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Abstract

Background: There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour
cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by
miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in
breast cancer tissue samples with long-term follow up.

Methods: The miR-21 expression levels were quantified (qRT-PCR) in a panel of 86 cases of invasive breast
carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after
irradiation was determined comparing two cell lines (T47D and MDA-MB-361) by cell proliferation and colony
forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M
checkpoint arrest after irradiation was assessed by flow cytometric analysis.

Results: The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells
and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer
cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly
enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation.
Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous
adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant
metastases-free survival of patients (p = 0.029).

Conclusions: Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by
compromising cell cycle progression. These data point to the potential of combining radiotherapy with an
anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours.
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Background
MicroRNAs (miRNAs) are functional small nucleic acids
that regulate the stability and translational efficiency of
target messenger RNAs [1]. Altered expression of mi-
RNAs has been demonstrated in several human cancers
where miRNA 'signatures' are found to be informative
for tumour classification and clinical outcome [2,3]. Al-
though several miRNAs are upregulated in specific
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tumour types [4], a global reduction of miRNA abun-
dance is the more common trait in human cancers. This
results in considerable influence on the transformed
phenotype [5]. In human breast cancer the deregulation
of miRNA expression was first demonstrated by Iorio
et al. [6], who suggested a possible role for miRNAs as
robust biomarkers for breast cancer diagnosis and prog-
nosis. Recent studies [7] provide evidence that miRNAs
are involved in many of the cellular regulatory processes,
including activation of different signaling pathways and
induction of apoptosis [8,9].
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The heterogeneity of human cancers requires the use
of multiple therapeutic modalities, including radiation
therapy. However, the development of radioresistance
presents a problem over prolonged courses of treatment
[7,10]. Only a few studies have described the effect of ra-
diation on miRNA expression profiles [7,11,12]. There
are indications that radiation sensitivity may be manipu-
lated by influencing the expression of a single miRNA
species [11,13,14]. However, little is known of the under-
lying mechanisms. A more detailed knowledge about ra-
diation influences on miRNA expression in tumour cells
is important for improving the effectiveness and redu-
cing the side effects of radiotherapy. Overexpression of
miR-21 has been previously reported [15-17]. Patients
with high tumour miR-21 expression have a worse clin-
ical outcome than those with low tumour miR-21 ex-
pression [18]. A possible explanation was provided by a
genome wide search for miR-21 targets. This suggested
a functional link between miR-21 and the p53 tumour
suppressor pathway [17,19], where p53-induced proteins
provoke apoptosis in response to DNA damage after ir-
radiation in cancer. One possibility to improve therapeutic
strategy is the modulation of cell cycle progression. The
fact that the radiation-induced G2-phase block is a univer-
sal event in tumour cells renders the G2/M checkpoint as
target for improved efficacy of radiation therapy [20].
Most of the cancer cells have mutations in genes involved
in the G1 checkpoint such as p53, Rb, p16, MDM2 and
cyclin D1 [21,22]. Interestingly the G2 checkpoint is
usually retained in the cancer cells with impaired G1
checkpoint. Therefore if the G2 checkpoint is selectively
disrupted the cancer cells with impaired G1 checkpoint
would become more sensitive to the DNA-damaging
treatment compared with normal cells because normal
cells still retain G1 checkpoint intact [21].
In this study, we characterized expression of miR-21 in

86 invasive mammary carcinomas, supporting poor
prognostic effects with high miR-21 expression. Addition-
ally, we identify changes in miR-21 levels and cellular re-
sponse regulation after irradiation in breast cancer cells.
Furthermore, we give evidence that modulating the miR-
21 expression level would be an important milestone in ef-
ficient breast cancer radiation therapy treatment.
Methods
Growth and maintenance of cell lines
The breast cancer cell line MDA–MB–361 was cultured
in DMEM (Dulbecco Modified Eagles medium) with
20% FCS, (Invitrogen, Carlsbad, CA) and T47D was
maintained in RPMI 1640 (Roswell Park Memorial Insti-
tute medium) supplemented with 10% FCS and human
insulin (10 μg/ml). The cell cultures were maintained in
a water humidified 37°C incubator with 5% CO2.
Ionizing radiation treatment
Irradiation of cell cultures containing 1 × 106 log phase
cells was performed with a Cs-137 irradiator (HWM D-
2000, Siemens, Germany) at a dose rate of 0.95 Gy/min.
Doses of 2.5 Gy; 5.0 Gy or 7.5 Gy were administered at
room temperature and control cells were sham irradiated.
The exposed and sham irradiated cells were subsequently
incubated at 37°C and harvested after indicated time
points for RNA and protein isolation. The experiment was
repeated for each dose in triplicate.

Lentivirus production and infection of breast cancer cell
lines
Replication-defective lentiviral particles were produced
by transient co-transfection of HEK293T cells in a 10
cm petri dish with 16 μg, 8 μg and 4 μg of packaging
plasmids pMDLg/pRRE, pRSV. Rev and pMD2.G (a kind
gift from D. Trono, École polytechnique fédérale de Lau-
sanne) and 8 μg of lentiviral transduction vector
pGreenPuro (pGP; System Biosciences, California) using
Lipofectamine 2000 (Life Technologies, California)
according to the manufacturer’s instructions. The pGP
vector (named EV – empty virus in results section) was
used as the backbone for miR-21 overexpression and
miR-21 downregulation (anti-miR-21) by specific
miRNA oligo cloning (pmiRZIP-21 - Cat. Nr. MZIP21-
PA-1-GVO-SB; Biocat, Heidelberg, Germany).
The virus particles were harvested 48 hours after

transfection, cleared and concentrated as previously
described [23]. According to virus titer determination
virus productions ranged between 108 and 109 TU/ml
(TU - Transduction Units). Viral infection of breast can-
cer cells was performed using protocols previously
described [24]. Briefly, 2 × 105 cells per well were infected
with 4 × 105 TU/ml (defined as 2 MOI – multiplicity of
infection) and three days after infection GFP expression
was monitored. After infection 5 × 105 cells were irra-
diated for indicated time points. Microscopic analysis was
done 48 hours post irradiation (HBO 50/AC and Axio-
Cam MRC, Carl Zeiss AG, Germany).

RNA isolation for miRNA expression analysis
Paraffin-embedded tissue was microdissected with a
sterile needle from 5 μm thick sections using a stereo
microscope (Stemi 2000, Zeiss, Germany). A consecutive
H&E-stained section was used for guidance. Tumour cell
material (containing at least >80% tumour cells) was col-
lected from all cases. Additionally, histologically normal
ductal epithelium material was collected from five cases
as control tissue. Total RNA was isolated from microdis-
sected tissues as previously described [25]. After diges-
tion in lysis buffer and 500 μg/ml proteinase K the RNA
was purified by phenol/chloroform extraction, ethanol
precipitated, and dissolved in 20 μl RNase-free water.
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Five microlitres (100 ng) of RNA were reverse-
transcribed using MultiScribeTM reverse transcriptase
(Applied Biosystems; Foster City, CA, USA) [26]. Fur-
ther processing and evaluation of the results was per-
formed according to the manufacturer’s instructions.
Total RNA was isolated from each of the breast cancer

cell lines (MDA-MB-361 and T47D) after irradiation. Cells
were pelleted by centrifugation at 1500 rpm for 5 min, and
washed with 1 ml Dulbecco’s phosphate-buffered saline
(PBS) without MgCl2 and CaCl2 (Invitrogen, Carlsbad, CA,
USA). Small RNAs (<200 nucleotides) were isolated from
the cells using the mirVana™ miRNA isolation kit (Applied
Biosystems; Foster City, CA, USA) following the proto-
col for total RNA isolation. The quantity and quality of
the total RNA and miRNA was measured with the Nano-
drop spectrophotometer (PeqLab Biotechnology; Germany)
and by running 2% agarose gels stained with ethidium
bromide, respectively.

TaqMan-miRNA assays and data analysis
A specific single TaqMan – miRNA assay (Applied Bio-
systems, Forster City, CA, USA) was used for miR-21 ex-
pression analysis (Cat.Nr. 4427975; Assay ID 000397) in
total RNA isolations from FFPE samples and from cells
treated with irradiation. Quantitative PCR was performed
on StepOnePlus Detection System (Applied Biosystems,
Foster City, CA) according to the manufacturer’s instruc-
tions. The relative expression values of specific miRNA
were calculated by using the 2–ΔΔCT method [27] nor-
malized to the control miRNA (RNU43 and RNU44 -
Cat.Nr. 4427975; Assay ID 001094 and 001095) and to
the FFPE control or non-irradiated sample. All reactions
were performed at least twice in duplicate.

Cell Proliferation and survival
Cell proliferation and viability was determined with a col-
orimetric cell proliferation WST1 kit (Roche, Manheim,
Germany). Twenty-four hours before irradiation, 1000 to
2000 cells per well were seeded into 24-well plates. Three
days after irradiation, 200 μl fresh growth medium and
20 μl WST1 labeling reagent were added and the cells
were incubated for 2 hours in a 37°C incubator with 5%
CO2. After incubation the absorbance was determined at
450 nm with reference length at 650 nm using a spectro-
photometer plate reader (TECAN, Switzerland). For the
measurement of clonogenic survival, cells were seeded in
range of densities (500–2000 cells per plate) and 24 h
later irradiation was performed. After 10–14 days, the
colony formation capacity was assayed after ethanol fix-
ation and Giemsa staining.

Cell cycle and subG1 fraction analysis
DNA staining of isolated nuclei for cell cycle analysis
was performed using a modification of the method of
Nüsse et al., [28]. At each indicated time, the treated cells
were trypsinized and collected by centrifugation at 300 g
for 5 min, and the supernatant was carefully removed. The
cell pellet was gently resuspended in 500 μl of a solution
containing 10 mM NaCl, 4 mM Na-citrate, 10 μg/ml
RNase, 0.3% Nonidet P-40, and 50 μg/ml propidiumiodide
(PI). The cell suspensions were incubated for 60 min at
room temperature followed by the addition of 500 μl of so-
lution containing 70 mM citric acid, 250 mM sucrose and
50 μg/ml PI. The cell suspensions were mixed and stored
at 4°C before flow cytometry. Cell cycle distributions were
analyzed on a FACScan LSR II (Becton- Dickinson) (exci-
tation wavelength: 488 nm; emission wavelength: 610 nm,
LSR II, Becton Dickinson/FACS DIVA Software). Cells
with a DNA content less than that of cells in the G1 phase
of the cell cycle (<2n) were assigned to the subG1 fraction
and were considered to be apoptotic.

Patients and tumour samples
Formalin-fixed and paraffin-embedded (FFPE) archival
material, obtained from 86 patients with invasive ductal
breast carcinomas (IDC), was used for miRNA analysis.
Forty-nine tumours were lymph node negative and 57
tumours were small in size (≤2 cm). Nine of the tumours
were histological grade 1, 56 were grade 2, and 23 were
grade 3 [29,30]. The patients age ranged from 15 to 84
years (median 66 years). All patients were surgically trea-
ted, and no patient received preoperative adjuvant chemo-
therapy treatment. Postoperative 29 patients received
radiation therapy treatment and 4 patients received Noval-
dex with radiation therapy. Detailed long-term clinical
follow-up was available for all patients with a median
follow-up period of 113 months (min. 5 months, max. 468
months). Forty patients relapsed with distant metastases
within the total follow-up period. Ethical approval for the
study was obtained from the Ethics Committee of the
Medical Faculty of the Technical University of Munich.
Statistics
Correlation between histopathological markers and miRNA
expression was examined by Spearman's rank correlation
test. For univariate survival analysis Kaplan-Meier curves
were calculated from 86 patients, and differences between
strata were tested with the log-rank Chi-Square value.
Results obtained in the in vitro experiments were tested
using one- or two-way ANOVA and GraphPad Prism. In
all analysis statistical significance was considered at the p
<0.05 levels.

Results
Breast cancer cellular characterisation after irradiation
Two breast cancer cell lines (T47D and MDA-MB-361)
were analysed for their radiation sensitivity. Seventy-two
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Figure 1 Breast cancer cell survival and cell cycle characterisation after irradiation. (A) Growth characteristics of T47D and MDA-MB-361
breast cancer cells were determined by MTT (WST1) assay 72 hours after irradiation. Data represent the means ± SD (n=4). *p <0.05, **p <0.01 by
ANOVA one-way analysis of variance. (B) clonogenic survival of breast cancer cells 10 days after irradiation. (C) Cell cycle progression in breast
cancer cells was evaluated by PI staining and flow cytometry 24 hours after irradiation at the indicated doses.
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hours after 2.5 Gy and 5 Gy irradiation the cellular pro-
liferation activity was determined by MTT (WST1) assay
(Figure 1A). After 5 Gy irradiation the MDA-MB-361
cells showed greatly reduced survival (39%) in compari-
son to T47D cells (81% survival) and mock irradiated
control (settled as 100%). To confirm the increased ir-
radiation sensitivity of MDA-MB-361 cells we measured
clonogenic survival (Figure 1B). Here we observed the
expected reduced survival capacity of MDA-MB-361
cells (colony formation) 10 days after irradiation
(Figure 1B). Cell cycle distribution was monitored by
FACS analysis of DNA content 24 hours after irradiation
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Figure 2 Cell cycle time kinetics in breast cancer cells after 5 Gy irrad
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(Figure 1C). With increasing radiation doses both cell
lines displayed an accumulation of cells arresting at G2/
M, accompanied by a reduction of cells in G1. The ex-
tent of the G2/M accumulation was greater in the ra-
diation sensitive MDA-MB-361 cells, with almost 69% of
cells in G2/M phase after 5 Gy irradiation. In irradiated
T47D cells 62% of cells were in G2/M phase at the same
time point.
The time course of the G2/M phase accumulation was

monitored after 5 Gy irradiation (Figure 2A), showing
faster and more prominent G2/M accumulation for
MDA-MB-361 cells with a peak after 12 hours. These
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changes were accompanied with faster reduction in G1
phase (Figure 2B) and the appearance of a subG1 frac-
tion of apoptotic cells already 12 hours after irradiation.
In T47D cells the changes were less prominent, but
slight increase in subG1 fraction was nevertheless de-
tectable 72 hours after irradiation (Figure 2C). These
results establish the T47D cells as radioresistant and
MDA-MB-361 cells as radiosensitive cell line.

Characterization of miR-21 expression after irradiation
Increased miR-21 expression levels were detected in
both cell lines (T47D and MDA-MB-361) compared to
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control adjacent mammary tissue (Figure 3A). Interest-
ingly the resistant T47D showed fivefold higher miR-21
expression than MDA-MB-361 (Figure 4A).
In order to determine if miR-21 expression is in-

fluenced by ionizing radiation, the miR-21 levels were
measured in exponentially growing breast cancer cells
(T47D and MDA-MB-361) following 5 Gy irradiation
(Figure 3B and C). MiR-21 expression showed a pro-
minent induction 8 hours after irradiation only in the
radioresistant T47D cells. These transient changes in
miR-21 expression levels correlate with postponed
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T47D cells 72 hours after irradiation (18% compared
to 35% in the MDA-MB-361 cells on Figure 2C). This
suggests that miR-21 transient increase inhibits apop-
totic cellular response in radiation resistant T47D
cells.
Functional analysis of miR-21 overexpression and
inhibition in breast cells
To repress miR-21 expression we infected T47D and
MDA-MB-361 cells with a lentiviral anti-miR-21 vector
(anti-miR-21). An empty lentivirus (EV) was used as a
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control in parallel with a lentivirus overexpressing miR-
21. The level of mature miR-21 in infected and control
cells was measured by quantitative RT-PCR and corre-
lated to MDA-MB-361 as 1 fold expression control
(Figure 4A). In T47D cells miR-21 expression was 5.5
fold higher than in MDA-MB-361 cells. The miR-21
overexpression produced 4 fold higher levels of miR-21
when compared to untreated T47D cells and cells
infected with control virus (EV) 72 hours post infection
(dark gray boxes, Figure 4A). Consequently, miR-21 ex-
pression was decreased by anti-miR-21 lentiviral infec-
tion as compared to control cells (T47D and EV).
Nevertheless the inhibition of miR-21 expression in
T47D cells was 2.2 fold higher than miR-21 expression
levels in untreated MDA-MB-361 cells. Accordingly,
miR-21 overexpression and downregulation data were
analyzed in MDA-MB-361 cells (light gray boxes,
Figure 4A) with more prominent inhibition of miR-21
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(~ 40%) in control cells and cells overexpressing miR-21
(Additional file 1: Figure S1 (A). In the cells with miR-21
inhibition by anti-miR-21 no detectable change to the
suppressed miR-21 level was detectable after irradiation
at RNA detection levels (light gray boxes, Additional file
1: Figure S1(A) and (B). Representative micrographs of
T47D and MDA-MB-361 cells 72 hours after 5 Gy ir-
radiation in the presence of miR-21 overexpression or
inhibition are shown in Additional file 1: Figure S1 (C)
and (D). Knockdown of miR-21 leads to a decrease in
adherent cells and a concomitant increase in detached
cells (presumed to be non-viable cells).
Cell proliferation was measured by MTT (WST1)

assay 72 hours after 2.5 Gy and 5 Gy irradiation in
T47D (Figure 4B) and MDA-MB-361 cells (Figure 4C).
The changes after irradiation in miR-21 overexpression
T47D cells were comparable to the changes in control
cells or cells infected with control virus (EV), showing
slightly increased proliferation rate after miR-21 overex-
pression and irradiation. Downregulation of miR-21 ex-
pression dramatically reduces cellular proliferation and
this effect was more pronounced after irradiation
(Figure 4B and C, light gray boxes). Anti-miR-21 in-
fluenced cellular proliferation with additional decrease
in proliferation after 5Gy irradiation in MDA-MB-361
cells (6%). With anti-miR-21 treatment and 5Gy irra-
diation proliferation rate in T47D cells was 17% what
correlates with 2.2 fold miR-21 expression levels in
T47D cells compared to MDA-MB-361 cells after miR-
21 knockdown (Figure 4A).

MiR-21 knockdown results in loss of radiation-induced
G2/M arrest
Previously, it has been shown that miR-21 affects cell
cycle progression, cellular proliferation and migration in
human breast cancer cells [31]. In agreement with these
results we observed that miR-21 knockdown reduces the
number of cells in the G2 phase from 36.6% in control
cells to 22.9% in anti-miR-21 T47D lentivirus infected
cells (Figure 5A). This modest reduction became more
prominent after irradiation in both cell lines analyzed
(Figure 5A and Additional file 2: Figure S2). In T47D
cells the G2/M fraction 24 hours after irradiation fell
from 64% in control cells to 18.6% (Figure 5A). Interest-
ingly, the G2/M radiation checkpoint abrogation due to
miR-21 knockdown (anti-miR-21) is persistent (6.9%) 72
hours after irradiation (Additional file 3: Figure S3 (A).
A significant increase in subG1 cellular apoptotic frac-
tion from 6.9% (8.9% in Figure 1C) to 27.4% (24 hours
after) and to 49.3% (72 hours) after 5Gy irradiation is
detected (Figure 5A and Additional file 3: Figure 3A). In-
crease in subG1 fraction was significantly enhanced in
T47D cells and comparable to radiosensitive cellular re-
sponse of MDA-MB-361 cells (Figure 5C). These data
confirm that both radiation sensitive and radiation resist-
ant cancer cell line show a prominent increase in subG1
cellular fraction after miR-21 knockdown combined with
irradiation and further point importance of synergistic
effects of miR-21 inhibition with radiotherapy.

MiR-21 expression and prognosis in breast cancer
The expression of miR-21 in breast tumours was deter-
mined in 86 cases of invasive breast carcinomas with
long-term follow-up [30]. In comparison to normal adja-
cent tissue samples, the breast cancers showed increased
expression of miR-21 (median 1.4 fold). Higher levels of
miR-21 expression significantly correlated with lower
distant metastases-free survival of patients (p = 0.029)
(Figure 6A). From 86 cases 33 received postoperative ra-
diation treatment, whereas 25 from 59 patients with high
miR-21 expression and eight from 27 patients with low
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miR-21 expression were treated with radiation therapy
(Figure 6B). A trend towards better prognosis and
increased survival in patients with low miR-21 expression
receiving radiation therapy was evident, but will require
validation with a much larger patient collective.

Discussion
Upregulation of miR-21 is a frequent miRNA alteration
described in human cancers [32]. The consequences of
overexpression of miR-21 is that it acts as an “oncomir”
blocking apoptosis [33], promoting cell proliferation
[18,34] and causing invasion and metastasis [35,36]. It
appears that miR-21 targets multiple tumour-supressive
pathways [31] and recent studies showed convincing evi-
dence that miR-21 negatively regulates Cdc25A and cell
cycle progression in colon cancer [37] and in human
glioblastoma cells [38]. According to miR-21 target ana-
lysis, Lu et al., demonstrated that miR-21 promotes cell
transformation by targeting the programmed cell death
4 gene (PDCD4) in MCF7 breast cancer cells [39]. There
is some evidence that miRNAs are also involved in
modulating radiation sensitivity in lymphoblastic cell
lines [7], endothelial cells [14] and for resistance to cyto-
toxic anticancer therapy in lung cancer cells [11]. Data
published recently from Gwak et al., [40] demonstrate
the importance of miR-21 knockdown in radiosensita-
tion of glioblastomas. In correlation with our results
they present importance of high miR-21 expression
levels in conferring radiation resistance in glioblastomas.
The roles of miR-21 expression in modulating response
of breast tumour cells to irradiation have not been pre-
viously analyzed.
Therefore, we have investigated miR-21 expression in

radiation resistant and radiation sensitive breast cancer
cells after exposure to γ-irradiation. We observed that
the expression of miR-21 was not significantly changed
after 5 Gy exposure of the radiosensitive MDA-MB-361
cells, but was transiently increased in radiation resistant
T47D cells. This data support hypothesis that miR-21 is
not merely upregulated in association with oncogenesis,
but rather can act as radioresistant miRNA when transi-
ently overexpressed after radiation treatment [36].
The G2/M checkpoint arrest is prominent after expos-

ure to DNA damage reagents such as γ-irradiation
[21,41]. Our cell cycle data analysis showed that the
anti-apoptotic action of miR-21 is also evident after ra-
diation exposure and correlates with radiation resistance.
In addition, miR-21 influence cell cycle progression via
the DNA damage-G2 checkpoint induction. In this mat-
ter miR-21 inhibition (anti-miR-21) is able to reduce the
G2/M block and to enhance apoptosis induction 24
hours after radiation treatment (Figure 5A). All together
these data suggest the importance of combination the-
rapy such as radiotherapy with efficient G2/M check
point inhibitor anti-miR-21. Supporting our results in
the manuscript of Li et al. [38], it is presented that miR-
21 inhibitor reduces G2/M arrest what is inconsistent
with recently published data from Gwak et al., [40]
showing G2/M induction after miR-21 knockdown in
glioblastoma cells. This highlights the importance of G2/
M arrest after radiation treatment to be studied in differ-
ent tumour cell types to further support a general con-
clusion about miR-21 function in radioresitance.
The data presented in Figure 6 confirm previously

published data from Yan et al. [18], demonstrating
increased expression of miR-21 in breast cancer. We
identify that patients with low expression levels of miR-
21 have better clinical outcome. Previously it has been
reported that high levels of miR-21 expression correlate
with advanced clinical stage, lymph node metastasis and
shortened survival of the patients [18,42]. This is con-
firmed by the association we observe between low miR-
21 expression and distant metastasis free survival. The
role of miR-21 in shaping the response to radiotherapy
is suggested by the increased clinical survival seen for
low miR-21 patient group after radiation therapy.

Conclusions
Taken together, our results show that miR-21 expression
transiently increases in response to irradiation treatment
in the T47D radiation resistant cell line. Furthermore,
the miR-21 knockdown improved radiation induced
apoptosis and growth arrest in radiation resistant cells
almost to the same extent as in sensitive breast cancer
cells (MDA-MB-361). These findings are important con-
cerning the better clinical outcome for patients with low
miR-21 expression levels and the use of miR-21 as po-
tential target in breast cancer therapy.

Additional files

Additional file 1: Figure S1. qRT-PCR quantification of miR-21
overexpression and downregulation 24 hours after irradiation. (A) T47D
and (B) MDA-MB-361 cells were infected with empty lentivirus (+ EV),
with miR-21 overexpressing LV (+ miR-21) or inhibitory miR-21 LV (+ anti-
mir-21) and analysed for miRNA expression changes in control cells (dark
gray boxes), or after 2.5 Gy (gray boxes) and 5 Gy (light gray boxes) 24
hours after irradiation. Data represent the means ± SD (n=3). *p <0.05, **
p <0.01 by ANOVA. (C) Representative micrographs (scale bar = 50 μm)
of T47D cells and (D) MDA-MB-361 cells 72 hours after 5 Gy irradiation
with miR-21 overexpression (+ miR-21) or inhibition (+ anti-miR-21).

Additional file 2: Figure S2. miR-21 downregulation induces
considerable cellular apoptosis 24 hours after irradiation in MDA-MB-361
cells. MDA-MB-361 cells were infected with empty lentivirus (+ EV), with
miR-21 overexpressing LV (+ miR-21) or inhibitory miR-21 LV (+ anti-miR-
21) and analysed for cell cycle changes 24 hours after 5 Gy irradiation.
One representative FACS analysis is shown from three independent
experiments.

Additional file 3: Figure S3. miR-21 downregulation induces
considerable cellular apoptosis 72 hours after irradiation in T47D cells. (A)
T47D cells were infected with empty lentivirus (+ EV), with miR-21
overexpressing LV (+ miR-21) or inhibitory miR-21 LV (+ anti-mir-21) and

http://www.biomedcentral.com/content/supplementary/1748-717X-7-206-S1.pdf
http://www.biomedcentral.com/content/supplementary/1748-717X-7-206-S2.pdf
http://www.biomedcentral.com/content/supplementary/1748-717X-7-206-S3.pdf


Anastasov et al. Radiation Oncology 2012, 7:206 Page 11 of 12
http://www.ro-journal.com/content/7/1/206
analysed for cell cycle changes 72 hours after 5 Gy irradiation. One
representative FACS analysis is shown. (B) Statistical analysis of subG1
cellular fraction in T47D infected cells (control cells - light gray boxes) or
after 5 Gy irradiation (dark gray boxes). Data represent the means ± SD
(n=3). *p <0.05 by ANOVA.
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