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Abstract
Background: Neighbor-Net is a novel method for phylogenetic analysis that is currently being
widely used in areas such as virology, bacteriology, and plant evolution. Given an input distance
matrix, Neighbor-Net produces a phylogenetic network, a generalization of an evolutionary or
phylogenetic tree which allows the graphical representation of conflicting phylogenetic signals.

Results: In general, any network construction method should not depict more conflict than is
found in the data, and, when the data is fitted well by a tree, the method should return a network
that is close to this tree. In this paper we provide a formal proof that Neighbor-Net satisfies both
of these requirements so that, in particular, Neighbor-Net is statistically consistent on circular
distances.

1 Background
Phylogenetics is concerned with the construction and
analysis of evolutionary or phylogenetic trees and net-
works to understand the evolution of species, populations
and individuals [1]. Neighbor-Net is a phylogenetic anal-
ysis and data representation method introduced in [2]. It
is loosely based on the popular Neighbor-Joining (NJ)
method of Saitou and Nei [3], but with one fundamental
difference: whereas NJ constructs phylogenetic trees,
Neighbor-Net constructs phylogenetic networks. The
method is widely used, in areas such as virology [4], bac-
teriology [5], plant evolution [6] and even linguistics [7].

Evolutionary processes such as hybridization between
species, lateral transfer of genes, recombination within a
population, and convergent evolution can all lead to evo-
lutionary histories that are distinctly non tree-like. More-
over, even when the underlying evolution is tree-like, the
presence of conflicting or ambiguous signal can make a

single tree representation inappropriate. In these situa-
tions, phylogenetic network methods can be particularly
useful (see e.g. [8]).

Phylogenetic networks are a generalization of phyloge-
netic trees (see Figure 1 for a typical example of a phylo-
genetic network). In case there are many conflicting
phylogenetic signals supported by the data, Neighbor-Net
can represent this conflict graphically. In particular a sin-
gle network can represent several trees simultaneously,
indicate whether or not the data is substantially tree-like,
and give evidence for possible reticulation or hybridiza-
tion events. Evolutionary hypotheses suggested by the net-
work can be tested directly using more detailed
phylogenetic analyses and specialized biochemical meth-
ods (e.g. DNA fingerprinting or chromosome painting).

For any network construction method, it is vital that the
network does not depict more conflict than is found in the
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data and that, if there are conflicting signals, then these
should be represented by the network. At the same time,
when the data is fitted well by a tree, the method should
return a network that is close to being a tree. This is essen-
tial not just to avoid false inferences, but for the applica-
tion of networks in statistical tests of the extent to which
the data is tree-like [9].

In this paper we provide a proof that these properties all
hold for Neighbor-Net. Formally, we prove that if the
input to NeighborNet is a circular distance function (dis-
tance matrix) [10], then the method returns a network
that exactly represents the distance. Circular distance func-
tions are more general than additive (patristic) distances
on trees and, thus, as a corollary, if Neighbor-Net is given
an additive distance it will return the corresponding tree.
In this sense, Neighbor-Net is a statistically consistent
method.

The paper is structured as follows: In Section 2 we intro-
duce some basic notation, and in Section 3 we review the

Neighbor-Net algorithm. In Section 4 we prove that
Neighbor-Net is consistent (Theorem 4.1).

2 Preliminaries
In this section we present some notation that will be
needed to describe the Neighbor-Net algorithm. We will
assume some basic facts concerning phylogenetic trees,
more details concerning which may be found in [11].

Throughout this paper, X will denote a finite set with car-
dinality n. A split S = {A, B} (of X) is a bipartition of X. We
let  = (X) = {{A, X\A}|∅ ⊂ A ⊂ X} denote the set of all
splits of X, and call any non-empty subset of (X) a split sys-
tem. A split weight function on X is a map ω: (X) → �≥0. We
let ω denote the set {S ∈ |ω(S) > 0}, the support of ω.

Let Θ = x1, ..., xn be an ordering of X. A split S = {A, B} is
compatible with Θ if there exist i, j ∈ {1, ..., n}, i ≤ j, such
that A = {xi, ..., xj} or B = {xi, ..., xj}. Note that if a split is
compatible with an ordering Θ it is also compatible with
its reversal xn, ..., x2, x1 and with ordering x2, ..., xn, x1. We

A phylogenetic networkFigure 1
A phylogenetic network. The network was generated by Neighbor-Net for a sequence-based data set comprising of Salmo-
nella isolates that originally appeared in [17]. A detailed network-based analysis of this data is presented in [2], where the 
strains indicated in bold-face are tested for the presence of recombination. Note that the network is planar (that is, it can be 
drawn in the plane without any crossing edges), and that parallel edges in the network represent bipartitions of the data.
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let Θ denote the set of those splits in (X) which are com-
patible with ordering Θ. A split system ' is compatible with
Θ if ' ⊆ Θ. In addition a split system ' ⊆ (X) is circular if
there exists an ordering Θ of X such that ' is compatible
with Θ. Note that any split system corresponding to a phy-
logenetic tree is circular [[11], Ch. 3], and so circular split
systems can be regarded as a generalization of split sys-
tems induced by phylogenetic trees. A split weight func-
tion ω is called circular if the split system ω is circular. A
distance function on X is a map d: X × X → �≥0 such that for
all x, y ∈ X both d(x, x) = 0 and d(x, y) = d(y, x) hold. Note
that any split weight function ω on X induces a distance
function dω on X as follows: For a split S = {A, B} ∈ (X)
define the distance function or split metric dS by

and put

for all x, y ∈ X. A distance function d is called circular if

there exits a circular split weight function ω such that d =

dω. An ordering Θ of X is said to be compatible with d if

there exists ω such that d = dω and ω ⊆ Θ. Note that the rep-

resentation of a circular distance function d is unique, i.e.,

if d =  and d =  for circular split weight functions

ω1 and ω2 then ω1 = ω2 holds [10].

Circular distances were introduced in [10] and have been
further studied in, for example, [12] and [13]. Just as any
tree-like distance function on X can be uniquely repre-
sented by a phylogenetic tree [[11], ch. 7], any circular dis-
tance function d can be represented by a planar
phylogenetic network such as the one pictured in Figure
1[14]. The program SplitsTree [9] allows the automatic
generation of such a network for d by computing a circular
split weight function ω with d = dω.

3 Description of the Neighbor-Net algorithm
In this section we present a detailed description of the
Neighbor-Net algorithm, as implemented in the current
version of SplitsTree [9]. The Neighbor-Net algorithm was
originally described in [2], where the reader may find a
more informal description for how it works. For the con-
venience of the reader we will use the same notation as in
[2] where possible.

In Figure 2 we present pseudo-code for the Neighbor-Net
algorithm. The aim of the algorithm is, for a given input
distance function d, to compute a circular split weight

function ω so that the distance function dω gives a good
approximation to d. The resulting distance function dω can
then be represented by a planar phylogenetic network as
indicated in the last section.

To this end, NEIGHBOR-NET first computes an ordering
Θ of X, and then applies a non-negative least-squares pro-
cedure to find a best fit for d within the set of distance
functions {dϕ|ϕ:(X) → �≥0, ϕ ⊆ Θ}. More details concern-
ing the least-squares procedure may be found in [2]: Here
we will concentrate on the description of the key compu-
tation for finding an ordering Θ of X, which is detailed in
the procedure FINDORDERING.

An (ordered) cluster is a non-empty finite set C together

with an ordering ΘC = c1, ..., ck of the elements in C, k = |C|.

Two elements a, b ∈ C are called neighbors if there exists i

∈ {1, ..., k - 1} such that a = ci and b = ci+1, or b = ci and a

= ci+1. The input of the procedure FINDORDERING con-

sists of a set  of mutually disjoint clusters, together with

a distance function d on the set . The order-

ing Θ = y1, ..., yn of Y that is returned by FINDORDERING

must be compatible with the collection  of ordered clus-

ters, that is, for every cluster C ∈  there must exist i, j ∈
{1, ..., n}, i ≤ j, with the property that ΘC = yi, ..., yj or ΘC =

yj, ..., yi.

The procedure FINDORDERING calls itself recursively.
Apart from the base case (line 5 of Figure 2), where the
recursion bottoms out, two different cases are considered
– the reduction and selection cases (lines 7–15 and lines
17–22 of Figure 2, respectively). In the reduction case a

cluster C ∈  with k = |C| ≥ 3 is replaced by a smaller clus-

ter C'. In particular, in lines 7–11 we let ΘC = c1, ..., ck be

the ordering of C with c1 = x, c2 = y, c3 = z, and put C' =

(C\{x, y, z}) ∪ {u, v} and ΘC'= u, v, c4, ..., ck, where u and

v are two new elements not contained in Y. Then, in lines
12–14, we define a distance function d' on the set Y' =

(Y\{x, y, z}) ∪ {u, v} using the formulae:

where α, β and γ are positive real numbers satisfying α +
β + γ = 1 (note that these formulae slightly differ from the
ones given in [2] in which there is a typographical error).
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The Neighbor-Net algorithmFigure 2
The Neighbor-Net algorithm. Pseudo-code for the Neighbor-Net algorithm detailing the procedure FINDORDERING.

Neighbor-Net(X, d)

Input: A finite non-empty set X and a distance function d on X
Output: A circular split weight function ω

1. C = {{x} |x ∈ X} //initial set of clusters

2. Θ = FindOrdering(C, d)
3. ω = EstimateSplitWeights(X, d, Θ)
4. return ω

FindOrdering(C, d)

Input: A collection C of ordered clusters and a distance function d
Output: An ordering Θ of the elements in ∪C∈C C

1. Y = ∪C∈C C
2. m = |C|
3. n = |Y |
4. if n ≤ 3 //base case

5. return an ordering Θ of Y that is compatible with C.
6. else if there exists C ∈ C with k = |C| ≥ 3 //reduction case

7. Select x = c1, y = c2 and z = c3 from C with ΘC = c1, . . . , ck.
8. Create two new elements u, v not contained in Y .
9. C ′ = (C \ {x, y, z}) ∪ {u, v}
10. ΘC′ = u, v, c4, . . . , ck

11. C′ = (C \ {C}) ∪ {C ′}
12. Compute distance function d′ on Y ′ = ∪C∈C′ C according to (1).
13. Θ′ = FindOrdering(C′, d′)
14. Compute an ordering Θ of Y according to (2).
15. return Θ
16. else //selection case

17. Select two clusters C1, C2 ∈ C that minimize (3).
18. C ′ = C1 ∪ C2

19. Compute ordering ΘC′ using (4).
20. C′ = (C \ {C1, C2}) ∪ {C ′}
21. Θ = FindOrdering(C′, d)
22. return Θ
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In the current implementation of Neighbor-Net the values
α = β = γ = 1/3 are used.

When FINDORDERING is recursively called with the new

collection  of clusters and distance function d' it returns

an ordering  of Y' that is compatible with

. Thus, there exists i ∈ {1, ..., n - 2} such that either u =

 and v =  or v =  and u = . The resulting order-

ing Θ of Y is then defined (in line 14) as follows:

This completes the description of the reduction case.

We now describe the selection case. Note that in view of
line 6 this case only applies if every cluster in  contains
at most two elements. In lines 17–18, two clusters C1, C2

∈  are selected and replaced by the single cluster C' = C1

∪ C2. The clusters C1 and C2 are selected as follows: We

define a distance function  on the set of clusters  by

and select C1, C2 ∈ , C1 ≠ C2 that minimize the quantity

where m is the number of clusters in . The function Q
that is used to select pairs of clusters is called the Q-crite-
rion. Note that this is a direct generalization of the selec-
tion criterion used in the NJ algorithm [2]. However,
using only this criterion yields a method that is not con-
sistent as illustrated in Figure 3. So, once the clusters C1

and C2 have been selected we use a second criterion to

determine an ordering ΘC' in line 19 for the new cluster C'.

In particular, for every x ∈ C1 ∪ C2 we define

put  = m + |C1| + |C2| - 2, and select x1 ∈ C1 and x2 ∈ C2

that minimize the quantity

[d](x1, x2) = (  - 2)d(x1, x2) - R(x1) - R(x2). (4)

We then choose an ordering ΘC' in which x1 and x2 are
neighbors and for which every two elements that were
neighbors in C1 or C2 remain neighbors. This completes
the description of the selection case, and hence the
description of the procedure FINDORDERING.

4 Neighbor-Net is consistent
In this section we prove the consistency of Neighbor-Net:

Theorem 4.1 If d: X × X → �≥0 is a circular distance func-
tion, then the output of the Neighbor-Net algorithm is a
circular split weight function ω: (X) → �≥0 with the prop-
erty that d = dω.

The key part of the Neighbor-Net algorithm is the proce-
dure FINDORDERING. We will show that, for a circular
distance function d = dω on X, the call FINDORDER-
ING({{x}|x ∈ X}, d) will produce an ordering Θ of X that
is compatible with d. The non-negative least squares pro-
cedure finds the distance function in {dϕ|ϕ: (X) → �≥0, ϕ
⊆ Θ} that is closest to d. As this set of distance functions
includes dω, the least squares procedure returns exactly d =
dω, proving the theorem.

We focus, then, on the proof that FINDORDERING
behaves as required:

Theorem 4.2 Let d: Y × Y → �≥0 be a distance function that

is induced by a circular split weight function ω: (Y) → �≥0.

In addition, let  be a collection of mutually disjoint

clusters with the property that Y = , and

assume there exists an ordering of Y that is compatible

with ω and with . Then FINDORDERING( , d) will
compute an ordering that is compatible with the collec-

tion of clusters  and with the split weight function ω.

We present the proof of this result in the remainder of this
section. Suppose that the algorithm FINDORDERING is
called with input  and d and that there exists an order-

ing that is compatible with  and d. Let . We

prove Theorem 4.2 by induction, first on |Y|, the cardinal-
ity of Y, and then on | |, the number of clusters in .

The base case of the induction is |Y| ≤ 3. In this case the set
of splits Θ equals (Y) for every ordering of Y. In particular,

′C
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any ordering of Y that is compatible with  is also com-

patible with ω.

We now assume that |Y| > 3 and make the following induc-
tion hypothesis:

If there exists an ordering compatible with distance

function d' and ordered clusters , where either

| | < |Y|, or | | = |Y| and | | < | |,

then FINDORDERING( , d') will return an ordering

compatible with  and d'.

There are two cases to consider. In the first case,  con-

tains some cluster C with |C| ≥ 3. In the second case, 

contains only clusters C with |C| ≤ 2.

4.1 Case 1: The reduction case

Suppose that there is C ∈  with |C| ≥ 3. This is the reduc-
tion case in the description of the algorithm. The proce-

dure FINDORDERING constructs a new set of clusters 
(in line 11) and a new distance function d' (in line 12).
We first show that, if there is an ordering compatible with

 and d, then there is also an ordering compatible with

 and d'.

Proposition 4.3 If  and d' are constructed according to
lines 7–12 of the procedure FINDORDERING then there

exists an ordering compatible with  and d'.

Proof: Suppose that  = y1, ..., yn is an ordering of Y that is

compatible with  and d, where, without loss of general-

ity, we have ΘC = y1, ..., yk. Let  = u, v, y4, ..., yn = z1, ...,

zn-1, which is an ordering of Y' = . We claim that

the ordering  is compatible with the collection  and
with the distance function d'.

Since  is compatible with  it is straight-forward to

check that  is compatible with . Hence, we only

need to show that  is compatible with d'. We will use a
4-point condition that was first studied in a different con-
text by Kalmanson [15] and has been shown to character-
ize circular distances in [12]. To be more precise, it suffices

to show that, for every four elements , i1 <i2

<i3 <i4,

Case 1: |{ } ∩ {u, v}| = 0. The above inequal-

ities follow immediately since d is circular, and d and d' as

well as  and  coincide on Y'\{u, v}.

Case 2: |{ } ∩ {u, v}| = 1. Consider the situ-

ation  = u. Then

The other inequalities can be derived in a completely anal-
ogous way.

Case 3: |{ } ∩ {u, v}| = 2. Then we have 

= u and  = v and

C
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A network representing a circular distanceFigure 3
A network representing a circular distance. A circular 
distance d on the set {u, v, ..., z} for which NeighborNet using 
only the Q-criterion employed in NJ to cluster elements 
would be inconsistent. Distances are given by shortest paths 
in the network. The pairs u, v and x, y would be clustered 
together first and then the pair z, w. However it is not hard 
to show that z and w are not adjacent in any ordering of {u, v, 
..., z} that is compatible with d.
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The other inequality

 can be

shown to hold in a similar way. ■

The procedure FINDORDERING calls itself recursively

with  and d' as input. An ordering of Y', the union of

, is returned. By Proposition 4.3 and the induction

hypothesis, this ordering Θ' is compatible with  and d'.

It is used to construct an ordering Θ on Y, in line 14,
which becomes the output of the procedure.

Proposition 4.4 The ordering Θ is compatible with collec-
tion  and with the distance function d.

Proof: Since  is compatible with Θ' it is straight-forward

to check that  is compatible with Θ. Hence we only need

to show that Θ is compatible with d.

Let orderings  = y1, ..., yn of Y and  = z1, ..., zn-1 of Y'

be as in the proof of Proposition 4.3 and let ω be the split

weight function such that d = dω. Then  is compatible

with all splits S such that ω(S) > 0. Now consider some

split S = {A, B} such that ω(S) > 0 and assume that yn ∈ B.

Then there exists i, j ∈ {1, ..., n - 1}, i ≤ j, such that A = {yi,

..., yj}. Note also that, since the distance function d' is

compatible with ordering  = z1, ..., zn-1 of Y' and, hence,

is circular, there exists a unique circular split  weight func-

tion ω': (Y') → �≥0 with the property that d' = dω'. We

divide the remaining argument into five cases.

Case 1: j ≤ 3. Then, clearly, S is compatible with Θ.

Case 2: j ≥ 4 and i = 1. Define A' = {z1, ..., zj-1} and the split
S' = {A', Y'\A'} of Y'. Then we can express ω'(S') in terms
of d' as follows (cf. [12]):

Thus, ω'(S') > 0. Hence, the split S' is compatible with the
ordering Θ' of Y'. But then the split S is compatible with
the ordering Θ of Y.

Case 3: j ≥ 4 and 2 ≤ i ≤ 3. We only consider the situation
when i = 2; the situation i = 3 is completely analogous.
Define A' = {z2, ..., zj-1} and the split S' = {A', Y'\A'} of Y'.
With a similar calculation as made for Case 2 we obtain
ω'(S') ≥ (α + β)ω(S). Hence, ω'(S') > 0 and, thus, S' is com-
patible with Θ'. But then S is compatible with Θ.

Case 4: j ≥ 4 and i = 4. This case is similar to Case 2. Define
A' = {z4, ..., zj-1} and S' = {A', Y'\A'}. We obtain ω'(S') ≥
ω(S). Hence, as for Case 2, ω'(S') > 0 and, thus, S is com-
patible with Θ.

Case 5: j ≥ i ≥ 5. Define the split S' = {A, Y'\A}. Then we
have ω'(S') = ω'(S') > 0. Hence, S' is compatible with Θ'
and, thus, S is compatible with Θ. ■

4.2 Case 2: The selection case

Now suppose that there are no clusters C ∈  with |C| ≥
3. This is the selection case in the description of the algo-
rithm.

In line 17 the algorithm selects two clusters that minimize
(3):

where

Note that  is a distance function defined on the set of

clusters . We will first show that  is circular. We do
this in two steps: Proposition 4.5 and Proposition 4.6.

Proposition 4.5 Let d: M × M → �≥0 be a circular distance
function and Θ = x1, ..., xn be an ordering of M that is com-
patible with d. Let M' = (M\{x1, x2}) ∪ {y} where y is a
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new element not contained in M. Define a distance func-
tion d': M' × M' → �≥0 as follows:

where λ is a real number with the property that 0 <λ < 1.
Then the following hold:

(i) d' is circular and compatible with ordering y, x3, ..., xn
of M'.

(ii) If z1, ..., zn-1 is an ordering of M' that is compatible with
d' then at least one of the orderings x1, x2, z2, ..., zn-1 or x2,
x1, z2, ..., zn-1 of M is compatible with d.

Proof: (i) and (ii) can be proven using convexity argu-
ments, or in a way analogous to our proof of Propositions
4.3 and 4.4, respectively. ■

Proposition 4.6 The distance function , defined on the

individual clusters in , is a circular distance. Moreover,

for every ordering D1, ..., Dk of  that is compatible with

 there exist orderings Θi of Di, i ∈ {1, ..., k}, such that the

ordering Θ1, ..., Θk of Y is compatible with distance func-

tion d.

Proof: We use multiple applications of Proposition 4.5,

once for each cluster in  with two elements, and with λ

=  in each case. ■

We now have the more difficult task of showing that clus-
ters C1 and C2 selected by the Q-criterion, that is by mini-

mizing (3), are adjacent in at least one ordering of the

clusters that is compatible with , as described in Propo-
sition 4.6. This is the most technical part of the proof. The
key step is the inequality established in Lemma 4.7. This
is used to prove Theorem 4.8, which establishes that the
Q-criterion when applied to a circular distance will always
select a pair of elements that are adjacent in at least one
ordering compatible with the circular distance. As a corol-
lary it will follow that there exists an ordering of the clus-

ters in  compatible with  where C1 and C2 are

adjacent.

Lemma 4.7 Let Θ = x1, x2, ..., xn be an ordering of M that is
compatible with circular distance d on M and suppose
that 3 ≤ r ≤ Ln/2O. Let S = {A, M\A} be a split compatible
with Θ where A = {xi, ..., xj}. Define QS: M × M → � by

and let

(i) If min{|A|, |M\A|} > 1 and |A ∩ {x1, xr}| = 1 then λ(S)
< 0.

(ii) Any other split S compatible with Θ satisfies λ(S) ≤ 0.

Proof: Expanding λ(S) gives

We divide the rest of our argument into five cases which
are summarized in Table 1. For these cases straight-for-
ward calculations yield the entries of Table 2. Using Table
2 we compute λ(S) in each case.

Case (i): We obtain λ(S) = 2(j - 1)(j + 1 - r) + 2(j - 1)(j + 1
- n). Hence, λ(S) = 0 if j = 1 and λ(S) < 0 if j ≥ 2.

Case (ii): We obtain λ(S) = 0.

Case (iii): We obtain λ(S) = (j - i)(4(j - i) - 2n + 8). Thus,
since j - i ≤ r - 3 ≤ (n + 1)/2 - 3, λ(S) = 0 if i = j and λ(S) <
0 if i <j.

Case (iv): We obtain λ(S) = 2(i - r)(n - 2 - (j - i)) + 2(2 - i)(j
- i). Thus, since j - i ≤ n - 3, λ(S) < 0 if i <r. If i = r then λ(S)
= 0 if j = r and λ(S) < 0 otherwise.

Case (v): We obtain λ(S) = 0. ■

Theorem 4.8 Let M be a set of n elements and d: M × M →
�≥0 be a circular distance function. Suppose that x, y min-
imize

Then there is an ordering of M that is compatible with d
in which x and y are adjacent.
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Proof: Let Θ = x1, ..., xn be an ordering of M that is compat-
ible with d. Suppose that Q(x1, xr) ≤ Q(x, y) for all x, y
where, without loss of generality, 2 ≤ r ≤Ln/2O. If r = 2 then
we are done, so we assume r ≥ 3. Let ω be the (circular)
split weight function for which d = dω, so Θ is compatible
with ω. Let Θ* be the ordering obtained by removing xr
from Θ and re-inserting it immediately after x1. We claim
that Θ* is also compatible with ω.

As in Lemma 4.7, for any split S compatible with Θ we
define

By the choice of x1 and xr we have

Since Q is linear, and d = ΣS∈(X)ω(S)dS by Lemma 4.7 we
have

Now consider any split S compatible with Θ but not Θ*.
Then S satisfies the conditions in Lemma 4.7 (i), giving
λ(S) < 0 and hence ω(S) = 0. Thus there are no splits in the
support of ω that are not compatible with Θ*, and Θ* is
compatible with ω and, hence, d. Thus x1 and xr are adja-
cent in an ordering Θ* compatible with d. ■

Corollary 4.9 Let C1 and C2 be the two clusters selected in

line 17 of procedure FINDORDERING. Then there exists

an ordering Θ* = D1, ..., Dk of  such that D1 = C1, D2 =

C2 and  is compatible with Θ*.

After selecting C1 and C2 the procedure FINDORDERING
removes these clusters from the collection and replaces
them with their union C' = C1 ∪ C2. It also assigns an
ordering ΘC' to the cluster.

FINDORDERING is then called recursively. The following
is directly analogous to Proposition 4.3.

Proposition 4.10 There exists an ordering of Y that is

compatible with collection  and split weight function

ω.

Proof: We already know by Proposition 4.9 and Proposi-

tion 4.6 that there exists an ordering  = y1, ..., yn of Y that

is compatible with  and ω and, in addition, also satisfies
one of the following properties:

If x1 ∈ C1 and x2 ∈ C2 are selected such that  is also com-

patible with  then we are done. Otherwise we have to

construct a suitable new ordering  of Y. There are, up to
symmetric situations with roles of C1 and C2 swapped,

only two cases we need to consider.

Case 1: C1 = {y1, y2}, x1 = y1 and x2 = y3. We want to show

that ordering  = y2, y1, y3, ..., yn is compatible with ω. To

this end we first show that [d](y2, y3) ≤ [d](y1, y3). It

suffices to establish this inequality for all split metrics dS

with S ∈ . Define the set of splits

' = {{{y2, ..., yi}, Y\{y2, ..., yi}}|3 ≤ i ≤ n - 1}.

By a case analysis similar to the one applied in the proof
of Lemma 4.7 we obtain the following:

• [dS](y2, y3) = [dS](y1, y3) if S ∈ \', and
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Table 1: List of cases in the proof of Lemma 4.7

Case i j Case i j

(i) i = 1 1 ≤ j <r (iv) 1 <i ≤ r r ≤ j <n
(ii) i = 1 r ≤ j <n (v) r <i <n i ≤ j <n
(iii) 1 <i <r i ≤ j <r
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• [dS](y2, y3) < [dS](y1, y3) if S ∈ '.

But then, since [d](y1, y3) is minimum, [d](y2, y3) =

[d](y1, y3). Thus, by the above strict inequality, for every

split S ∈ ' we must have ω(S) = 0. Hence, ω is compatible

with .

Case 2: C1 = {y1, y2}, C2 = {y3, y4}, x1 = y1, x2 = y4 and n ≥ 5.

We want to show that  = y2, y1, y4, y3, y5, ..., yn is com-

patible with ω. A similar argument to the one used in Case
1 shows that for every split S in

' = {{{y2, ..., yi}, Y\{y2, ..., yi}}|3 ≤ i ≤ n - 1} ∪ {{{y4, ..., 
yi}, Y\{y2, ..., yi}}|5 ≤ i ≤ n}

we must have ω(S) = 0. Thus, ω is compatible with . ■

Now, by Proposition 4.10, we can apply the induction
hypothesis and conclude that the recursive call FINDOR-

DERING( , d) will return an ordering Θ compatible

with  and d. Since Θ will order C' according to ΘC' (or

its reverse), we have that Θ is compatible with C1 and C2.

Thus Θ is compatible with  and d, completing the proof
of Theorem 4.2. �

Remark 4.11 Note that we have shown that Corollary 4.9
holds under the assumption that (in view of line 6) every
cluster in  contains at most two elements. However, it is
possible to prove this result in the more general setting
where clusters can have arbitrary size. In principle, this

could yield a consistent variation of the Neighbor-Net
algorithm that is analogous to the recently introduced
QNet algorithm [16], where, instead of reducing the size
of clusters when they have more than two elements, the
reduction case is skipped entirely and clusters are pairwise
combined until only one cluster is left. However, we sus-
pect that such a method would probably not work well in
practice since the reduced distances have smaller variance
than the original distances.
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