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Abstract

The use of Chaos Game Representation (CGR) or its generalization, Universal Sequence Maps
(USM), to describe the distribution of biological sequences has been found objectionable because
of the fractal structure of that coordinate system. Consequently, the investigation of distribution
of symbolic motifs at multiple scales is hampered by an inexact association between distance and
sequence dissimilarity. A solution to this problem could unleash the use of iterative maps as phase-
state representation of sequences where its statistical properties can be conveniently investigated.
In this study a family of kernel density functions is described that accommodates the fractal nature
of iterative function representations of symbolic sequences and, consequently, enables the exact
investigation of sequence motifs of arbitrary lengths in that scale-independent representation.
Furthermore, the proposed kernel density includes both Markovian succession and currently used
alignment-free sequence dissimilarity metrics as special solutions. Therefore, the fractal kernel
described is in fact a generalization that provides a common framework for a diverse suite of
sequence analysis techniques.

Background

The use of iterative functions for scale independent repre-
sentation of biological sequences was first proposed well
over a decade ago [1]. Despite its earlier popularity, that
original proposition, designated as Chaos Game Repre-
sentation (CGR), was soon found objectionable on the
grounds of equivalence to standard Markov transition
tables [2]. We have subsequently examined that equiva-
lence and have shown that, quite the contrary, it is the
Markovian transition that is a special solution of the CGR
procedure [3]. The reader is referred to that report for a
brief revision of earlier work on iterative functions for rep-
resentation of sequence succession. The equivalence

between iterative maps and genomic signatures (more
exactly that the latter comes as a special solution of the
former) has also been noted its simpler, and faster imple-
mentation [4-7], and it has even lead to a number of web-
based and stand alone applications, including a function,
CHAOS, available in the popular bioinformatics library
EMBOSS [8].

Why CGR?

Approaching sequence analysis by analyzing the distribu-
tion of succession patterns, which is to say, of L-tuple (oli-
gomer) frequencies [9], is advantageous when the
sequence similarity is low because alignment algorithms
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cease to recognize common motifs that are inexactly con-
served, as recently illustrated for the SCOP protein data-
base [10]. Furthermore, oligomeric frequencies are a
natural genomic signature for analysis of collections of
isolates [11-13] where, again, the advantages of the CGR
representation did not go unnoticed [13]. These observa-
tions argue for the value of having a neutral format, one
that is scale and succession-independent, to represent Bio-
logical sequences. We have used CGR as the starting point
to develop just such a general procedure, which we desig-
nated as Universal Sequence Maps, USM [14]. The USM
procedure provides a bijective mapping (see also [3])
between any symbolic sequence and a unique position in
the USM unit hypercube. Furthermore, the distances
between map positions were found to be associated with
sequence dissimilarity. Because the procedure itself is not
dependent on the scale targeted by its analysis (length of
motifs, Markov order or memory length, depending on
the technique chosen) this is of both fundamental and
practical relevance.

Similarity overestimation

The CGR/USM representation of sequences offers funda-
mental advantages, related with its scale-independency,
that make it particularly suitable to investigate the entropy
distributions in nucleotide sequences [15]. That study in
particular played a significant role in motivating the den-
sity kernel development reported here. It was then
observed that using symmetric kernels in the Parzen win-
dow method, such as the Gaussian distribution function,
to represent density of sequence patterns in iterative maps
would be affected by some loss of resolution caused by
overlap of memory lengths, e.g. different lengths of the
sequence pattern being given the same weight because
they were at the same Euclidean distance to an arbitrary
position in the map. The artifactual loss of resolution can
be graphically understood by noting that the projections
of two sequence units can be very close to each other in
the sequence map for two reasons, only one of them being
directly proportional to sequence similarity described in
Figure 1. The other, confounding, possibility is that place
two units of distinct sequences are placed at close quarters
in the sequence map because they happen to be at oppo-
site ends of adjacent quadrants. This rare but unavoidable
occurrence causes a bias in previously proposed distance
metrics, including our own [3].

The distribution bias caused by the edge effects can be
addressed in two different routes. On the one hand it can
be modeled and discounted in the final results, as we have
done in previous work [14]. Specifically, see Figure 3 of
that report for a representation of the (biased) null distri-
bution obtained for different sized alphabets. The alterna-
tive solution, which we have also pursued [6] is to identify
a Boolean implementation of Universal Sequence Maps,
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designated as bUSM, which removes the source of dis-
tance overestimation at each of the of the scales accom-
modated by the numerical resolution of the computing
environment being used. That report also offers a detailed
algebraic description of the causes for the similarity over-
estimation for metrics based maximum distances at any
dimension (derived from equation 6 in [3]). Neither of
those two solutions described, however, helps represent-
ing the density distribution of individual sequences such
that the sequences themselves can be compared without
having to return to the pair-wise distances between their
units. The fundamental attraction of such a solution,
which we only partially succeeded in [15] using Gaussian
Parzen kernels, would be that it captures the fundamental
characteristics of the sequence, such as its information
content.

Towards an accurate kernel density function

As shown in previous work discussed above [3,9,14-16],
the fact that similar sequence distance is not equidistant
(Euclidean) to the preceding position is a serious limita-
tion to sequence comparison. On the other hand, it was
also shown [17] that pursuing discriminant analysis using
representations that are not constrained by predefined
scales or succession orders, even when those scales are sys-
tematically screened such as in variable length Markov
models [18-20], leads to more accurate models of
sequences. The two results put together point to the need
for a density kernel that resolves scale (succession order)
such that predictive patterns can be investigated more effi-
ciently in the iterative map representation.

In spite of the attractiveness of iterative functions in gen-
eral, and the bidirectional USM implementation [14] in
particular, for enabling the scale independent representa-
tion of motifs in biological sequences, its segmentation is
still typically approached by considering quadrants that
only correspond to Markovian transition. This usage
indeed has no fundamental advantage over the better
established use of fixed order transition matrices [2]. To
go beyond that, the fractal nature [21] set by the consecu-
tive scales that can be spanned by multi-order or fractal
order segmentations [3,17] has to be accommodated by
the density estimation procedure. As mentioned earlier,
we have subsequently approached the investigation of the
distributions of motifs of variable length using continu-
ous kernels on the USM positions, such as the Gaussian
kernel [15] with only partial success. The limitation of
that approach, clearer in the investigation of local
entropy, reflected the indetermination of sequence simi-
larity between equidistant positions in the map, which
had actually been anticipated, and mathematically mod-
eled, by the original USM proposition [14]. In this report
we solve the problem by identifying a kernel for density
distribution in the USM space that matches the fractal suc-
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lllustration of the unidirectional USM procedure for the sequence, "ACTGCCC". For a nucleotide sequence, it consists of two
iterative CGR operations in each direction, forward and reverse. The circled symbol indicates the first position iterated — see
text for discussion on determination of seeding position. Each subsequent position is calculated moving half the distance to the
edge with the corresponding unit. As shown in [3] the density of points in the unitary square is a generalization of Markov tran-

sition matrices.
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cession of Markov transition orders. For ease of represen-
tation, the procedure will be illustrated for nucleotide
sequences, which is also the scale for which unidirectional
USM is equivalent to the CGR procedure. This achieve-
ment enables the computation of scale independent dis-
tribution of motifs in biological sequences which allows
different scales to be combined in the same representation
of density of motifs in the sequence. The critical advance
is that it is no longer affected by the sequence composi-
tion itself or, which is the same thing, by the position in
the iterative map.

Methods

Algorithms and libraries

All algorithms and figures were implemented with origi-
nal code developed using the programming environment
MATLAB 7, Mathworks Inc. The resulting toolbox is and is
made freely available at the GeneChaos resource [22] with
no restrictions to use or modification. To assist in under-
standing the proposed algorithms, a function was
included that produces the figures presented in this man-
uscript, e.g. paper_fig(1) will produce Figure 1, etc. This
function therefore also serves as a tutorial to the usage and
interplay of the remaining functions.

Terminology

This report, and the iterative mapping field in general,
mixes terminology from two distinct approaches to
sequence analysis which are noteworthy elaboration for
the sake of clarity. "Scale" and "resolution" are used as
generic terms for a concept that is sometimes precised as
"sequence length" or Markovian "order". "Length" is the
term used in word-statistics and corresponds to the length
of the L-tuple. "Order" describes the same concept but is
more commonly used in the context of Markov models.
To add to the confusion, L-tuple/word "length" is one unit
smaller than "order". For example a simple 4 x 4 transi-
tion matrix between nucleotides resolves Markovian suc-
cession with order 1 and the conditional probabilities in
each of the 16 squares correspond to the frequency of all
possible dinucleotides (length 2). Another example, the
"scale of L-tuple distribution" designates the length of the
tuple for which all frequencies where determined. A vari-
ation on this theme is the use of "alphabet size" to access
scale: it designates the number of unique symbols availa-
ble for use in by the sequence. Along the same line of
thought, "vocabulary" (not used in this report) would
designate the number of possible L-tuples of a given
length.

At the origin of this terminology confusion is the fact that
both terms, "order" and "length", are originally defined in
the context of integer sequence resolution. However the
CGR/USM techniques are not restricted to integer resolu-
tions also allow for fractal order/length. Therefore the
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more generic use of "scale" and "resolution" to overcome
the integer presumption. The generalization of scale
achieved by iterative maps of discrete sequences was
object of some discussion in the early 90's, for example
contrast [1] with [2], a topic revised and discussed in [3,9].

List of symbols
w . coordinate in the forward iterative map. The dimen-
sion and sequence unit represented are indicated by sub

and supra-indexes, u{ (@) represents the position in the jt

dimension of the iterative map for the i unit of the
sequence.

ub: same as ub but for iterative coordinates in the backward
map, that is, obtained by iterating from the end to the
beginning of the sequence. For either map, the coordi-
nates fall within the [0,1] interval.

Ugi) : value of the jt" binary digit assigned to the i unit of

the sequence. This positions each unit of the alphabet at
an edge of a unitary hypercube [14].

D : number of dimensions of each unidirectional map.
N : length of the sequence being represented.

K : density kernel, K(u) indicates the height of the density
distribution in map coordinate u.

L: memory length resolution, that is, the length of the seg-
ments being resolved. It is equivalent to Markovian order
added one unit.

S : kernel smoothing parameter, see equation 3 for defini-
tion. The value of S varie between 0, for uniform density,
and +oo, where the density distribution is exactly equiva-
lent to a Markov transition table.

Results

First, the techniques Chaos Game Representation, CGR
[1,3], and its bidirectional generalization by Universal
Sequence Map, USM [14], will be revisited and illustrated
for a small nucleotide sequence. That original report is ref-
erenced for the detailed rationale regarding the critical
advantage of the bidirectional implementation over the
preceding unidirectional solution: all units of a common
pattern between two sequences are observed to be equi-
distant regardless of the individual positions within the
sequence. In addition, the USM procedure, more exactly
its initialization, will be slightly adjusted to represent
motifs in a fashion that is independent of the length of
neighboring sequences. Secondly, the discrete density ker-
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nel proposed will be described and illustrated with same
collections of promoter regions of Bacillus subtilis used in
the motivating entropy study [15].

lllustrating iterative map positioning

Universal Sequence Mapping is an iterative procedure that
populates a unitary hypercube bijectively: each sequence
corresponds to a position in the map, and each map posi-
tion corresponds to a unique sequence. For nucleotide
sequences the hypercube has log,(4) = 2 dimensions, that
is, it is a unit square. For that case, the original USM pro-
cedure in each direction is exactly equal to CGR. The same
exercise for a sequence of aminoacids would produce a
hypercube with 5 dimensions [14], which is the upper
integer of log,(20). The edges of the hypercube corre-
spond to the units of the alphabet that compose the
sequence and the position is found by moving half the
distance between the previous position and the edge cor-
responding to the unit at the position in the sequence
being considered. This procedure, which was formally
detailed in a previous report [3], is illustrated in Figure 1
for the sequence ACTGCC. The full USM procedure imple-
ments two such mappings, one in the forward and the
other in the reverse directions [14].

Seeding the iterative USM function

The iterative USM procedure described graphically in the
previous section and in Figure 1 is formally defined by
Equation 1 for an arbitrary sequence of N units built from
an alphabet with M possible symbols.

uf© =

fG) _ fG-) |, L(0) _ fG-1)) _
uy =g +E(U7 —-u )77
u?(NH) _ u][(N—l)

L0 2L e Lo Equation 1
2/ 2

)
ul e {o,1}
i={12..,N}
j={12..D}

Each of the unique M units of the alphabet are represented
by unique binary vector which, graphically, positions
them as unique edges of a unitary hypercube with D =
log2(M) dimensions [14]. The reason why the CGR/USM
procedure is revisited here is to highlight the novel seed-

ing procedure, by u?(z) for the forward iteration and by

u{ (N1 for the backward coordinate iteration procedure.
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Why not seeding at 1/2

In the original CGR proposition [1] the mid coordinate,
1/2, is invariably used as the initial position. Because this
position cannot be mapped back to a real sequence this at
first appeared as a reasonable proposition even if not fun-
damentally superior to any of the other boundary posi-
tions such as 0 and 1. However, seeding all iterations
equally causes an artifactual conservation of the begin-
ning of the sequence which will bias sequence entropy cal-
culations based on map coordinates [15], particularly for
small sequences: the first iteration can only produce two
coordinates, 1/4 or 3/4, the second iteration will produce
one of 4 possibilities: 1/8, 3/8, 5/8 or 7/8, etc. This will
cause some extent of artfactual high density at those posi-
tions.

Other approaches to seeding iterative maps

A possible solution to seed within the domain of possible
sequences would be to start with a position randomly col-
lected from a uniform distribution, as indeed used in the
original USM paper [14]. However, that too will cause a
bias, this time towards missing conservation of initial
units in a sequence if that is the case. A negligible few false
negatives may be an acceptable outcome for pattern recog-
nition and would have no effect elsewhere in the
sequence. However, it falls short of what is required for a
kernel generating truly scale independent density distribu-
tion of patterns.

The solution proposed here

The solution proposed by Equation 1 is to seed the itera-
tive mapping with the reverse coordinates: to seed the first
forward coordinate with the next to last backward coordi-
nate for the same dimension and vice versa. Note the first

forward coordinate, u{ (1) , and the last backward coor-

dinate, u?('"’l) , to be iterated are both the first unit of the

sequence, e.g. i = 1. Similarly, the last forward coordinate
and the first backward coordinate are assigned to the last
unit of the sequence, i = N. Therefore, the new seeding
solution can be interpreted as considering that each
sequence is preceded and succeeded by its mirror images
for the effect of studying local properties. If the sequence
is long enough that the numerical resolution of w/N) is
insensitive to the seed value, then the seed value can be
determined in practice by simply iterating the last few tens
of units of the reverse sequence starting with an arbitrary
value. For very short sequences however, Equation 1 has
to go through more than one circular iteration, starting
from an arbitrary seed value, until the coordinates values
converge. This solution causes each unique sequence to
have a unique scale independent distribution of patterns
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where its statistical characteristics can be studied with no
need to rebuild the original sequence. This also implies
that the coordinates of iterative maps of sequences, as
defined by Equation 1, are, fundamentally, steady state
solutions. A simple, dramatic, example where this is of
consequence is in the positioning of the sequence "A", or
"AA" in Figure 1. In the conventional CGR procedure
they'd be positioned with coordinates (1/4, 1/4) and (1/
8, 1/8) which would place them next to very different,
much more heterogeneous, sequences. On the contrary,
the solution by seeding as described in Equation 1 will
correctly produce the coordinate (0,0). Similarly, a
sequence with regular alternation of two units, say
"ABABABABAB" should produce well defined density
peaks at only two positions, 1/3 and 2/3, which is in fact
the steady state solution produced by Equation 1. On the
contrary, both CGR and the random seeded USM would
produce two trails of values converging to those solutions
but not quite reaching them. The fully self-referenced
nature of the modified USM construction is also reflected
in the observation that the steady state solutions invaria-
bly produce u{ ) - u?(l) and u{ (N) _ u?(N). However,
exploring the bidirectional density distributions is
beyond the scope of this report.

Construction of density kernel

The shape of the density kernel should match the fractal
nature of the iterative USM function itself. The solution
reported here will first be described for a USM coordinate,
and illustrated for an arbitrary coordinate of the map, say
the horizontal dimension of the forward map in Figure 1.
The value, K, of the proposed Kernel function (Equation
2) in map coordinate position u, has two user-defined
parameters, memory length, L, and smoothing, S, which is
the ratio between the areas assigned to two consecutive
Markov orders (e.g. S = 2 implies the kernel density area
assigned to order i < L-1 is twice the area assigned to order
i-1).

N L {H(i,D,L,S)<—LB(i,x]-)<u<UB(i,x]-) E ion 2
quation

Kw=232

jo1im1 |0« otherwise
The parameter D is the number of dimensions of the uni-
tary USM hypercubes (e.g. d = 2 for the example in Figure
1) and the expression in Equation 2 simply states that the
kernel density value in position u is obtained by adding
the values of H, for each of the orders up to L-1, which
makes it a scale dependent height function, for the
number of elements of the kernel training dataset, x, that
are positioned within a scale dependent neighborhood
confined by lower and upper boundaries, LB and UB,
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respectively. The choice of memory length, L, of the ker-
nel, sets the resolution of the density function. This is
graphically reflected by the finer grain of the density dis-
tribution for higher values of L in Figure 2 and Figure 3.

As will be shown next, the kernel volume defined by this
surface is equal to the number of points (sequence units),
N, of the kernel-training dataset x. This result, strictly con-
sidered, disqualifies K as a kernel density function as ker-
nel density volumes are unitary by definition. There are a
number of reasons why having a volume that is the
number of sequence units is desirable, particularly when
sequences of different lengths are being compared. A com-
pliant alternative definition of K is in any case obtained by
dividing the expression in Equation 2, by the total length
of the training sequences, N. This alternative will not be
explicitly explored here because the scale alteration is so
straight forward that it can easily be applied to any of the
results reported here. The 2D density plots are offered
without a scale in the z-axis to highlight the inconse-
quence of the correction. On the other hand, when multi-
ple sequences are plotted together, as in Figure 4, the effect
is that that the same motif in two sequences is represented
with the same density height, Equation 3, even if the two
sequences have very different lengths.

The kernel density definition in Equation 2 is completed
by two more expressions, Equation 3 and Equation 4,
where the height function and its boundaries are detailed.
The kernel density height function, Equation 3, estab-
lishes the step height added at each memory length
smaller or equal to the value of L. It is useful to recall that
the memory length is one unit smaller than the Marko-
vian order, e.g. for nucleotide sequences, memory length
one corresponds to mono nucleotide frequencies, mem-
ory length two corresponds to di-nucleotide frequencies,
which populate a first order Markov transition table, and
SO on.

D i
H(i,D,L,S) = w Equation 3

Y5t

r=0

The boundary values set by the functions LB and UB,
Equation 4, define the neighborhood of a training
sequence unit, that is, neighborhood to its USM position,
x, which will have the corresponding value of H, Equation
3, added to the kernel density height, as detailed in Equa-
tion 2.
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lllustration of the Kernel density, K, for a small binary sequence, "ABABAAA", along its single USM axis, using different values
for memory length, L, and smoothing, S. The same seven coordinates are used in all plots which implies that each of the 6 den-

sity plots have a similar area of 7 kernel units.
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Determination of Kernel density, Equation 2, in the forward map of the sequence "ACTGCCC" used to produce Figure. To
illustrate the effect of using different settings for memory length, L, and smoothness, S, The kernel density was determined for

the four different combinations of L = {4, 5} and S = {I, 1/3}.

i
LB(i, x) = M’:z)
2
2N 41
UB(i, x) = ﬂoor(x—i) Equation 4
2

Before illustrating the calculation of the kernel density for
multi-dimensional USM hypercube it is useful to illustrate
the procedure for the one-dimensional example of a
binary sequence such as '"ABABAAA'. The corresponding
USM forward coordinates would be [0.3138 0.6569
0.3284 0.6642 0.3321 0.1661 0.0830] and the corre-
sponding kernel density, Equation 2, for all positions in
the one-dimensional USM map are shown in Figure 2 for
different values of memory length, L, and smoothing, S.

Figure 2 illustrates how the choice of parameters will set
both the resolution and detail of the pattern representa-
tion. If smoothing is set to +oo then the kernel density will
be distributed between the different fractions exactly as it
would in a Markov transition matrix with the same mem-
ory length. This becomes clearer when a two dimension
example is used such as the more familiar representation
of nucleotide sequences. To illustrate this procedure,
Equation 2 was applied to the forward map of a small
nucleotide sequence represented in Figure 1, which results
in the density distribution represented in Figure 3.

Discussion

A novel kernel density method to measure oligomeric fre-
quency in a iterative sequence maps of biological
sequences (Chaos Game Representation or its generaliza-
tion to alphabets longer than 4 units, Universal sequence
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Kernel density for L =4 and S = | applied to the concatenation of 20 promoter regions of Bacillus subtilis (see Discussion). The
density is displayed both as a 3D bar (top) and as a 2D gray scale heat map (bottom). The accurate capturing of conserved
tetranucleotide segments is illustrated for the TATA-box in the latter view, and for the TTGACA binding site at position -35 in
the former. The two views also illustrate the two types of decomposition of conserved sequences. For the TTGACA sequence
the decomposition is performed for the resolution of the kernel (L = 4) and all 3 tetranucleotides embedded in the 6 unit
sequence are identified. The density scale is normalized to the length of the sequence so the average height is one unit — which
is to say that the area of the density distribution is, as it should for a unit square base, unitary by definition. The three tables at
the top detail the densities of the possible tetranucleotides for each of the trinucleotide quadrants. It can be observed that in
each of them the conserved segment invariably has the highest density. The decomposition of the TATA-box, in the bottom
view is instead illustrated for a succession of scales, from mononucleotide to tetranucleotide. The cumulative distribution of
densities is displayed at the top left, disclosing a skew towards lower values, with over 60% of densities are below the unit
average.
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Maps) was described and summarily illustrated. However,
the illustration would not be complete without mapping
the promoter regions of Bacillus subtilis and the recogni-
tion of the TATA box in the same sequences used in the
preceding report [15], which motivated the development
described here. This discussion will therefore focus on the
representation and decomposition of sequence conserva-
tion, which can be detected by unlikely repetition of the
conserved segment of because the conserved segment has
an unlikely composition in the context of the remaining
sequence. Accordingly, the illustration in Figure 4 uses the
same 20, 100 unit long upstream promoter regions of
B.subtilis obtained from [23,24], all having a known pro-
moter sequence constituted by the sub-string TTGACA-
(space)-TATAAT with at most one substitution (known as
the TATA-box). The entropic properties of those
sequences were discussed in the preceding work [15], were
they were designated by the Es symbol. For the sake of ref-
erence, the Es concatenation is embedded in the software
library provided with this report, and is retrieved when
using the illustrative function paper_fig(4), which repro-
duces Figure 4 (this function can be used to reproduce the
other three figures too, see Methods). The volume under
the density distribution is, by definition, unitary (the nor-
malized height is obtained by dividing H, equation 3, by
N, the total number of sequence units). Therefore, the
average value of the matrix underneath the 3D bar plot in
Figure 4 is also unitary and sets the scale for the represen-
tation (scaled height axis is represented in the 3D view of
the density distribution represented in Figure 4).

Two important issues for pattern recognition in sequences
are raised by this illustration and warrant discussion even
if they fall outside the strict reporting of a kernel density
distribution method. Firstly, it is clear that for any fixed
resolution, L, all conserved segments of longer length will
have its L-long sub-segments represented as peaks scat-
tered throughout the distribution. As a consequence, the
choice of value for the smooth parameter, S, should be set
as to maximize the recognition of an objective quantity,
such as information content. When scanning different
scales, by using various values for L, the optimal value of
S would also be different, as it would be dependent on the
information content encoded at that scale. Secondly, the
shorter sub-segments of a conserved segment of length L,
will set the base height for the quadrants where the con-
served L-long segment is inserted. Therefore, the availabil-
ity of a density distribution kernel for the projection of
sequences in a continuous space also creates the opportu-
nity to devise de-embedding schemes that will pinpoint
the location of conservation for arbitrary target resolu-
tions.

http://www.almob.org/content/1/1/18

Conclusion

As in previous methodological developments associated
with this technique, the more conventional, Markovian,
solutions emerge as special formulations of the proposed
novel methodology. For example, using very large
smoothing parameters, S~ +oo, will exactly identify a
Markov transition table of order L-1. The development of
this kernel comes in the sequence of generalizing it
beyond non-nucleotide alphabets and then screening dif-
ferent scales to describe its global entropic properties.
Each step in this progression came with adjustments or
reinterpretations of the original CGR procedure. This one
is no exception and a more balanced, fully self-referenced,
solution to the seeding of the iterative procedure was
found that suggests that CGR/USM coordinates may best
be sought as steady state solutions. However, for all but
the shortest sequences this is of no computational conse-
quence. Finally, a software library in a user-friendly pro-
gramming language (Matlab code has a high-level
pseudo-language appearance) is disseminated with this
report to facilitate both independent use of the scale vari-
ant density distributions and further development of the
method itself.
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