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Abstract
Background: Biclustering has emerged as a powerful algorithmic tool for analyzing measurements
of gene expression. A number of different methods have emerged for computing biclusters in gene
expression data. Many of these algorithms may output a very large number of biclusters with
varying degrees of overlap. There are no systematic methods that create a two-dimensional layout
of the computed biclusters and display overlaps between them.

Results: We develop a novel algorithm for laying out biclusters in a two-dimensional matrix whose
rows (respectively, columns) are rows (respectively, columns) of the original dataset. We display
each bicluster as a contiguous submatrix in the layout. We allow the layout to have repeated rows
and/or columns from the original matrix as required, but we seek a layout of the smallest size. We
also develop a web-based search interface for the user to query the genes and samples of interest
and visualise the layout of biclusters matching the queries.

Conclusion: We demonstrate the usefulness of our approach on gene expression data for two
types of leukaemia and on protein-DNA binding data for two growth conditions in Saccharomyces
cerevisiae. The software implementing the layout algorithm is available at http://
bioinformatics.cs.vt.edu/~murali/papers/bivoc.

1 Background
Measurement of gene expression using DNA microarrays
[1,2] have revolutionized biological and medical research.
Since gene expression plays an important role in cell dif-
ferentiation, development, and pathological behavior,
computational analysis of DNA microarray data has the
potential to assign functions to newly-discovered genes,
unravel the structure of biological pathways, and assist in
the development of new medicines. Biclustering has
emerged as a powerful algorithmic tool for analyzing gene
expression data. A bicluster in a gene expression data set is
a subset of genes and a subset of conditions with the prop-
erty that the selected genes are co-expressed in the selected

conditions; these genes may not have any coherent pat-
terns of expression in the other conditions in the data set.
Biclusters have a number of advantages over clusters com-
puted by more traditional algorithms such as k-means and
hierarchical clustering [3]. Since a bicluster includes only
a subset of genes and samples, it models condition-spe-
cific patterns of co-expression. Traditional clusters may
miss such patterns since they operate in the space spanned
by all the conditions. Further, many biclustering algo-
rithms allow a gene or a sample to participate in multiple
biclusters, reflecting the possibility that a gene product
may be a member of multiple pathways.
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A number of different methods have emerged for comput-
ing biclusters in gene expression data [4-16]; two papers
survey these techniques [17,18]. These algorithms use dif-
ferent strategies to compute biclusters such as exhaustive
enumeration [16,19,20], iterated improvement [5,6],
repeated random sampling [11], and expectation maximi-
zation [12]. An issue all these algorithms deal with is try-
ing to avoid outputting two or more biclusters with nearly
the same set of samples and/or genes. A common
approach is to remove a bicluster from the output if it
shares a large fraction of genes and/or samples (based on
a user-defined threshold) with an already computed
bicluster. Another approach replaces the expression values
in a bicluster with random values in order to prevent that
bicluster from being computed again. In spite of these
measures, biclustering algorithms may compute tens,
hundreds, or even thousands of biclusters with varying
degrees of overlap.

Organising, manipulating, and querying the potentially
large number of biclusters computed by these algorithms
is a data mining task in itself – one that has not been sys-
tematically addressed. In this paper, we develop a novel
algorithm for laying out biclusters in a manner that visu-
ally reveals overlaps between them. We lay out the biclus-
ters in a two-dimensional matrix whose rows
(respectively, columns) are rows (respectively, columns)
of the original dataset. We display each bicluster as a con-
tiguous submatrix in the layout. We allow the layout to
have repeated rows and/or columns from the original
matrix, but we seek a layout of the smallest size. In addi-
tion, we develop a web-based search interface that allows
the user to query the results for genes and samples of inter-
est and visualise the layout of the biclusters that match the
search criteria.

The layout algorithm is general enough to be applied to
biclusters computed in real-valued, binary, or categorical
data. For instance, the combination of biclustering algo-
rithms and our layout algorithm can be used to analyze
measurements of the concentrations of other types of
molecules, including proteins and metabolites. We dem-
onstrate our approach on two types of data. First, we com-
pute layouts for biclusters extracted from leukaemia
microarray data by the xMotif biclustering algorithm
[11,21]. Second, we analyze protein-DNA binding data in
S. cerevisiae and demonstrate how biclustering in combi-
nation with the layout algorithm can visually demonstrate
differences in the transcriptional regulatory network that
is activated in different growth conditions.

Figure 1 displays a layout computed by our algorithm on
a toy binary matrix. Figure 1(a) displays a dataset in which
rows represent dates and columns represent weather con-
ditions in Blacksburg, VA, USA. A cell has a one (the cell

is drawn shaded) if the weather condition corresponding
to the cell's column (e.g., "Rainy" or "> 75°F") is true on
the date corresponding to the cell's row. In this dataset, we
define a bicluster to be a subset of rows and a subset of
columns with the property that the submatrix defined by
these rows and columns only contains ones. We com-
puted all the closed biclusters in this binary matrix, i.e.,
biclusters with the property that every row (respectively,
every column) not in the bicluster contains a zero in at
least one column (respectively, one row) in the bicluster.
In other words, it is not possible to add a row or a column
to such a bicluster without introducing a zero. Figure 1(b)
displays the layout computed by our algorithm of the
seven biclusters in this dataset.

The bicluster layout problem, which we formally define in
Section 3.1, is very similar to the hypergraph superstring
problem studied by Batzoglou and Istrail in the context of
physical mapping of genomes. Batzoglou and Istrail prove
that the hypergraph superstring problem is MAX-SNP
Hard, i.e., it is computationally intractable to obtain a
bicluster layout whose size is smaller than a constant
times the optimal size. In this work, we present a heuristic
that minimizes the size of the layout well in practice. In
the special case when there is a solution involving no
repeated rows or columns, the algorithm computes the
layout of smallest size. Our algorithm runs in O(mn2 + n2

log n) where n is the number of biclusters and m is the
number of rows and columns in all the biclusters; the run-
ning time of the algorithm is independent of the size of
the original dataset. We lay out the rows and columns of
the biclusters independently. Our algorithm to lay out the
columns is similar to a bottom-up hierarchical clustering
of the column sets of the biclusters. At each stage, we
merge two biclusters if the submatrix induced by them in
the original matrix has the "consecutive ones property"
(see Section 3.2). Finally we generate the two-dimen-
sional layout by combining the row and column layouts.

2 Related work
A binary matrix has the Consecutive Ones Property (COP)
for rows if its columns can be permuted such that all the
ones in each row are consecutive [22]. See Figure 2 for an
example of a matrix with the COP. Determining whether
a matrix has the COP and computing the permutation of
the columns that proves this property has applications in
a number of areas including testing for graph planarity
[22] and recognizing interval graphs [22,23]. Booth and
Leuker [22] describe a data structure called the PQ tree
which they use to represent all legal permutations of col-
umn orderings in a matrix with the COP property. They
prove that the PQ tree and the correct column permuta-
tion can be computed in time linear in the number of
ones in the matrix.
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Researchers have studied a number of generalizations of
the COP problem; however, most of these generalizations
are NP-complete or NP-Hard. For example, seeking the
column ordering for a non-COP matrix that minimizes
the number of gaps between the ones in each row can be
reduced to the traveling salesman problem [24]. An
important application of generalizations of the COP is
physical mapping of chromosomes with probes. We can
represent physical mapping data as a binary matrix where
the rows represent clones (short overlapping sections of a
chromosome), the columns represent DNA probes, and a
cell in the matrix has a one if the corresponding probe
hybridizes to the corresponding clone. Constructing a
physical map of the chromosome is equivalent to finding
an ordering of the probes (with probes repeated, if neces-
sary) such that all the probes matching a clone appear

consecutively and the total length of the ordering is as
small as possible. As mentioned earlier, Batzoglou and
Istrail prove that this problem is MAXSNP-Hard [25].

Algorithms for constructing physical maps from hybridi-
zation data typically exploit the Lander-Waterman model
[26], which assumes that clones are distributed uniformly
across the chromosome and that probes are distributed
according to independent Poisson processes. Some algo-
rithms make additional domain-specific assumptions
[24,25,27-29]. For instance, Batzoglou and Istrail com-
pute an ordering whose length is at most twice the length
of the optimal ordering under the requirement that each
clone match a probe that does not hybridize to any other
clone. None of these algorithms are applicable to our
problem since the biclusters we want to lay out may not
have the required properties.

3 Algorithm
We present our approach in four stages. First, we define
some useful notation. Second, we introduce the PQ-tree,
a data structure that is fundamental to our approach.
Third, we present our layout algorithm. Finally, we discuss
its implementation and the web interface to query the
computed layout.

3.1 Definitions

We denote the input matrix by D and use R and C to
denote the set of rows and columns of D, respectively. A

An illustration of the COPFigure 2
An illustration of the COP. Figure 2(a): A matrix that has 
the COP with the first two columns highlighted. Figure 2(b): 
Swapping the first two columns of the matrix demonstrates 
that the matrix has the COP.
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An example of a bicluster layout for weather data in Blacksburg, VAFigure 1
An example of a bicluster layout for weather data in Blacksburg, VA. Figure 1(a): a dataset in which rows represent 
dates and columns represent weather conditions in Blacksburg. Figure 1(b): the layout computed by our algorithm of the seven 
biclusters in this dataset.
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layout ( , ) of the matrix D is a two-dimensional
matrix specified as follows:

1.  is the ordered list of rows of  with the property

that each element of  is an element of R; a row in R can

appear multiple times in .

2.  is the ordered list of columns of  with the property

that each element of  is an element of C; a column in C

can appear multiple times in .

3. ij, the element in the ith row of  and the jth column

of  is equal to Di'j', where i' is the row of D correspond-

ing to the ith row of  and j' is the column of D corre-

sponding to the jth column of .

The size of , is | || |. It is appropriate to consider 

to be a layout of D since  specifies an order for the rows
and columns of D. We do not require that every row/col-
umn of D appear in . In the example in Figure 1(b), the
layout does not contain the column titled "< 35F" that is
in the original matrix. The layout does not contain any
repeated rows or columns either.

Given subsets R' ⊆ R and C' ⊆ C, we define a bicluster B(R',
C') to be the sub-matrix of D spanned by the rows in R'
and the columns in C'. This simple definition is sufficient
for this paper. An algorithm that computes biclusters in
gene expression data will use a more complex definition
relevant to the patterns to be detected. A bicluster B(R', C')
is contiguous in a layout ( , ) if and only if the ele-
ments of R' (respectively, C') appear consecutively at least
once in  (respectively, ). We say that the layout

( , ) is valid with respect to a set of biclusters S if

every bicluster B ∈ S is contiguous in ( , ). For
example, the layout in Figure 1(b) is valid with respect to
the bicluster ({7/04/2004, 7/03/2004, 7/02/2004}, {>
60F, Daylight > l0 h, Cloudy, Rainy}) since the bicluster
spans rows four to six and columns two to five in the lay-
out. We now formally define the bicluster layout problem:
Given a matrix D and a set S of biclusters in D, find a lay-
out  of D such that  is valid with respect to S and 
has the smallest size among all valid layouts of D.

3.2 The PQ tree
Booth and Leuker [22] developed a data structure called
the PQ tree, which they used to compute a column order-
ing that proves that that a binary matrix M has the COP.
To define the PQ tree, it is convenient to reformulate the

COP problem as follows: Let U be the set of columns of
M. Let r be the number of rows in M. For each i, 1 ≤ i ≤ r,
define the set Si to be the set of columns in U that have a
one in row i. We seek a permutation of the elements of U
that satisfies r restrictions, where restriction i, 1 ≤ i ≤ r
requires that the elements of Si be consecutive in the per-
mutation.

A PQ tree can represent all legal permutations of U that
satisfy the restrictions {Si, 1 ≤ i ≤ r}. Each leaf of the PQ
tree corresponds to a column in U. The PQ tree contains
two types of internal nodes: P-nodes and Q-nodes. The
children of a P-node can be permuted in any way while
still satisfying the restrictions. A valid permutation of the
children of a Q-node is either the order in which they
appear in the PQ tree or the reversal of this order. A PQ
tree supports the REDUCE operation. This operation
inserts a restriction S into a PQ tree T, modifying T such
that T satisfies S in addition to all the previous restrictions
inserted into T. The REDUCE operation fails if there are
no legal permutations of U that can satisfy S and the pre-
viously inserted restrictions. The operation takes time lin-
ear in |S|. Figure 3 displays a PQ tree on four elements {a,
b, c, d} after two REDUCE operations: REDUCE(T,{a, c})
and REDUCE(T,{b, c}). Inserting the restriction {c, d}
into the tree next will result in a failed REDUCE opera-
tion.

To solve the COP problem, start with an empty PQ tree T.
For each i, 1 ≤ i ≤ r, invoke the operation reduce(T, Si). To
obtain an ordering that satisfies the restrictions, perform a
breadth-first traversal of T starting at the root. At each
internal node of T, visit the children of the node in any
order that is valid for the type of the node. At a leaf node
of T, append the column corresponding to the leaf to the
required ordering.

3.3 The bicluster layout algorithm

We are now ready to describe our algorithm for the biclus-
ter layout problem. To minimize the size of , we can

minimize the length of  and the length of  independ-

ently. Therefore, we construct the layout  by determin-

ing  and  independently. In the rest of this section,

we describe the algorithm to construct , the ordered list

of the columns in the layout . We can compute , the
ordered list of rows in the layout, analogously.

We describe the algorithm in two stages. We first trans-
form the problem of constructing  to a generalization of
the COP problem. We then present an algorithm to solve
this transformed problem. This transformation allows us
to describe our algorithm in terms of operations on PQ
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trees. The PQ tree cannot solve this generalization directly
since the matrix we construct may not have the COP.

We start by constructing a new binary matrix M that rep-
resents the columns of the biclusters in S. Each column on
M corresponds to a column of the input matrix D. M con-
tains one row for each bicluster in S; thus, M has n rows.
The entry Mij is 1 if the ith bicluster in S contains the col-

umn j in D; otherwise, Mij is 0. We can now reformulate

the problem of constructing  as follows: find the short-

est linear ordering  of the columns of M such that 
can contain repeated columns of M and for every row of
M, the columns containing the ones in that row appear
consecutively at least once in .

Before describing the algorithm, we define some more
notation. The leaves of each PQ tree constructed by the
algorithm correspond to a subset of the columns of M. We
use CT to denote the set of columns in a PQ tree T. Given

two PQ trees T and T', let σ(T, T') denote the set similarity

 between the columns in T and T'. Our algo-

rithm executes the following steps:

1. For each row i of M, 1 ≤ i ≤ n, construct a PQ tree Ti and

insert the restriction corresponding to row i of M into Ti.

Let  be the set of these n PQ trees.

2. For every pair 1 ≤ i ≤ j ≤ n, compute the set similarity
σ(Ti, Tj).

3. Compute Σ, the list of values in {σ(Ti, TJ), 1 ≤ i ≤ j ≤ n}
sorted in descending order.

4. Repeat the following steps until Σ is empty:

(a) Remove the largest element from Σ. Let T and T' be the
PQ trees in  with this similarity value.

(b) Set T" = T.

(c) For each restriction r inserted into T', invoke the oper-
ation REDUCE(T", r). If any reduce operation fails, go to
Step 4a.

(d) Delete T and T' from .

(e) For each tree U ∈ , insert σ(U, T") into Σ.

(f) Insert T" into .

5. For each PQ tree T in , traverse T to compute a valid
permutation of the columns in CT.

6. Output the column layout formed by concatenating (in
any order) the permutations computed in Step 5.

The algorithm starts by storing each row of M in a separate
PQ tree in the set  (Step 1). Next, the algorithm per-
forms a series of REDUCE operations to hierarchically
cluster the rows of M. Inductively, the restrictions inserted
into each PQ tree in  correspond to a set of rows of M
with the property that the submatrix of M spanned by
these rows has the COP. To decide which two sets of rows
to merge next, in Step 4a, the algorithm picks the two PQ
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An example of a PQ-treeFigure 3
An example of a PQ-tree. An example of a PQ tree. Circles represent P nodes and rectangles represent Q nodes. Figure 
3(a): Initial PQ tree T formed from set {a, b, c, d}. Figure 3(b): The PQ tree T after the REDUCE(T,{a, c}) operation, requiring 
that a and c be consecutive. Figure 3(c): The PQ tree T after the REDUCE(T,{b,c}) operation, requiring that b and c be consec-
utive. Valid permutations represented by this tree are the sequences acbd, bcad, dacb, and dbca.
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trees T and T' in  that are the most similar and attempts
to merge them. To effect the merger, the algorithm adds
the restrictions added to one of these PQ trees to the other
PQ tree (Step 4c). If this step succeeds, the algorithm
deletes T and T' from , inserts the similarities between
the new PQ tree T" and each of the remaining PQ trees in

 into Σ, and inserts T" into  (Steps 4d–4f). In Step 4c,
the failure of a REDUCE operation means that the restric-
tions in T are not compatible with the restrictions
imposed by T'. Hence, the submatrix of M induced by the
union of rows in T and in T' does not have the COP. An
example of such a situation is when T corresponds to the
tree in Figure 3(c) and T' contains the restriction {c, d}. In
this case, the algorithm aborts the merger of T and T' and
moves on to the next most similar pair of PQ trees. Due to
such conflicts,  may contain more than one PQ tree
when the algorithm completes. Finally, generating the
required layout is a simple matter of traversing each PQ
tree in  (Step 5) as described in Section 3.2 and con-
catenating the resulting permutations into a single order
(Step 6). A column of M appears as many times in this
order as there are PQ trees in  that include this column.

We now analyze the running time of the algorithm. Let m
be the number of ones in the matrix M. As stated earlier,
the number of biclusters in the input is n. In Step 1, com-
puting the PQ trees takes O(m) time. Computing the sim-
ilarity between a pair of PQ trees takes O(c) time, where c
is the number of columns of M. Thus, in Steps 2 and 3,
computing and sorting the O(n2) similarity values takes
O(cn2 + n2 log n) time. We execute Step 4 O(n2) times. The
running time of each iteration is proportional to the size
of the new PQ tree constructed. A naive upper bound on
this size is m, the total number of columns in all the
biclusters. Hence, the total running time of Step 4 is
O(mn2). Finally, traversing all the PQ trees in  and con-
catenating the permutations takes O(m) time. Keeping in

mind that c ≤ m, the total running time of the algorithm is
O(mn2 + n2 log n). The space used by the algorithm is O(m
+ n2), with O(m) space taken to store all the biclusters and

the PQ trees and O(n2) required for Σ, the sorted list of
similarities.

3.4 Implementation and web interface
We implemented the layout algorithm in C++ and tested
it on a 2.8 GHz Pentium computer running the Fedora
Core 3 operating system. Our software contains two exe-
cutable programs. The first executable, layout, imple-
ments the layout algorithm. It takes a text file describing
the biclusters as input and outputs the layout in a simple

textual format that specifies the order of the rows and col-
umns in the layout and the corners of each bicluster in the
layout. The second executable, drawlayout, uses the com-
puted layout and the original data set as input and pro-
duces an image corresponding to the layout.

If the input data contains a large number of biclusters, the
layout may contain too many rows and/or columns for
the user to navigate with ease. To alleviate this problem,
we have also developed a simple web-based interface that
allows the user to upload a file containing computed
biclusters and a file containing the original data, and
query the layout with the names of rows and columns.
The interface invokes layout and drawlayout on the
biclusters that contain the query rows/columns and high-
lights the matching biclusters, rows, and columns in the
resulting layout. The interface allows the user to specify
whether the data is real-valued or binary, whether the lay-
out should contain only the matching biclusters, and
whether the query should be a conjunction or disjunction
of the search terms.

4 Experimental results
We present results for three types of data. We first evalu-
ated our method on synthetic datasets. Next, we consid-
ered a binary data set encoding results of ChIP-on-chip
experiments in S. cerevisiae. Finally, we used our method
on gene expression data to distinguish differences
between two types of leukaemia.

4.1 Synthetic data
We created synthetic datasets with different numbers of
rows and columns. For each dataset, we generated biclus-
ters by sampling subsets of rows and columns. For this
experiment, we randomly generated the number of rows
and columns and identifiers for the rows and columns; we
did not need to generate values for the cells of the matri-
ces. For each set of biclusters, we recorded the time
required to run our layout algorithm and the number of
rows and columns in the computed layout. For each lay-
out, we estimated the efficiency of the layout as the ratio of
the size of the layout to the size of the dataset. Lower val-
ues of efficiency are better than higher values, since they
indicate that the algorithm is able to exploit overlaps
between biclusters. For each choice of number of rows in
the dataset, number of columns in the dataset, and
number of biclusters, we averaged the results for 100 runs.
Tables 1 and 2 display our results. Efficiency values may
be less than one, e.g., when some rows or columns in the
dataset do not belong to any bicluster.

4.2 Transcriptional regulation in S. cerevisiae
To demonstrate the ability of our visualization algorithm
to highlight differences between biclusters in similar data-
sets, we analyzed datasets of transcriptional regulation in
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two experimental conditions in S. cerevisiae [30,31]. Each
dataset is a binary matrix whose columns represent tran-
scription factors and whose rows represent genes in S. cer-
evisiae. A matrix entry contains a one if a ChIP-on-chip
experiment indicates that the transcription factor binds to
the promoter of the gene with a p-value at most 0.001. An
important problem that arises in the analysis of this data
is determining if a set of genes are collectively regulated by
a set of transcription factors and whether this combinato-
rial regulation changes when the cell is exposed to stress.
Although ChIP-on-chip data is noisy and significant effort
may be needed to clean it up, the analysis we present next
demonstrates that a combination of biclustering and our
layout algorithm yields biologically useful results.

The two protein-DNA datasets we study correspond to the
growth of S. cerevisiae cells in rich medium [31] and to
growth under exposure to rapamycin [30], a condition
that mimics nutrient starvation. We restricted our atten-
tion to transcription factors studied in both papers. We
ran our implementation of the Apriori algorithm [32] that
computes closed biclusters (as defined in Section 1) on
both these datasets, applied our layout algorithm on
biclusters with at least two genes and at least two tran-
scription factors, and obtained the layout in Figure 4(a).
Biclusters obtained from the data under growth in rich
medium are shown as blue boxes and rapamycin-induced
biclusters are shown as red boxes. A cell in the figure is
dark grey (respectively, light grey) if the transcription fac-
tor binds to the gene's promoter in both (respectively,
one) condition. The image strikingly demonstrates that
under exposure to rapamycin, the transcriptional regula-

tory network activated in the cell is very different from the
network activated under growth in rich medium. The rich
medium data contains only four biclusters involving these
transcription factors while the rapamycin data contains 38
biclusters. We conclude that very few genes are co-regu-
lated by the same set of transcription factors in both con-
ditions.

To illustrate the use of our web interface, we used it to
search for biclusters that included the transcription factors
RTG3 and GLN3. RTG3 is a transcription factor that forms
a complex with RTG1 to activate the retrograde (RTG) and
target of rapamycin (TOR) pathways [33,34]. GLN3
encodes a transcription factor that is phosphorylated and
localised to the cytoplasm when the cell is grown in nitro-
gen-rich media.

Rapamycin treatment can induce the dephosphorylation
and subsequent activation of GLN3 [35]. Figure 5 displays
the layout of all the biclusters containing these two tran-
scription factors. We note that all but one bicluster also
includes either the transcription factor GAT1 or the tran-
scription factor GCN4. GAT1 is a transcriptional activator
of genes involved in nitrogen catabolite repression; the
activity and localization of these genes is regulated by
nitrogen limitation. GCN4 is another transcription activa-
tor that is a master regulator of gene expression during
amino acid starvation in S. cerevisiae and is activated in
multiple stress responses [36]. Thus, it is not surprising
that GAT1 and GCN4 co-regulate genes with GLN3 and
RTG3. The functional annotations of the set of nine genes
targeted by GCN4, GLN3, and RTG3 is enriched in the

Table 2: Efficiency values for the layout algorithm on synthetic matrices.

# biclusters #rows + #columns in the dataset

10 30 50 70 90

20 0.184 0.842 1.316 1.254 1.428
40 0.304 1.16 1.632 2.04 2.074
60 0.398 1.496 2.262 2.26 2.508
80 0.512 1.65 2.358 2.726 2.698
100 0.48 1.808 2.582 2.686 2.996

Table 1: Execution times (in seconds) for the layout algorithm on synthetic matrices

#biclusters #rows + #columns in the dataset

10 30 50 70 90

20 0.168 0.328 0.462 0.52 0.532
40 1.23 2.514 3.046 3.574 4.008
60 4.074 7.992 11.238 11.71 12.81
80 9.484 19.586 25.546 29.652 29.446
100 17.982 37.966 48.418 50.916 56.112
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Gene Ontology biological process "glutamine family

Bicluster layoutsFigure 4
Bicluster layouts. Visualizations of the layouts computed by our algorithm. Since the layout may contain repeated rows and 
columns, a bicluster may appear at multiple locations in the layout. We only highlight only one occurrence of each bicluster. 
The layout on the left displays biclusters representing combinatorial control of transcription in S. cerevisiae. The layout on the 
right displays biclusters in gene expression data for ALL and AML.
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amino acid biosynthesis" (p-value of 2 × 10-8, based on
the hypergeometric distribution), indicating that this
pathway may be activated by the three transcription fac-
tors upon rapamycin treatment.

4.3 Classification of leukaemias
Golub et al. [37] studied global expression patterns of 45
patients diagnosed with Acute Lymphoblastic Leukaemia
(ALL) and 27 patients diagnosed with Acute Myeloid Leu-

kaemia (AML). We ran the xMotif algorithm [11,21] to
compute biclusters in this dataset. We ensured that com-
puted biclusters contain samples from at most one class.
We selected four representative biclusters from the results
to visualize. Figure 4(b) displays the layout. Each column
corresponds to a sample; the two columns at the top with
purple cells indicate the type of leukaemia. We map the
expression values of each gene into a range from green to
red, with green (respectively, red) corresponding to the

Genes combinatorially controlled by GLN3 and RTG3Figure 5
Genes combinatorially controlled by GLN3 and RTG3. A layout of nine biclusters of genes combinatorially controlled 
by GLN3 and RTG3 under exposure to rapamycin.
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smallest (respectively, largest) expression value of that
gene. The biclusters outlined in black correspond to AML
samples and those outlined in blue to ALL samples. This
layout visually highlights similarities and differences
between the biclusters found in samples for the same and
for different types of leukaemia. We have used such
biclusters as the basis for constructing a classifier that dis-
tinguishes between different diseases and tissues (Groth-
aus and Murali, in preparation).

5 Conclusion
The biomedical community has access to large quantities
of publicly-available gene expression datasets. Bicluster-
ing has emerged as a powerful methodology for analyzing
these datasets. In this paper, we have introduced a novel
algorithm for laying out biclusters in a two-dimensional
matrix so as to reveal the overlaps and relationships
between the biclusters. The algorithm performs efficiently
in practice. We have demonstrated the applicability of the
algorithm to three important problems in bioinformatics
using both binary and real-valued data. An easy-to-use
web interface distributed with the layout software allows
the user to query and navigate layouts that are too large to
study manually. Biclustering is useful not just for process-
ing gene expression data but for any dataset that measures
the relationships between two different types of data, e.g.,
genes and functions; microRNAs and their target mRNAs;
and genes and diseases. Thus, our algorithm has the
potential to be useful for a wide variety of bioinformatic
applications.
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