into two sub-
ensembles: (i) "absent"-ones for Zhook < Fbreak, which are
assumed to hybridize predominantly non-specifically
owing to the absence of specific transcripts in the hybrid-
ization solution (R = 0); and (ii) "present"-ones for Zhook
> ¥break which significantly hybridize specifically owing
to the presence of specific transcripts (R > 0).

The exact position of the break point of a particular hook
curve was estimated by a simple algorithm based on the
joint least-squared fit of the Ahook-data to a linear function
for Zhook < ¥break and a quadratic function for Thook > Fbreak
(see Figure 5). The algorithm systematically varies the
position of the break, Xbreak finally returning the optimum
value of Ebreak which best fits the data.
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Sensitivity-corrected intensity-data and sensitivity profiles
The intensity of a probe and thus also its (A, X)-coordi-
nates depend on the concentration of RNA-transcripts and
on the binding constants for specific and non-specific
hybridization as well (see Eq. (5)). These constants are
functions of the respective probe sequences giving rise to
the scattering of the individual probe intensities over one-
to-three orders of magnitude [14]. This variability is not
related to changes of the transcript concentration, and
thus it introduces considerable uncertainty if one aims at
interpreting the (X ook, A hook)-coordinates of a probe
in terms of its hybridization degree. In the next step we
therefore correct the intensities for probe specific effect
according to

loglg'p = loglg - 5Ag with

SAD =(1-xIN) SADS 4 xPN . sADN' 22)
P p p P p

where IP; , denotes the corrected intensity of probe p. The
sequence-specific incremental contribution, OA," (P =PM,
MM), the so-called sensitivity of the probe, additively
splits into two terms due to specific and non-specific
hybridization, 6A,"N and 6A,"S, which are weighted by
the fraction of non-specifically and specifically hybridized

oligomers, xfl,)’N = rnin(LI;(O)/LP,l) and x,”$ = (1 - x,PN)

with logL,P(0) ~ logl P(0) = <logl P>,y + 6A,"Nand L,P =
L,P/(1-1,°/M,), respectively. The brackets <...>,_\ denote

averaging over all probes from the N-range of the hook
curve.

The intensity-correction according to Eq. (22) requires the
knowledge of two sensitivity-values for each PM and each
MM probe, dA,PS and SA,"N (P = PM, MM), respectively.
They were estimated using either the so-called single-
nucleotide (SN, m = 1), the nearest neighbour (NN, m =
2) or the next to nearest neighbour (NNN, m = 3) model.
This approach additively decomposes the increments
oA,Phinto positional and sequence-dependent sensitivity
terms, gl (b, ) (m = 1,2,3) referring either to single
nucleotides (b, = B), to adjacent duplets (b, = BB') or tri-
plets (b;=BB'B"; B,B',B" = A, T, G, C; see also [27]),

25-m+1
AR = D D (050" () (b Elm) )
k=1 b,

(23)

with d{(bm’ gpk,m) = 1for bm = gpk,m and é{(bm' fpk,m) =0,
otherwise. Here &, | denotes a subsequence of m consec-
utive bases starting at position k of the respective probe
sequence. Each set of sensitivity terms consequently com-
prises 25 x 4 = 100, 24 x 16 = 384 and 23 x 64 = 1472

http://www.almob.org/content/3/1/12

parameter values for the SN, NN and NNN models,
respectively.

Altogether, the intensity-correction requires four sets of
such profiles, dgh(b,,), referringto P =PM, MM and h =
N, S, respectively. We used weighted multiple linear
regression of the normalized intensity data taken from
selected sub-ensembles of probe sets to estimate the
required sensitivity-profiles (see Appendix C and [18]).
These sub-ensembles were chosen to comprise probes
which are predominantly hybridized with non-specific (p
e N) or specific (p € S) transcripts for estimating
ogPN(b,,) and 65F5(b,,), respectively. Probes of the
former sub-ensemble are taken from the initial horizontal
part of the hook curve which was assigned to the N-regime
meeting the condition X hook < ¥break (see Figure 5). The
respective absent-probes are assumed to bind predomi-
nantly non-specific transcripts.

The second sub-ensemble of predominantly specifically
hybridized probes (p € S) was selected according to the
condition X hook > 380% where £80% defines a threshold
referring to <x5> > 0.8, i.e. to probe spots with a fraction
of specifically-hybridized oligomers of at minimum 80%.
According to Eq. (17) the respective probes are selected to
meet the "horizontal distances"-criterion with respect to
the break-point (£80% - ¥break) > _]og(0.2) ~ 0.7. The some-
what arbitrary choice of <x5> > 0.8 turned out to be not
very crucial with respect to the quality of the obtained cor-
rection. On one hand the higher the value of <x5> the
smaller the residual contribution of non-specific hybridi-
zation in the selected sub-ensemble and the better the
obtained sensitivity profiles characterize specific binding
[16]. On the other hand, the number of probe sets in the
sub-ensemble decreases with increasing <x5> giving rise to
more noisy sensitivity profiles and thus to less precise cor-
rection terms [16]. The chosen value of <x5> >0.8 provides
a good compromise (see Figure 5).

Typical SN- and NN-sensitivity profiles of the PM and MM
referring to the N- and S-subsets are shown in Figure 6.
Note their different shape, especially that of the S-profiles
of the MM with the typical "dent" in the middle of the
sequence. It is caused by the mismatched base pairing in
the specific duplexes of the MM which give rise to changed
interaction characteristics compared with WC-base pair-
ings. We refer to our previous papers for the detailed dis-
cussion of the sensitivity profiles in terms of base-pair
interactions in the respective probe-target duplexes
[15,16,18]. In the present context it is important to dis-
criminate between the four different sensitivity profiles to
properly correct the intensity data for sequence specific
effects.
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Positional dependent sensitivity profiles: The upper panel
shows the single-nucleotide (SN) profiles for the PM and MM
for non-specific and specific hybridization. The profiles are
calculated using the intensity data shown in Figure 5 (Eq.
(23)). The lower panel shows the NN-profiles of the PM for
non-specific hybridization and the respective SN-profiles
(lines) which are re-plotted from the upper panel (open sym-
bols). Typically the values increase according to BA BT BG
BC (with B=A, T, G, C; see arrows in the figure).

Importantly, for perfect selection of the N-subset one
expects the same sensitivity profiles for the PM and MM
probes, since the nonspecific background bears no partic-
ular relationship to any of both kinds of probes. The pro-
files shown in Figure 6 confirm this prediction. The degree
of similarity of the N-profiles of the PM and MM probes
thus provides a criterion for the proper selection of the N-
subsets.

The corrected hook curve

In the next step, the corrected intensity values were trans-
formed into (4, Z,,)-coordinates using the corrected
intensities in Eq. (9). Subsequently the (4, Z,,)-data
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The same as Figure 5 but for sensitivity-corrected intensity
data (Eq.(22)). The upper panel shows the A-vs-<X >_ plot
of the sensitivity-corrected intensity data of one chip taken
from the HG-U133 spiked-in experiment (Affymetrix) The
lower panel shows the (corrected) hook-curve.

were set-averaged and smoothed in the same fashion as
described above for the non-corrected intensities to get
the sensitivity-corrected version of the hook-curve with
the coordinates (Z,hook, Ajhook),

The sensitivity-correction reduces the scattering of the
probe- and probe-set-level intensity data about the
smoothed hook-curve (see Figure 7). With the N-, mix-, S-
and sat-hybridization regimes it essentially shows the
same features as the uncorrected hook curve. The break
between the N- and mix-regimes was again used to classify
the probe sets into absent and present ones. The sensitiv-
ity correction affects the (X hook, A hook).coordinates of
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each probe set with possible consequences for its classifi-
cation into absent and present ones. In a second iteration
we therefore re-calculated the four sensitivity profiles on
the basis of corrected hook-curve by applying the same
criteria for probe selection as above, i.e., Z hook < 3 break
and X hook > ¥ 180% for the N- and S-profiles, respectively.
Typically the re-calculated sensitivity profiles only mar-
ginally change compared with the profiles which were
obtained on the basis of the uncorrected hook curve indi-
cating the relative robustness of the chosen classification
criteria.

The detailed comparison between both versions of the
hook-curve reveals subtle differences especially of the ini-
tial N-regime: After correction it changes slope and, more
importantly, considerably narrows in horizontal direction
by roughly 50% (compare Figure 7 and Figure 5). The
steeper slope of the N-region after correction reflects the
reduced cross correlation between the corrected PM- and
MM-probe level data (see appendix B). Typically, the coef-
ficient of correlation decreases from values p ~ 0.7-0.9 of
the uncorrected data to p = 0.4-0.7 after correction which
gives rise to the change of the slope by the factor of 1.5 -
3 (see Eq. (49)).

The narrowing of the N-range results from the partial
removal of sequence effects which, to a large degree, cause
the variability of probe signals [14]. Ideally, the correction
of the intensities for sequence specific effects is expected
to shrink the N-region into one point referring to one and
the same corrected background intensity for all probes of
the chip (see Egs. (11) and (3)). The residual width of the
N-region reflects the deficiency of the method due to at
least three, essentially undistinguishable effects: Firstly,
the "fit"-error of the position-dependent sensitivity model
which only incompletely corrects the intensity data for
sequence effects caused, e.g. by the specific folding of
probe or target and/or bulk dimerization between differ-
ent targets [1]; secondly, the "N-concentration" error due
the simple assumption to consider all non-specific tran-
scripts as one effective species (Eq. (3)) and thirdly, the
"classification" error of the simple break-criterion which
imperfectly distinguishes between "present" and "absent"
probes due to its limited specificity.

Fit of the hybridization model

The corrected hook curve manifests the mean hybridiza-
tion characteristics of the probes on the particular chip in
sensitivity-corrected (X hook, Ajhook)-coordinates. It shows
essentially the same properties as the X-vs-A trajectory of a
single probe except the N-regime. For quantitative analy-
sis we fit the hybridization model introduced above (Eq.
(10)) to the corrected hook data in the mix-, S-, sat- and
as-ranges (i.e. at Xyhook > 3 break gsee Figure 8). The least-
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Fit of the Langmuir-model (Eq. (10)) to the mix-, S- and sat-
ranges of the corrected hook curve (see Figure 7). The lower
panel illustrates the relation between the coordinate axes
and intrinsic probe characteristics: The respective fraction of
specifically hybridized PM-probes (Eq. (45)), their S/N-ratio
(Eq. (46)) and occupancy (Eq. (43)). The arrows indicate the
50%-conditions at which the PM-probes on the average
become equally hybridized with specific and non-specific
transcripts (xP™.$= 0.5) and at which 50% of the oligomers of
the PM-probe spots become occupied (©P™ = 0.5). The third
arrow points to the probes with a |00fold excess of specific
hybridization.

squares gradient descent algorithm searches for optimum
values of &, f.and £ (0) = Zobreakand A (0) = <Zghooks .
Note that the break position X,breakslightly deviates from
the centre of the N-range <X,hook> _\ because of the width
of the N-regime (see Figure 7). We define the total width

of the hook curve as B, =X, ( oo ) _ <Zgoak > o
pe

Note that the obtained model parameters are now chip-
averaged mean values in contrast to the single probe prop-
erties used above. We therefore substitute the probe-index
"p" by the chip-index "c". Particularly, one gets the mean
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PM/MM-ratios of the binding constants for specific and
non-specific hybridization

KEM’S +A,(0) KEM’N A.(0)
a( c c
¢ = (MMS 10 and n. = MMN 10
C C
(24)

respectively, and the mean binding strength for non-spe-
cific binding of the particular chip,

log XM =~ -8, +%lognc/ (25)
in analogy with Eqgs. (4) and (11) - (12). Here the
"height" and "width" parameters, ¢, and S, characterize
the vertical and horizontal dimensions of the corrected
hook curve of chip "c" (see Figure 7 and Figure 8) which
in turn are related to the mean binding characteristics

averaged probes of the chip, i.e,

log K> :<log}(g’h> (P = PM, MM, h = N, S). The

over all

chip
sensitivity-corrected S/N-ratio

xPMS  [s], KEMS

RPM = Tset’  _
se ’
xPMN = [N] PMN

R (26)

scales the concentration ratio of specific and non-specific
transcripts with the respective ratio of chip-averaged mean
binding constants of the PM for specific and non-specific
binding. Note that this scaling is common for all probes
of the chip in contrast to the probe-specific scaling of R,"™
in Eq. (6).

In summary, the hook-curve analysis of the intensity data
thus provides chip characteristics such as the mean contri-
bution of the non-specific background, the asymptotic
intensity maximum and the mean PM/MM-sensitivity
gain, and, in addition, the expression degree on probe-set
basis in terms of the S/N-ratio.

Signal distributions

Part a of Figure 9 shows the probability-density distribu-
tion to find a probe pair a at a given position of the hook-
abscissa, p(Zyhook) = AN/(N,,, - AZhook-) (here AN/N,, is
the fraction of probe-pairs found per abscissa interval
AXhook) About 40% of the probes fall in the N-range in
this example and thus are classified "absent". We sepa-
rately plot the density distribution of these absent probes
as a function of their corrected log-intensities (part b of
Figure 9). The obtained PM- and MM-probe-level data are

http://www.almob.org/content/3/1/12
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Figure 9

Probe-density distribution of the hook-curve (part a), the
log-intensity distributions of the PM- and MM-probes taken
from the N-range of the hook (part b) and the distribution of
the S/N-ratio showing the specific signal distribution for
log(R+1) > 0 (part c). About 40% of the probe pairs are
absent according to the break-criterion. The distributions of
their corrected intensities (bars) are well approximated by
Gaussian functions (lines) with slightly shifted centres x and
nearly equal widths, o (part b). Part c rescales the total distri-
bution by using the argument r = log(R+1). The fraction of
absent probes refers to intersection with the ordinate at r =
0 (40%). 60% of the probes are consequently called present
with specific signals r > 0. Their distribution follows an expo-
nential decay for values r > r' = 0.5 with the decay constant
A, In the intermediate range r' < r < 0 the signal is approxi-
mated by a constant (see Eq. (28)). The rescaling from X jhook
to log(R+1) slightly increases the decay constant (compare
part b and a).

well described by normal distributions (P,N(x, o.) = N(x,
. _ _ P _ P . .
o) with x = x, (log Loy — He )pEN ) of with virtually the
same width (o™ ~ oMM) and slightly shifted centres,
PM MM P _ P
He o > He (.uc _<log10’p>pe[\]).

One obtains the coordinates of the centre of the N-region
of the hook-curve (see also Eq. (11)),
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1
(= >pEN =pu™ —ElognC and (A, >p€N =logn, = u™ - uMM.
(27)
The total distribution decays exponentially to a good

approximation at X hook > ¥ (0) in many cases (part a of
Define the

u™ =log(R +1), related to the S/N ratio

Figure 9).
r =log XSIZ" -

R.

parameter

The exponential behaviour is approximately preserved
with respect to this parameter in the mixed and S ranges

since 1= (Zh""k - ZC(O))+%(A}“"”€ - AC(O)) from Eq.

(18) (see part c of Figure 9). Note that r directly relates to
the binding strength of specific hybridization in the rele-
vant range of intermediate and large R-values, 1 ~ logR ~
log(X,."™5). The initial value of the distribution atr =R =
0 provides the fraction of virtually absent probes, fabsent,
whereas the area under the normalized distribution for r

> 0 consequently gives the fraction of present probes, fPre-
sent — (1 _ fabsent).

The distribution can be empirically approximated by an
exponential decay function for r-values greater than a cer-
tain threshold r' (and R' > R)

flpresent . In10 .10—(7—7')/1r; r>1
Ar
p3(r, 1) =4 flresent 1y, o<r<r.
fabsent . 5(r,0); r<0
(28)

In the intermediate range the signal is approximated by a
constant with fzpresent =1 - (fabsem + flpresent) (fpresent =
f,present ;. f present) whereas for r = 0 one gets the fraction of
absent probes. The decay constant A, defines the r-range
which decreases the probability of the specific signal by
one order of magnitude. It thus defines a characteristic S/
N-ratio (in logarithmic scale) of the chip which character-
izes log-ratio of the mean specific and non-specific sig-
nals, or in other words, to which extend the specific signal
exceeds the non-specific one. The S(pecific)/N(onspe-
cific)-ratio thus can be also interpreted as a sort of
S(ignal)/N(oise)-ratio of a given probe set. The value of
the r-related decay constant A, slightly exceeds that of the
hook-related distribution owing to the larger range cov-
ered by the PMonly S/N-ratio (4,= 1.0 versus A = A5 =0.75;
compare part ¢ and a of Figure 9).

http://www.almob.org/content/3/1/12

An estimate of the mean decay constant can be obtained
by simple averaging over the respective R-range

A~ (log(R+1)g.r In10) (29)
Note that the exponential decay in Eq. (28) is equivalent
with the power law, 1074 = (R+1)-Y/4, which has been
shown to describe the probability distribution of expres-
sion values in a series of microarray experiments [28-31].
This power-law function is known as the Zipf's law,
observed in many natural and social phenomena. The
presence of such power-law function in principle prevents
an intrinsic cut off point between "on" genes and "off"
genes. The analysis of expression data in terms of their
probability distribution therefore is of basic importance
for judging the expression level in terms of global charac-
teristics. The hook-transformation provides such charac-
teristics in terms of the signal distribution along the Xhook
and/or r coordinates for the mix-, S- and sat-hybridization
ranges.

Let us now consider the S/N-ratio of a particular probe at
two conditions: (i) with x = 0, referring to the non-specific
binding strength in the centre of the normal background

distribution, X,PMN ~ 104/M: R, = M, - X, /10%; and
(i) with x = 0, ie XPMN(x) »~ 104%/M. and
R(x) =M, - X, [10%*4

After transformation into logarithmic scale and combina-
tion of both situations we get log R(x) = log R, - x and for
R > 1 to a good approximation r(x) = 1 - x.

Now we combine the virtually independent background
and signal distributions into the joint probability density
function

p{;(x,r—x):pf,\’(x,cp)-pcs(r—x,/l). (30)
It refers to the logarithmic signal value r with the particu-
lar non-specific background contribution # + x. Integra-
tion over the whole possible backgound range provides
the probability for detecting the signal r for probe p,

P, (r)= J.jo py(x,7—x)- dx. (31)

Note that the upper integration range is effectively
restricted to x < r because of pS(r-x,4) = 0 for x > r (see Eq.
(28)). Egs. (30)-(31) define the convolution product of
the background and specific-signal distributions. A simi-
lar approach was used in ref. [30] and partly also in the
RMA-algorithm [29].
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De-saturation of the signal and convolution based
expression estimates

The hyperbolic intensity-response (Eq. (1)) can be linear-
ized and transformed into the total binding strength using
the asymptotic value M_:

P P
h,=— 0P and xP="2P  (32)
/ ~1.p b
1-M, 'IO,p c

Figure 10 re-plots the hook curve shown in Figure 8 after
linearization of the corrected intensities using Eq. (32).
The sat-range now levels off into the asymptotic value o,
(compare with Figure 8). This "de-saturated" signal addi-
tively decomposes into contributions due to non-specific
and specific hybridization (Eq. (2)). We now calculate the
expression value as the weighted "glog"-mean of the spe-
cific signal,

Z{: = J_wpg(x,r -x)- glog( Lgrp - LI;'N(x, ucp) ) - dx.
(33)
Particularly, Eq. (33) corrects the linearized signal (Eq.

(32)) for the probe-specific background contribution
using the mean background of the chip and the probe-

specific sensitivity for non-specific hybridization,
0,751 T A P —
experiment sl
theory
S 050
]
L}
o
-3 )
o
<
0,25
0,00
000 025 050 075 100 125 150 175
zlog(X,)-Z(0)
Figure 10

,Desaturated” hook-curve: The corrected intensities (see
Figure 7) are linearized using Eq. (32), transformed into A
and X coordinates (Eq. (9)) and smoothed. After "lineariza-
tion" the sat-range of the hook levels off into the asymptote
of height o (Eq. (24)) which defines the PM/MM-gain upon
duplexing (compare with Figure 8). The fit neglects the sat-
uration terms in Eq. (10).
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+

SAPN 11l 4y
L‘;'N(x, pul)=10"" """ (Eq. (23)). The use of the gen-

eralized logarithm, glog(x)=log ( % (x+x%+0¢) ) , for

data transformation is advantageous in two respects:
Firstly, it enables processing negative arguments which
may appear due to data scattering and, secondly, it "stabi-
lizes" the variance at small values of x provided that the
transformation parameter ¢ > 0 is properly chosen
[32,33].

In Eq. (33) the glog-transformed data are averaged over
the probability distribution pg (x,7 — x) representing the

convolution product of the mutually independent proba-
bilities of the non-specific Gaussian background and the
specific expression signal (see previous section and [30]).
This approach assumes that the probability distribution of
each individual transcript is the same as the mean distri-
bution averaged over all transcripts. Alternatively one can
use the un-weighted kernel with pS= const. In this case Eq.
(33) restricts the averaging to the background distribu-
tion.

In the next step, the obtained values are corrected for the
sequence effects according to Z g p=Z 5 -4 A;: S using the

positional-dependent sensitivity model and the Z,P values

instead of the log-intensities for parameterization (Eq.
(50)). Then, the probe-level data are summarized for each
probe set by calculating the Tukey-biweight median,

nget = TB(ng)peset [25], and finally by transforming
them into linear scale to get the probe set-level expression
degree, LDS = 10% . Eq. (33) thus provides "PMonly"
and "MMonly" estimates of the expression degree with P

= PM and MM, respectively.

Considering the fact that the MM intensity comprises
information about the non-specific background one can
correct the linearized intensity and background of the PM
by subtracting that of the respective MM:

ZgM’MM =f pf,)M(x,r -X)- glog(ALOIP - AL[;](x, ul) ) -dx,

(34)
with ALo, = (Lo~ Loy ) and

ALY (x, 1) = (LN (e, M) = Ly (e, M) - 1070700 )
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Eq. (34) uses the background distribution of the PM and
the conditional expectation of the bivariate normal distri-
bution for the argument of the MM-background which
gives rise to an effectively shrunken integration variable,

pMM 4 x — MMy p x (here p, is the coefficient of corre-

lation, see appendix B). Note that this approach is to some
degree similar to the GC-RMA algorithm [34] which how-
ever uses pseudo-MM representing subsets of PM-probes
of the same GC-content as the considered PM. A second
difference to Eq. (34) is that GC-RMA directly subtracts
the (non-linear) MM-intensity without explicit considera-
tion of the non-specific background.

In this context we stress the fact that the non-specific back-
ground intensity is rather a variable contribution which
progressively decreases with increasing amount of specific
binding than a constant (see appendix A and the figure
shown there). The background correction of the intensity
(as realized, e.g. by GC-RMA) neglects this trend and
therefore it is expected to over-correct the signal in the S-
and as-hybridization ranges. As a consequence, this
approach underestimates the expression degree due to
two reasons: Firstly, this over-correction of the back-
ground and, secondly, the neglect of saturation. On the
other hand, the linearized signal used here (Eq. (32)) cor-
rects the intensity for saturation and, in addition, it con-
tains a constant background level corrected by simple
subtraction in Egs. (33) and (34).

The joint PM-MM- and especially the MMonly-expression
measures are smaller than the PMonly estimates because
of the smaller binding constants of the MM for specific
binding. The former two measures can be scaled to values
equivalent to the expression level of the PM according to
(see also Eq. (24)),

—IPMS _

-1
MM,S _ -1 PM-MM,S
set set =S L ~(1_S ) L

C set C set 4

L
(35)

and finally transformed into the "set-averaged" binding
strength in analogy with Eq. (32)

L
— XPM,S — set (36)

S
set set .
M C

Note that the PM-estimate exceeds the MM signal roughly
by the factor s.~ 5 - 10 at comparable variance of the
residual background distribution (see Figure 9, part b).
For the coefficient of variation, CV = ¢/S, one gets roughly
CV(PM) = CV(PM-MM) << CV(MM). The MM conse-
quently are expected to provide considerably less accurate

http://www.almob.org/content/3/1/12

expression estimates compared with the respective
PMonly and PM-MM values.

Note that also the S/N-ratio (Eq. (26)) transforms into an
alternative estimate of the specific binding strength of the
PM (see Eq. (25) and (26)) with

1
—BA+_logn,

(37)
=R-X!MN=R-10 2

S

set

Finally, the decay constant of the distribution of the spe-
cific signal relates to the logarithm of the S/N-ratio (see
Egs. (28) and (29)). One obtains the mean specific signal
measured by the given chip as

(S), =107 with ¢, E(ﬂc —%lognc ]—lr.
(38)

The characteristic expression index (or exponent of spe-
cific binding) ¢. complements the respective exponents
for non-specific hybridization f. and the characteristic S/
N-index A, as the basic chip summary-characteristics of
specific and non-specific binding.

Chip characteristics and expression estimates in natural
units

Egs. (36) and (37) provide probe set-estimates of the spe-
cific binding strength as a measure of the expression
degree,

PM,S _ PM,S
Seet = Xser "~ =[S], K,

set = Nset

(39)

which represents a dimensionless concentration measure
in units of the mean specific binding constant of the chip.
A value of S, = 1 consequently defines the condition of
half-coverage to a good approximation (see Eq. (7)).
Analogously, the horizontal dimensions of the hook-
curve provide the non-specific binding strength as a meas-
ure of the non-specific background in units of the respec-
tive binding constant (see Eq. (25)),

N =XMN=[N] KM (40)
It specifies the mean occupancy of the probes in the
absence of specific transcripts, ®"M(0) = X PMN,

Hence, the hook method measures both, the abundance
of specific and non-specific transcripts in the hybridiza-
tion solution in chip-related units such as the relative
occupancy of the probe spots and the respective binding
strengths.

The specific and non-specific signals are combined into
the S/N-ratio, R (Eq. (26)), which provides the expression
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degree in units of the non-specific background contribu-
tion in the particular chip experiment. The S/N-ratio is
directly related to the hook-coordinates of a selected
probe set and thus it can be roughly deduced by visual
inspection of the particular hook curve (Eqgs. (46) and
(18)). Figure 8 illustrates the relation between the intrin-
sic expression measures and the hook coordinates for a
typical microarray hybridization. The point of half cover-
age (OPM = 0.5, XPM. S~ 1) is found beyond the maximum
in the sat-regime. Virtually no probe of the chosen chip
meets this condition. Note that ®PM scales with the dis-
tance relative to the end point referring to R — o (see
above). Vice versa, the mean fraction of specifically
hybridized oligomers, xPM- S, scales with the distance rela-
tive to the N-point. It steeply increases in the mix-regime
and reaches the conditions at which 50% of the bound
transcripts belong to the specific ones, x*M.$= 0.5, at rela-
tively small abscissa-values. Hence, specific hybridization
starts to dominate over non-specific one always at the
beginning of the mix-range. The S-range near the maxi-
mum of the hook-curve refers to probes with a 50 - 100
fold excess of specific hybridization, R°’M ~ 50 - 100. The
width of the hook of about g = 2.7 is equivalent with the
background strength of N.~ 10-27 = 0.002 which in turn
rescales the S/N-ratio into binding strengths, for example
Sc = 0.1-0.2 for R = 50-100. These rough estimation
shows that the maximum of the hook is equivalent with
the occupancy of the PM-spots in the order of 10 - 25%.

The mean binding constants, K."M$ and K.PMN and thus
also the used measures of specific and non-specific
hybridization depend on the particular probe and chip
design (e.g., the length of the probe-oligonucleotides,
their density and the type of the mismatches used for the
MM probes). Consequently they are specific for the used
chip type, on one hand. On the other hand, also the con-
ditions of a particular hybridization affect the KFPMh
because their values depend on all processes affecting the
binding reaction between the probe-oligonucleotides and
the targets. For example, the composition of a particular
sample will affect KPMNand K PMS as well, because both
constants depend on the extent of target-dimerization
which is a function of the concentrations of the reacting
species in the hybridization solution [1].

4. Summary and Conclusion

The improvement of microarray calibration methods in
combination with the development of meaningful quality
standards is an essential prerequisite for obtaining abso-
lute expression estimates which in turn are required for
the quantitative analysis of transcriptional regulation. In
this publication we present a new method of microarray
data analysis based on a physical model. This so-called
hook method pre-processes the raw intensity data for fur-
ther downstream analyses on one hand, and, on the other
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hand, provides chip characteristics with potential applica-
tions in hybridization quality control and array normali-
zation.

The method is based on the Langmuir-hybridization
model which provides a physically adequate and compu-
tationally feasible approach for microarray intensity cali-
bration with the potency to improve existing methods.
Our hook-calibration method uses this model together
with the positional-dependent nearest-neighbour affinity
correction. It is based on the linear transformation of the
intensities of PM and MM probes from one chip into A-vs-
¥ coordinates, probe-set averaging and smoothing. Here,
the MM probes serve as an internal reference subjected
essentially to the same hybridization law as the PM, how-
ever with modified characteristics. Figure 11 and Table 2
summarize the essential steps of the algorithm together
with the output characteristics provided by the method.

The obtained hook-curve can be interpreted as a special
representation of the binding isotherm where the explicit
dependence of the probe intensities on the (usually
unknown) transcript concentrations is replaced by the
(experimentally available) relation between the PM- and
the MM-probe intensities. It enables clear differentiation
between different, well-defined regimes and it provides a
set of chip summary characteristics which evaluate the
performance of a given hybridization in terms simple
parameters such as the mean non-specific background
intensity, its saturation value, the mean PM/MM-sensitiv-
ity gain and the fraction of absent probes. The hook curve
spans a natural metrics system for the expression esti-
mates which reflects essential hybridization characteristics
in terms of its geometric dimensions, width, height and
"start"-coordinates.

The obtained single chip characteristics in combination
with the sensitivity corrected probe-intensity values pro-
vide expression estimates scaled in natural units given by
the binding constants of the particular hybridization. This
way the method corrects the raw intensities for the non-
specific background hybridization in a sequence-specific
manner, for the potential saturation of the probe-spots
with bound transcripts and for the sequence-specific bind-
ing of specific transcripts.

In the accompanying publication we illustrate the per-
formance and potential applications in terms of quality
control and expression analysis using a series of selected
chip-types, hybridization conditions and benchmark
experiments [19].

The beta-version of the hook-program can be down-
loaded from http://www.izbi.de. The stand-alone JAVA
program processes single-chips and chip-series in a batch-
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Table 2: Hook method: algorithm and output characteristics

http://www.almob.org/content/3/1/12

Step Output Eq.
(chip and probe-set characteristics)
1) optical background correction using the Optical background (O, mean over all zones); n
Affymetrix zone-algorithm (see Ref. [26]). the algorithm uses a scaled value with a scaling
factor chosen between 0 and |
2) Raw hook: Plot of the PM and MM probe Raw hook curve 9)

intensity data into A-vs-Z coordinates and
smoothing over a sliding-window of ~100 probe
sets. Classification into N- and S-probes using the
breakpoint of the hook.

3) Parameterization of the positional dependent
sensitivity-model separately for the PM and MM in
the N and S-ranges and correction of the
intensities for probe-specific sensitivities.

4) Corrected hook: re-iterate steps (2)—(3) with
the corrected intensities to improve the sensitivity
correction and the classification of the probes into
absent and present ones

5) Fit of the hook-equation to the mix-, S-and sat-
ranges of the corrected hook curve and analysis of
the probe-level hook coordinates

Sensitivity profiles

Maximum intensity (M_), mean non-specific
background level (N_P™), dimensions of the
hook (e, £.), PM/MM-affinity gain (s.and n.),

(22), (23); App. C

(optional SN, NN or NNN models)

Corrected hook-curve (27)
Fraction of absent probes (%N), mean N-
background level and width of the N-range

(10), (12), (24) — (26), (29); App. D, App. A

parameters of the normal background
distribution (u, o, p.) and of the signal
distribution (1), S/N-ratio (R), and occupancy
(®) and fraction of specific binding (x5)

6) Calculation of probe-set related expression
estimates (alternatively PMonly or PM-MM) by the
joint processing of the intensity data and selected
chip characteristics which corrects for the non-
specific background, sequence-specific sensitivity
and saturation

Expression measures (L. S,

(33) - (36)

mode according to the scheme given in Figure 11 and
Table 2. Chip and probe-set related characteristics such as
expression degrees, hook-curves and sensitivity profiles
are exported in html- as well as in tabular form and jpg-
graphics.

5. Appendix

A. Concentration scales of the A-vs-2-trajectory:
Derivation of Eqs. (16) — (18)

The relative 2- and A-coordinates of the log-transformed
probe intensities with respect to its asymptotic value at R
= oo directly rescale into the respective log-sum and -differ-
ence of the surface coverage of the PM and MM probes
(see Egs. (1) and (9))

1
Zlog@:E(logGPM +log®MM)=(2—2(oo)),

Alog© =log®™ —log @MM :(A—A(oo))

(41)
One obtains Eq. (16) for the mean coverage of the PM and
MM with Eq. (41) and the definition, ® = 10%l°g®, Rear-
rangement provides the surface coverage of the PM and
MM probes as a function of the relative - and A-coordi-
nates,

(2-2())-

1
“(a-4(=))
and @MM =10 2

o g FH ()

(42)
The surface coverage splits into contributions due to non-
specific and specific transcripts, @ = @PN + OPFS, with

oPh _ xPh
1+

5 (see Eq. (2)). Both contributions are func-
X

tions of the composition of the hybridization solution
expressed in terms of the S/N-ratio R (see Eq. (5)),

xPMN ,
G)PM'N(R)=W and ©™5(R)=R-0™N(R)
1+X°7777 (1+R)
PM,N '
OMN(R)= XTI and ©@MMS(Ry=R.T . @MMN(R)
1+X 7Y (1/n+R [ s) s

(43)
Eq. (43) shows that the specific coverage monotonously
increases with the S/N-ratio whereas the non-specific
"background" coverage remains virtually constant at R <
1/XPM N for the PM (and at R < (n/(s - XM N) for the MM,
see Figure 12). Specific transcripts of large binding
strength progressively replace the bound non-specific
fragments with further increasing values of R. As a conse-
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Figure 11

Schematic summary of the hook-method: The raw intensity data of one GeneChip microarray are plotted into the A = log(PM/
MM)-vs-% = 1/2-log(PM-MM) coordinate system and smoothed to get the raw hook-curve. Then, probes from the N- and S-
hybridization regimes are used to calculate four sets of position-dependent sensitivity profiles of the affinity model (non-specific
and specific for the PM and MM each) which in turn are used to correct the intensities for sequence effects. The corrected
intensities provide the corrected hook-curve. The mix-, S- and sat-ranges are fitted using the two-species Langmuir hybridiza-
tion model. The dimensions of the hook, its width and height, provide hybridization characteristics of the chip which in turn are
used to calculate probe-level expression measures.

quence the non-specific coverage @ N drops and finally

disappears for R — oo. oFs @P—(?)ILN(O) od "N —6F - oS
With Eq. (43) one can express the specific and non-spe- 1-6777(0)
cific coverage as follows (44)

The ratio of the "specific" and the total coverage defines
the fraction of specifically hybridized probe-oligomers,
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: non-specific :

4 3/;Z§ spedﬁcg
2

>

Figure 12

A-vs-X trajectory (part a), the S/N ratios of the PM, MM and
of their mean (Egs. (46) and (18), part b) and the fraction of
occupied PM and MM probes (occupancy, Eq. (42), part c).
The total occupancy additively decomposes into the occu-
pancy due to specific and non-specific hybridization (thin
lines, see Eq. (43)). Note that the latter occupancy is not a
constant but it depletes upon increasing total occupancy
because specific binding progressively replaces non-specific
one.

rs _ oS .
X7 =2 (seealso Egs. (43) and (44)). With Egs. (44)
(S]

and (42) one obtains,

http://www.almob.org/content/3/1/12

1 1
. o oA a-aon} . o eo)-Aa-aon}
- —llo n —ﬁ+llo n '
1-107P73 108 1-10 777 8
(45)
and Eq. (17) for the mean fraction, <x5>. Here we make
1
—B—=1
use of e"MN(y=10 " 2 0 and
MM.N —,B+llogn
e rNo)y=10 " 2 (see Eqs. (42) and (14)).
. . P,S P,S
Finally, with R" = SP,N = 1:(7“ and Eq. (45) one
obtains for P = PM, MM
1 1
. RGOS I Jez-zon-La-so}
P 1 N 1 ’
olemenia-aen] ol La-aen}
(46)
and Eq. (18) for the respective average

< R > _ l00.5( logR™ +log RMM )

B. The slope of the hook-curve in the mix- and the N-
ranges

The initial part of the hook curve roughly divides into two
segments of different slope. We assume that the probes
from probe-sets with abscissa positions to the left from
the break, Xhook < ¥break are predominantly hybridized
with non-specific transcripts (N-range) whereas the
probes from probe-sets with abscissa positions to the right
from the break, Zbreak < Fhook in addition, bind a certain
amount of specific transcripts (mix-range). The slope of
the hook curve in this mix-range reflects the change of the
hook coordinates with increasing concentration of spe-
cific transcripts. From Eq. (10) one gets after differentia-
tion with respect to the S/N-ratio R in the limit of R — 0,

1-10"%c

(o)
(1—10“"c )

hook
A JdR =2

R—0

slope(mix) = =~min(In10-a,2).

dR  gzhook

(47)

The initial slope of the mix range essentially depends on
the "height"-parameter ¢, and thus on the PM/MM-ratio
of the specific binding constants (see Egs. (13) and (4)).

The slope of the hook-curve in the N-range can be ration-
alized in terms of cross-correlations between the non-spe-
cific background signals of the PM and MM probes
referring to "absent" specific transcripts, i.e. R = 0. The var-
iances of the hook-coordinates are given by
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2_ 2 2 _ 2
OA=0ppy+0m —2 Opymm ~2<0°>(1-p) and
1

>

_10 5 2 1 5
c —Z(GPM+GMM+2-GPM’MM)~2<G > (1+p)
o (e}
with <o? >EL(G§M+O',\2AM) and p= PMMM_ PM’QMM
2 OPM'OMM  <c*>
(48)

Here opy?, ojy? and opy yy denote the variance and cov-

ariance of the set-averaged log-intensities of the PM and
MM probes in the N-range. The formula for the correla-

tion coefficient p assumes < 6% >~ o3y, ~ o, to agood
approximation (see Figure 9).

With Eq. (48) one obtains for the mean slope of the hook-
curve in the N-range

02 1—
1 o A — ( P) )
slope(N) a% 2 ’(1+p)

Hence, a tiny slope near zero indicates strongly correlated
PM and MM signals (pv1) whereas the increase of
slope(N) reflects "decoupling" of PM and MM intensities.

(49)

C. Fit of the position-dependent sensitivity profiles
The sensitivity terms 5g"h(b,,) in Eq. (23) were estimated
using the so-called probe sensitivity [14],

Yg’h(exp) = loglg - < loglg > , (50)

seteh
which normalizes the log-intensities with respect to their
log-mean over the probe set. Here the probe set was
selected from the specific or non-specific sub-ensembles
(h =N or S). P = PM, MM specifies the probe type. Inser-
tion of Eq. (22) into (50) provides

25-m+1

YpR(theory) = 5L ~(SALM) = N 38" (b ): (S (bl )~ Fic (b))}
k=1 b,

(51)
Here f,(b,,,) is the probability to find the subsequence b,
at sequence position k within the probes of a probe set.
The weighted least squares algorithm fits Y(theory) to
Y(exp) by optimizing the coefficients dg P (b,,) using sin-
gle value decomposition [35].

The NN model provides 16 profiles 5g?(BB') (k= 1...24)
and the NNN model 64 profiles g"(BB'B") (k = 1...23)
per sub-ensemble (N or S) and probe type (PM or MM).
To extract the basic trends for a qualitative discussion we
reduce the number of data simply by transforming the
NN- and NNN-profiles into single-base (SN)-profiles by
appropriate averaging

http://www.almob.org/content/3/1/12

AW=5 N (Hiwnelon)

B’=A,T,G,C

ehB)=L (8" (BB'B") + £ (B'BB") + £, (B'BB) )
(B'=A,T,G,C)(B"=A,T,G,C)

(52)

D. Fit of the Langmuir model to the A-vs-2 data
Rearrangement of the parametric equation for the abscissa
of the hook-data (Eq. (10)) provides a quadratic equation
for the S/N-ratio with the non-negative solution

1
2(28001(—20(0)) -[ﬁc‘rEA((O)

10 10

ey e ](10Ac(°) +10% ) .
(1020

p=(1+10%%)

102(21(}0‘)1<—zc(0)

: ]
Bet=.(0)
(1—10‘2/36 )

q=10%% 1+10 [ (1+10%™) -1

(53)

Equation (53) thus returns the S/N-ratio R for the X,hook-
coordinate of a probe set and a given set of model-param-
eters {a, f. Z.(0), A.(0)}. The parametric equation for
the hook-ordinate (Eq. (10)) then provides an estimate of
Ay(R) referring to the respective probe set. The fit-algo-
rithm minimizes the sum of least squares between the cal-
A-values,

culated and measured

2
S8Q = ZWi ’(Ai/O(Ri) — Afook ) , by adjusting the
1

parameters . f. and Z(0) using an iterative gradient

method with linearly decreasing step size. The ordinate
value of the start-point was set to the break between the N-

— Agreak

and mix-range, A_(0) (see above).

We divide the 3 hook-axis into i = 10 - 30 equally-spaced
sampling points T hook = 3. by averaging over the probe/
probe set data within the respective sampling interval of

width &%, ie, AESOk:<AE%"k> for all probes with

Y. -6L< Zg%"k < X, + 8% which were used in Eq. (53) to
calculate the respective S/N-ratios R; and theoretical ordi-
nate points A; ,(R;) using Eq. (10). The weighting factor,
p(Zi)
oA(Zi)

iance, g,(%;)2 per interval. Both, p(X;) and ¢,(%;)?, are

w; = , considers the data-density, p(Z;), and var-
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given by decaying functions ([30,32]) which partly com-
pensate each other to a good approximation. By default
the weighting factor is therefore set to w; = 1.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

Both authors invented the method. HB leads the project
and wrote the paper. SP wrote the computer program for
data analysis and helped to draft the paper. Both authors
read and approved the final manuscript.

Acknowledgements

HB thanks Conrad Burden from Australian National University in Canberra
for useful discussions and advice. The work was supported by the Deutsche
Forschungsgemeinschaft under grant no. BIZ 6/4. SP thanks the Interna-
tional Max Planck Research School for Molecular Cell Biology and Bioengi-
neering (IMPRS-MCBB) Dresden for funding.

References

I.  Binder H: Thermodynamics of competitive surface adsorp-
tion on DNA microarrays - theoretical aspects. | Phys Cond
Mat 2006, 18:5491-S523.

2. Affymetrix: Affymetrix Microarray Suite 5.0. In User Guide Santa
Clara, CA: Affymetrix, Inc; 2001.

3. Wu Z, Irizarry RA: Stochastic Models Inspired by Hybridiza-
tion Theory for Short Oligonucleotide Microarrays. In
RECOMB'04: 2004 SanDiego, California; 2004.

4. Wu Z, Irizarry RA: A Statistical Framework for the Analysis of
Microarray Probe-Level Data. John Hopkins University, Dept of
Biostatistics Working Paper 2005, 73:1-31.

5. Li C, Wong WH: Model-based analysis of oligonucleotide
arrays: Expression index computation and outlier detection.
Proc Natl Acad Sci USA 2001, 98(1):31-36.

6.  Zhang L, Miles MF, Aldape KD: A model of molecular interac-
tions on short oligonucleotide microarrays. Nat Biotechnol
2003, 21:818-828.

7.  Naef F, Magnasco MO: Solving the riddle of the bright mis-
matches: labeling and effective binding in oligonucleotide
arrays. Phys Rev E Stat Nonlin Soft Matter Phys 2003, 68:11906.

8. Held GA, Grinstein G, Tu Y: Modeling of DNA microarray data
by using physical properties of hybridization. Proc Natl Acad Sci
USA 2003, 100(13):7575-7580.

9.  Heim T, Tranchevent L-C, Carlon E, Barkema ET: Physical-Chem-
istry-Based Analysis of Affymetrix Microarray Data. | Phys
Chem B 2006, 110:22786-22795.

10. Carlon E, Heim T: Thermodynamics of RNA/DNA hybridiza-
tion in high-density oligonucleotide microarrays. Physica A
2006, 362:433-449.

I'1.  Held GA, Grinstein G, Tu Y: Relationship between gene expres-
sion and observed intensities in DNA microarrays — a mode-
ling study. Nucl Acids Res 2006, 34:e70.

12. Burden CJ, Pittelkow YE, Wilson SR: Statistical analysis of
adsorption models for oligonucleotide microarrays. Stat Appl
Genet Mol Biol 2004, 3:Article35.

13.  Binder H, Kirsten T, Hofacker I, Stadler P, Loeffler M: Interactions
in oligonucleotide duplexes upon hybridisation of microar-
rays. | Phys Chem B 2004, 108(46):18015-18025.

14.  Binder H, Kirsten T, Loeffler M, Stadler P: The sensitivity of micro-
array oligonucleotide probes - variability and the effect of
base composition. | Phys Chem B 2004, 108(46):18003-18014.

15.  Binder H, Preibisch S: Specific and non-specific hybridization of
oligonucleotide probes on microarrays. Biophys | 2005,
89:337-352.

16. Binder H, Preibisch S, Kirsten T: Base pair interactions and
hybridization isotherms of matched and mismatched oligo-
nucleotide probes on microarrays. Langmuir 2005,
21:9287-9302.

20.

21.

22.

23.

24.

25.
26.
27.

28.
29.

30.

31

32

33.

34.

35.

http://www.almob.org/content/3/1/12

Binder H: Probing gene expression — sequence specific hybrid-
ization on microarrays. In Bioinformatics of Gene Regulation II
Edited by: Kolchanov N, Hofestaedt R. Springer Sciences and Business
Media; 2006:451-466.

Binder H, Preibisch S: GeneChip microarrays - signal intensi-
ties, RNA concentrations and probe sequences. | Phys Cond
Mat 2006, 18:5537-S566.

Binder H, Krohn K, Preibisch S: "Hook" calibration of GeneChip-
microarrays: chip characteristics and expression measures.
Algorithms for Molecular Biology 2008, 3:11.

Halperin A, Buhot A, Zhulina EB: Sensitivity, Specificity, and the
Hybridization Isotherms of DNA Chips. Biophys | 2004,
86(2):718-730.

Hekstra D, Taussig AR, Magnasco M, Naef F: Absolute mRNA con-
centrations from sequence-specific calibration of oligonucle-
otide arrays. Nucl Acids Res 2003, 31(7):1962-1968.

Burden CJ, Pittelkow YE, Wilson SR: Adsorption models of
hybridization and post-hybridization behaviour on oligonu-
cleotide microarrays. | Phys Cond Mat 2006, 18:5545-5565.
Affymetrix: Affymetrix Microarray Suite 5.0. In User Guide Santa
Clara, CA: Affymetrix, Inc; 2001.

Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohm-
ichi T, Yoneyama M, Sasaki M: Thermodynamic parameters to
predict stability of RNA/DNA hybrid duplexes. Biochemistry
1995, 34(35):11211-11216.

Affymetrix: New Statistical Algorithms for Monitoring Gene
Expression on GeneChip® Probe Arrays. Technical Note 2001.
Affymetrix: Statistical Algorithms Description Document.
Technical Note 2002:28.

Binder H, Kirsten T, Loeffler M, Stadler P: Sequence specific sen-
sitivity of oligonucleotide probes. Proceedings of the German Bio-
informatics Conference 2003, 2:145-147.

Hoyle DC, Rattray M, Jupp R, Brass A: Making sense of microar-
ray data distributions. Bioinformatics 2002, 18(4):576-584.
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP:
Summaries of Affymetrix GeneChip probe level data. Nucl
Acids Res 2003, 31(4):el5.

Havilio M: Signal deconvolution based expression-detection
and background adjustment for microarray data. | Comput Biol
2006, 13(1):63-80.

Lu T, Costello C, Croucher P, Hasler R, Deuschl G, Schreiber S: Can
Zipf's law be adapted to normalize microarrays? BMC Bioinfor-
matics 2005, 6(1):37.

Durbin BP, Hardin ]S, Hawkins DM, Rocke DM: A variance-stabi-
lizing transformation for gene-expression microarray data.
Bioinformatics 2002, 18 Suppl 1:5105-S110.

Huber W, von Heydebreck A, Siiltmann H, Poustka A, Vingron M:
Variance stabilization applied to microarray data calibration
and to the quantification of differential expression. Bioinfor-
matics 2002, 18 Suppl 1:596-S104.

Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F: A Model
Based Background Adjustment for Oligonucleotide Expres-
sion Arrays. John Hopkins University, Dept of Biostatistics Working
Paper 2004, 1:.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical
Recipes. New York: Cambridge University Press; 1989.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 25 of 25

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11134512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12794640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12794640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17092029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17092029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16723429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15834006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15834006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18759984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18759984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12655013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12655013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12655013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7545436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12016055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16472022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16472022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15727680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15727680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169536
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background:
	Results:
	Conclusion:

	1. Background
	2. Calibration model for microarray data
	The competitive two-species Langmuir model of microarray hybridization
	Matched and mismatched microarray probes
	The delta- and sigma-transformations
	The hybridization regimes
	The D-vs-S trajectory
	The vertical scale of the D-vs-S trajectory
	D-vs-S trajectories of individual probes

	3. The hook-algorithm for single-chip calibration
	The raw hook curve
	Sensitivity-corrected intensity-data and sensitivity profiles
	The corrected hook curve
	Fit of the hybridization model
	Signal distributions
	De-saturation of the signal and convolution based expression estimates
	Chip characteristics and expression estimates in natural units

	4. Summary and Conclusion
	5. Appendix
	A. Concentration scales of the D-vs-S-trajectory: Derivation of Eqs. (16) - (18)
	B. The slope of the hook-curve in the mix- and the N- ranges
	C. Fit of the position-dependent sensitivity profiles
	D. Fit of the Langmuir model to the D-vs-S data

	Competing interests
	Authors' contributions
	Acknowledgements
	References

