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Abstract

Background: For many decades, the standard of care radiotherapy regimen for medulloblastoma has been photon
(megavoltage x-rays) craniospinal irradiation (CSI). The late effects associated with CSI are well-documented in the
literature and are in-part attributed to unwanted dose to healthy tissue. Recently, there is growing interest in using
proton therapy for CSI in pediatric and adolescent patients to reduce this undesirable dose. Previous comparisons
of dose to target and non-target organs from conventional photon CSI and passively scattered proton CSI have
been limited to small populations (n≤ 3) and have not considered the use of age-dependent target volumes in
proton CSI.

Methods: Standard of care treatment plans were developed for both photon and proton CSI for 18 patients. This
cohort included both male and female medulloblastoma patients whose ages, heights, and weights spanned a
clinically relevant and representative spectrum (age 2–16, BMI 16.4–37.9 kg/m2). Differences in plans were evaluated
using Wilcoxon signed rank tests for various dosimetric parameters for the target volumes and normal tissue.

Results: Proton CSI improved normal tissue sparing while also providing more homogeneous target coverage than
photon CSI for patients across a wide age and BMI spectrum. Of the 24 parameters (V5, V10, V15, and V20 in the
esophagus, heart, liver, thyroid, kidneys, and lungs) Wilcoxon signed rank test results indicated 20 were significantly
higher for photon CSI compared to proton CSI (p≤ 0.05) . Specifically, V15 and V20 in all six organs and V5, V10 in the
esophagus, heart, liver, and thyroid were significantly higher with photon CSI.

Conclusions: Our patient cohort is the largest, to date, in which CSI with proton and photon therapies have been
compared. This work adds to the body of literature that proton CSI reduces dose to normal tissue compared to
photon CSI for pediatric patients who are at substantial risk for developing radiogenic late effects. Although the
present study focused on medulloblastoma, our findings are generally applicable to other tumors that are treated
with CSI.
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Table 1 Patient characteristics

Index Age Sex Height (cm) Weight (kg) BMI (kg/m2)

1 2 female 85.0 11.9 16.5

2 4 female 111.7 20.5 16.4

3 6 female 115.2 26.9 20.3

4 8 female 142.0 37.5 18.6

5 10 female 130.6 24.2 14.2

6 2 male 109.2 18.9 15.8

7 4 male 128.0 31.3 19.1

8 6 male 144.8 24.9 11.9

9 8 male 123.4 20.3 13.3

10 10 male 133.0 28.2 15.9

11 12 female 146.0 28.9 13.6

12 13 female ————data not available--——

13 16 female 162.0 62.0 23.6

14 12 male 166.3 66.5 24.0

15 13 male 173.0 57.5 19.2

16 14 male 162.5 58.6 22.2

17 15 male 172.1 73.3 24.7

18 16 male 191.0 138.2 37.9
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Background
Medulloblastoma is the most common malignant child-
hood brain tumor. In recent decades, the 5-year survival
rate for this cancer has improved from 60% to between
80% and 85% for average-risk patients and from 35% to
between 60% and 70% for high-risk patients [1-3]. The
primary tumor normally originates in midline cerebellar
structures with infiltration of surrounding posterior
fossa and may disseminate throughout the neuroaxis via
cerebrospinal fluid (CSF) pathways [4-6]. Treatment for
medulloblastoma thus often includes chemotherapy and
craniospinal irradiation (CSI) [7-9], including a boost to
the posterior fossa or the surgical bed with a margin.
Because of the high survival rate, the fact that patients

require radiotherapy, and the fact that children and ado-
lescents are more likely to develop radiation-related late
effects than adults, late (>5 years after treatment) effects
from radiation are a major concern for medulloblastoma
patients [10-13]. The late effects associated with CSI are
well-documented and may include (but are not limited
to) impaired growth [14], endocrine abnormalities [15-
17], hearing loss [17,18], diminished fertility [17], neuro-
psychological dysfunction [17,19], cardiac diseases
[17,20-24], and second cancers [17,22-28]. For many
decades, the standard of care radiotherapy regimen for
CSI has been photon (megavoltave x-rays) therapy that
included opposed lateral cranial fields and either single
or multiple posterior spinal fields [29]. Late effects are,
in part, a consequence of dose from the CSI treatment
fields to various non-target organs. Compared to
photons, protons have substantially lower entrance dose
and almost no exit dose and thus can significantly re-
duce the dose to all organs situated outside the cra-
niospinal axis which are irradiated unnecessarily.
Consequently, there is growing interest in using proton
therapy for CSI in pediatric and adolescent patients.
Passively scattered proton CSI has been shown to im-

prove dose uniformity along the spinal canal and de-
crease dose to non-target organs compared with photon
CSI [30-33]. However, each of these studies was limited
to a very small number of patients—there were a total of
7 patients, 6 of whom were under the age of 5, in all the
studies combined—limiting the results’ applicability and
understanding of dosimetric differences across a wide
spectrum of patient ages and body sizes. Finally, none of
these reports addressed the differences in target volumes
used in planning proton and photon CSI, e.g., the age-
specific target volumes used in proton CSI. Thus, we
sought to carry out a detailed comparison of the current
treatment standards for photon and proton CSI for a
population of both male and female medulloblastoma
patients whose ages, heights, and weights spanned a
clinically relevant and representative spectrum (age 2–
16, BMI 16.4–37.9 kg/m2) with a focus on the
differences and variations in target volume definition
and dose delivered between photon and proton therapy.

Methods
Study patients
This study was carried out under a protocol for retro-
spective treatment planning studies approved by our in-
stitution (University of Texas at M.D. Anderson Cancer
Center, UTMDACC). We compared therapeutic dose
distributions for photon and proton CSI for a group of
18 consecutive patients (8 girls and 10 boys). The inclu-
sion criteria were that the patients be between 2 and
18 years old at the time of treatment and were treated
with proton CSI at our institution between 2007 and
2009. The patients in this study had a mean age of
9.5 years (range, 2–16 years). Patient age, sex, height,
weight and BMI are listed in Table 1.
Patients underwent computed tomography (CT) simu-

lation while in the supine position with their heads
immobilized using an Aquaplast face mask (WFR/Aqua-
plast Corp. and Qfix Systems, LLC, Avondale, PA) and a
plastic head holder to reduce kyphotic neck curvature.
The CT images were acquired on a multi-slice CT scan-
ner (General Electric (GE) LightSpeed RT16, GE Health-
care, Waukesha, WI) and had a 2.5-mm slice thickness.
Both photon and proton treatment planning were car-

ried out according to the standards of care at our insti-
tution (UTMDACC). We streamlined plan comparisons
by using the same commercial treatment planning sys-
tem (TPS) for both modalities (Eclipse version 8.9,



Figure 1 Age-specific target volumes for proton treatment planning
(red contour) and CTVs (blue color wash) in proton and photon
treatment planning for representative patients. (a) Volumes for a
4-year-old patient and (b) volumes for a 15-year-old patient.
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Varian Medical Systems, Palo Alto, CA). All treatment
plans were calculated using a 2.5-mm calculation grid
with heterogeneity corrections. Dose distributions in the
photon and proton plans were respectively calculated
using anisotropic analytical and pencil beam algorithms.
The proton calculation algorithm was previously vali-
dated using the methodology described by Newhauser
et al. [34] and the photon algorithm was commissioned
following methodologies described in the literature
[35,36]. The beam arrangements for the photon and pro-
ton treatment plans were similar. Both included two
opposed lateral oblique cranial fields, which were angled
so that they avoided ocular structures, and postero-
anterior spinal field(s). The proton plans used one to
three spinal fields while the photon plans used either
one or two spinal fields to cover the entire length of the
spinal canal through the inferior extent of the thecal sac,
typically at the level of the S2/S3 vertebral junction. The
spinal fields were matched at the posterior edge of the
vertebral canal (not on the vertebral body).
The total prescribed dose was 23.4 Gy relative bio-

logical effectiveness (RBE) (i.e., 21.3 Gy × 1.1 to reflect
the biological effectiveness of protons relative to
photons) and 23.4 Gy for the proton and photon CSI
treatment plans, respectively. Hereafter, dose units will
be simply be referred to as Gy and Gy or Gy-RBE for
photons and protons, respectively. The use of the gen-
eric RBE factor of 1.1 is in accordance with the recom-
mendations on dose prescription and reporting in
International Commission on Radiation units and Mea-
surements (ICRU) Report 78 [37] and consistent with
the clinical practice at our institution. However, it noted
that the recommended RBE value has never been mea-
sured in humans who received proton therapy [37]. The
prescription dose of 23.4 Gy was selected for this study
because it the most commonly used dose for moderate
risk patients and is the dose used at our institution for
such patients. However, for high risk patients the CSI
dose can be as high as 36 to 39.6 Gy and but may also
be as low as 18 Gy, which is currently being evaluated
by some institutions. The fractionation schedule was
1.8 Gy per fraction for 13 fractions with 2 junction shifts
(initial and 2 shifted positions), which is a common dose
and fractionation pattern for patients with average-risk
medulloblastoma. The clinical target volume (CTV) for
both the photon and proton treatment plans included
the entire CSF space (the brain and spinal canal through
the cauda equina to the level of the S2/S3 vertebral junc-
tion (Figure 1). Additionally for patients under the age
of 15 years there was an additional target volume which
was also treated to the full prescription dose (discussed
below in the section on proton therapy planning). All
treatment plans were reviewed by a board certified med-
ical physicist (R. Howell) and reviewed and approved by
a board-certified radiation oncologist who specializes in
pediatric radiotherapy (A. Mahajan).
Proton therapy treatment planning
In this study (and in accordance with clinical practice at
our institution), we used age specific target volumes for
proton CSI treatment planning. For all proton CSI
patients, the CTV included the entire CSF space (the
brain and spinal canal through the cauda equina to the
level of the S2/S3 vertebral junction (Figure 1) and was
equivalent to the photon CTV. Additionally, for patients
under the age of 15 years there was an additional normal
tissue target volume (NTTV), which included the entire
vertebral bodies. The rationale for this was to avoid sharp
dose gradients in the vertebral bodies in patients whose
skeletons were still maturing. More specifically, proton
treatments that are designed to irradiate only the spinal
canal have high dose gradients distal to the spinal canal
and lead to non-uniform irradiation of the vertebral bod-
ies. Uniformly irradiating a larger target volume that fully
encompasses the vertebral bodies is thought to reduce
the risk of asymmetric growth of the vertebral body in
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patients whose skeletons are still maturing [33,38] i.e.,
those under the age of 15 years.
Adequate uncertainty margins are especially important

in proton therapy because proton fields are especially
sensitive to patient positioning due to several factors in-
cluding: 1) proton fields have a sharp distal fall-off, but
the location of that fall-off is dependent on the beam
range which is determined by the composition of tissues
in the beam path; thus, lateral or superior/inferior shifts
in patient position, relative to the field’s isocenter, can
change the location of the distal field edge relative to
specific organs of interest and 2) proton fields are
shaped by field specific apertures and tissue compensa-
tors, so lateral or superior/inferior shifts in patient pos-
ition, relative to the field’s isocenter, can shift patient
anatomy from its optimal alignment to these devices. To
ensure the proton treatment fields had appropriate un-
certainty margins we used the methodology of the ICRU
Report 78 [37]. As a result, field parameters were deter-
mined using the CTV, rather than the PTV, and the bur-
den of applying the parameters was placed on the
computer algorithm. That is, values for compensator
smear, lateral, proximal, and distal margins were manu-
ally calculated for each beam using a methodology simi-
lar to that used in our previous studies [39,40] and
following the methods originally outlined by Urie et al.
[41] and Moyers and Miller [42] and Moyers et al. [43].
Once calculated those values were entered into the TPS
as planning parameters. Then, the TPS selected the cor-
responding machine parameters (beam energy, range
modulation, and range shifter settings), designed the
compensator, and sized the apertures. For patients older
than 15, these uncertainty margins were designed to en-
sure coverage of the CTV. Similarly, for patients
younger than 15 the uncertainty margins were designs
such that the CTV as well as the entire vertebral bodies
(NTTV) received the full prescription dose.
Beam energies for the proton plans were patient and

field specific and included energies of 140 MeV,
160 MeV, 180 MeV, 200 MeV, and 225 MeV. The mean
cranial and spinal field energies were 198 MeV
(SD= 12 MeV) and 163 MeV (SD= 17 MeV) for the cra-
nial and spinal fields, respectively. The mean range was
17 cm (SD= 1 cm) and 11 cm (SD= 2 cm) for the cranial
and spinal fields, respectively. The mean Spread out
Bragg peak was 16 cm (SD=1 cm) and 5 cm (SD= 1 cm)
for the cranial and spinal fields, respectively. A more
comprehensive and detailed description of the proton
CSI treatment planning technique used in this study is
reported in the literature by Giebeler et al. (in review).

Photon treatment planning
The photon CSI plans were calculated using a beam en-
ergy of 6 MV. After the cranial and spinal field
geometries [29,44] were defined, multiple lower-
weighted reduction fields within the primary cranial and
spinal fields were added to minimize dosimetric hetero-
geneities (reduce hot spots in thinner regions of the
anatomy and cold spots in thicker regions of the anat-
omy). The reduction fields contained blocked segments
strategically placed to reduce the highest dose areas to
force greater homogeneity and conformity in the target
volume. This planning technique is commonly referred
to as intensity-modulated field-in-field planning and was
described in detail by Yom et al. [45]. Photon treatment
plans were normalized so that the 100% isodose line
covered the CTV and allowed for setup-up uncertainty.

Comparison of photon and proton treatment plans
We compared three dosimetric parameters for the CTV:
the maximum dose (Dmax), the conformity index (CI),
and the heterogeneity index (HI). The CI is defined as

CI ¼ VRx

VEV
ð1Þ

where VRx is the volume receiving the prescribed dose
and the VEV the total CTV and HI is defines as

HI ¼ D5%

D95%
ð2Þ

where D5% is the dose delivered to the hottest 5% of the
CTV and D95% is the minimum dose received by 95% of
the CTV.
The HI was used to quantify dosimetric homogeneity

within the CTV. A lower HI indicated a more uniform
dose distribution. The CI was used to quantify how well
the prescribed dose conformed to the CTV. A lower CI
indicated a more conformal dose distribution.
In addition to the CTV, we contoured the following

normal tissues so we could compare photon and proton
doses in organs that were within or near the treatment
fields: spinal cord, optic chiasm, cochlea, brainstem,
esophagus, heart, kidneys, liver, lungs, and thyroid. A
dose volume histogram (DVH) was calculated for each
of these structures. Then, we quantitatively compared
the photon and proton DVH data for each structure by
comparing the mean percent volume (V) receiving vari-
ous specified dose levels in units of gray (Gy). V23.4 and
V25 were compared for the CTV and organs that were
entirely within the treatment fields. V5, V10, V15, V20,
and V23.4 were compared for partially in-field and out-
of-field organs.

Statistical methods
Statistical analyses were performed to compare the vari-
ous dosimetric parameters for the CTV and the normal
organs. We used the Wilcoxon signed rank test with a



Howell et al. Radiation Oncology 2012, 7:116 Page 5 of 12
http://www.ro-journal.com/content/7/1/116
null hypothesis that the differences between the various
dosimetric parameters for photon and proton therapy
come from a continuous, symmetric distribution with
zero median. For the CTV and organs entirely within
the CTV (optic chiasm, cochleas, brainstem, spinal
cord), we used a two-tailed Wilcoxon signed rank test to
compare these values. The alternative hypothesis for this
two-tailed test was that the differences between the vari-
ous dosimetric parameters for photon and proton ther-
apy come from a continuous, symmetric distribution
with a positive or negative median. For partially in-field
and out-of-field organs (esophagus, heart, kidneys, liver,
lungs, and thyroid), we used a one-tailed Wilcoxon
signed rank test. The alternative hypothesis for this one-
tailed test was that the differences between the various
dosimetric parameters for photon and proton therapy
come from a continuous distribution with a median
greater than zero. Differences that were found to be
Figure 2 Photon and proton treatment plans for a representative pat
(a) Proton dose distribution in the sagittal plane. (b) Photon dose distributi
the cervical spine to the sacral spine in 5-cm increments. (d) Photon dose
sacral spine in 5-cm increments. (e) Isodose scale for both photon and pro
significant at P ≤ 0.05 were then evaluated for signifi-
cance at P ≤ 0.01. The sequential Bonferroni-type pro-
cedure, as described by Benjamini and Hochberg [46],
was then used to test for false positives in the independ-
ent Wilcoxon sign ranked tests.

Results
Isodose distributions (Figure 2) and DVHs (Figure 3) for
the photon and proton treatment plans for a representa-
tive patient under the age of 15 are shown (index 2). In
Figure 2, the 100% isodose line indicates the intended
treatment region. Qualitatively, several observations can
be made: (1) the prescribed dose covers all the vertebral
bodies in the proton plan but covers only the spinal
canal in the photon plan; (2) the proton dose rapidly
decreases beyond the target volume, whereas the photon
dose gradually decreases; and (3) the normal organs and
tissues in close proximity to the treatment volume
ient under the age of 15 (this patient was 4 years old, index 2).
on in sagittal plane. (c) Proton dose distribution in axial planes from
distribution shown in for axial planes from the cervical spine to the
ton treatment plans.



Figure 3 Photon and proton dose volume histograms (DVHs) for a representative patient (age 4, index 2) under the age of 15. Proton and
photon DVHs are indicated by dashed and solid lines, respectively. The absolute dose values shown on the horizontal axis of 250, 500, 750, 1000,
1250, 1500, 1750, 2000, 2250, and 2750 cGy correspond to percent dose values of 11, 21, 32, 43, 53, 64, 75, 85, 96, 107, and 118%, respectively.
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receive substantially lower doses from the proton plan
than from the photon plan. Isodose distributions
(Figure 4) and DVHs (Figure 5) for photon and proton
treatment plans for a representative patient over the age
of 15 (index 13) are also shown. As in the younger pa-
tient, the photon target volume in this patient included
the craniospinal canal. However, because this patient was
older than 15, the proton target volume was the same as
the photon target volume. The qualitative observations
for this older patient were similar to those for the
younger patient, except that the normal tissue sparing in
the proton plan was even greater for this patient because
the sharp dose fall-off began at the anterior end of the
spinal canal rather than at the anterior end of the verte-
bral bodies. The dose distributions and DVHs for these
two representative patients (ages 4 and 16) highlight the
differences in photon and proton dose distributions that
result from age-specific treatment volumes.
When comparing the dose distributions in Figures 2

and 4, there is another another age/size effect due to the
number of fields required to cover the spinal canal. For
the younger patient (Figure 2), the proton and photon
treatments could both be delivered using a single spinal
field. For the older patient (Figure 4), 3 proton fields and
2 photon fields were required to cover the spinal canal.
For both the older and younger patients, the proton dose
distributions were homogeneous along the spine, regard-
less of the number of spinal fields required to treat the
spinal canal, whereas the photon dose distribution had
hot and cold spots on either side of the spine field junc-
tions when more than 1 spinal field was required (as in
Figure 4). While the dosimetric impact of field junctions
in CSI was previously known to clinicians, this study
highlights the difference in field junction dosimetry be-
tween photon and proton CSI.
Quantitative dose-volume results are summarized in

Tables 2, 3, and 4 for the photon and proton treatment
plans. In the next three subsections, we detail the results
from our analysis of the modalities’ coverage of the CTV,
sparing of in-field organs, sparing of partially in-field
organs, and sparing of out-of-field organs. As mentioned
in the methods, that while we chose to use a prescribed
dose of 23.4 Gy in this study, prescribed doses as low as
18 Gy and as high at 39 Gy have been used for CSI.
Therefore, percent dose is given in parenthesis next to
each parameter that is reported in Gy so that our data
can be easily translated to any prescription dose. Simi-
larly, percent doses are given in the table captions for
each table where absolute doses are reported.

CTV coverage
No significant difference was observed between the
photon and proton plans in the mean values of the
V23.4(100%) for the CTV (Table 2). For both modalities,
the mean V23.4(100%) value was greater than 99%. Simi-
larly, no significant difference in the CI was observed



Figure 4 Photon and proton treatment plans for a representative patient over the age of 15 (this patient was 16 years old, index 13).
(a) Proton dose distribution in the sagittal plane. (b) Photon dose distribution in the sagittal plane. (c) Proton dose distribution in axial planes
from the cervical spine to the sacral spine in 5-cm increments. (d) Photon dose distribution in axial planes from the cervical spine to the sacral
spine in 5-cm increments. (e) Isodose scale for both photon and proton treatment plans.
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between photon and proton treatment plans, which
was greater than 0.99 for both modalities, indicating
that the dose distribution conformed well to the CTV
(Table 3). In contrast, statistically significant differences
were observed in the Dmax, V25(107%), and HI values
(Tables 2 and 3). Both the mean Dmax (P = 1.60E-05)
and mean V25(107%) values (P =1.04E-03) were greater
for the photon plans, indicating higher maximum
doses and higher doses to a larger percentage of the
volume. The mean HI was greater for the photon
plans than the proton plans (P = 4.87E-04), indicating
that the photon dose distributions were more
heterogeneous than the proton dose distributions. In
summary, the photon and proton treatment plans both
provided very good coverage and conformed well to
the craniospinal axis, but in general, the photon plans
were (approximately 8%) hotter than the proton plans.

Tissue sparing of in-field organs
The cochleae, brainstem, spinal cord, and optic chiasm
were entirely within the 100% isodose region in the pho-
ton and proton plans for all patients. We observed no
significant difference between the mean V23.4(100%) values
from the photon and proton plans value for the



Figure 5 Photon and proton dose volume histograms for a representative patient (age 16, index 13) over the age of 15. Proton and
photon DVHs are indicated by dashed and solid lines, respectively. The absolute dose values shown on the horizontal axis of 250, 500, 750, 1000,
1250, 1500, 1750, 2000, 2250, and 2750 cGy correspond to percent dose values of 11, 21, 32, 43, 53, 64, 75, 85, 96, 107, and 118%, respectively.

Table 2 Dose volume histogram (DVH) analysis for
photon and proton craniospinal irradiation (n= 18)

Structure,
DVH dose
level (Gy)

Photons Protons P value,
Wilcoxian
Signed

Rank test

Significance
level

(P≤ 0.05)
Mean SD Mean SD

CTV

23.4 99.36 1.04 99.23 0.88 5.42E-01 NS

25 12.01 9.87 1.72 4.01 8.63E-04 <0.01

Spinal cord

23.4 99.16 0.85 98.91 1.46 9.83E-01 NS

25 59.02 9.15 4.64 7.52 1.96E-04 <0.01

Optic chiasm

23.4 100.00 0.00 100.00 0.00 n/a N/A

25 3.48 4.29 3.26 3.36 5.69E-01 NS

Cochlea

23.4 99.96 0.16 99.00 3.09 1.56E-02 < 0.05

25 2.08 2.96 4.26 6.95 6.36E-01 NS

Brain stem

23.4 98.51 3.20 98.96 1.76 8.39E-01 NS

25 0.68 1.39 1.70 7.61 3.12E-02 < 0.05

Note: The table provides mean V23.4 and V25 and standard deviation (SD)
values for the CTV and in-field organs for proton and photon therapy.
Statistical results from Wilcoxon signed rank test (i.e., two-tailed P-value for
Wilcoxon signed rank test) are also listed.
For this study 23.4 and 25 Gy is equivalent to 100% and 106.8% of the
prescribed dose, respectively.
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brainstem and spinal cord. For the cochleae, there
was a significant difference (P = 1.56E-2) in the mean
V23.4(100%) values, with the mean photon plan value
being approximately 1% greater than for the mean
proton plan value (99.96 ± 0.16% for photons versus
99.00%± 3.09% for protons, P = 5.57E-14, Table 2). No
significant difference between the mean V25(106.8%) values
from the photon and proton plans value for the optic
chiasm and spinal cord. In addition, for brainstem the
mean V25(106.8%) value was lower in the photon plans
than in the proton plans (P = 3.12E-02) but the mean
values for both treatment techniques were less than 2%
(0.68 ± 1.39% for photons versus 1.70%± 7.61% for pro-
tons, P = 5.57E-14, Table 2). In contrast, for the spinal
cord the mean V25(106.8%) value was much higher in the
photon plans than in the proton plans (59.0%± 9.2% for
Table 3 Comparison of parameters to evaluate dose
variation with in the target for photon and proton
craniospinal irradiation (n =18)

CTV
dosimetric
parameters

Photons Protons P value,
Wilcoxian
Signed

Rank test

Significance
levelMean SD Mean SD

CI 0.99 0.01 0.99 0.009 5.28E-01 NS

HI 1.05 0.009 1.04 0.012 2.47E-03 <0.01

Dmax 28.13 15.21 26.05 7.868 1.96E-04 <0.01



Table 4 Dose volume histogram (DVH) analysis for photon and proton craniospinal irradiation (n =18)

Structure,
DVH dose
level (Gy)

Photons Protons P value,
Wilcoxian
Signed

Rank test

Significance
level

Sequential
BonferroniMean SD Mean SD

Esophagus

20 65.87 23.54 3.89 7.68 9.82E-05 <0.01 †

15 96.68 5.12 8.73 12.53 9.80E-05 <0.01 †

10 98.09 3.26 14.76 16.59 9.75E-05 <0.01 †

5 99.61 0.98 24.67 21.28 9.80E-05 <0.01 †

Heart

20 2.80 4.58 0.03 0.08 2.51E-04 <0.01 †

15 42.49 16.98 0.15 0.23 9.82E-05 <0.01 †

10 56.77 11.12 0.53 0.62 9.82E-05 <0.01 †

5 60.68 11.30 1.31 1.28 9.82E-05 <0.01 †

Kidneys

20 2.03 1.91 0.60 0.82 3.15E-03 <0.01 †

15 4.11 2.81 2.49 2.34 1.07E-03 <0.01 †

10 5.92 3.68 5.53 4.70 2.50E-01 NS —

5 8.89 4.95 10.58 7.95 6.24E-01 NS —

Liver

20 3.09 3.17 0.08 0.15 9.82E-05 <0.01 †

15 14.69 4.22 0.27 0.30 9.82E-05 <0.01 †

10 22.55 1.99 0.61 1.05 9.82E-05 <0.01 †

5 24.78 3.95 1.10 0.75 9.82E-05 <0.01 †

Lungs

20 3.07 2.14 2.27 1.92 3.54E-02 < 0.05 *

15 6.03 2.92 4.87 3.24 6.14E-03 < 0.01 †

10 8.35 3.52 7.66 4.32 7.23E-02 NS —

5 11.69 4.51 11.31 5.52 1.53E-01 NS —

Thyroid

20 11.91 21.19 0.00 0.00 6.10E-05 <0.01 †

15 66.16 30.19 0.00 0.00 9.80E-05 <0.01 †

10 80.97 21.53 0.00 0.00 9.48E-05 <0.01 †

5 92.50 10.68 0.51 0.76 9.65E-05 <0.01 †

Note: The table lists mean V20, V15, V10, and V5 and standard deviation (SD) values for the esophagus, heart, kidneys, liver, lungs, and thyroid. Statistical results
from the Wilcoxon signed rank test (i.e., p-value for 1-tailed Wilcoxon signed rank test) are listed. Results from the sequential Bonferroni procedure are also
included; † and * indicate differences were significant at the 0.01 and 0.05 levels, respectively.
For this study 5, 10, 15, and 20 Gy are equivalent to 21.4%, 42.7%, 64.1%, and 85.5% of the prescribed dose, respectively.
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photons versus 4.6% ± 7.5% for protons, P = 5.57E-14,
Table 2). The spinal cord was part of the CTV and these
data parallel those that were observed for the CTV, i.e.,
photon plans resulted in more heterogeneous dose distri-
butions and had larger hot spots than the proton plans.

Tissue sparing of partially in-field organs and out-of-field
organs
In summary, we evaluated 24 individual dosimetric para-
meters (V5(21.4%), V10(42.7%), V15(64.1%), and V20(85.5%)) for
six partially in-field and out-of-field organs). The Wil-
coxon sign ranked test results indicated that 20 of the
24 parameters (83%) had effects that were significantly
different between the proton and photon treatments at
the 0.05 level, Table 4. Results of the sequential-type
Bonferroni procedure were consistent with those from
the Wilcoxon sign ranked tests and did not find any
false positives.
Results for individual organs are summarized in

Table 4. For the esophagus, heart, liver, and thyroid,
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there was a significant difference observed between
the photon and proton plans for V5(21.4%), V10(42.7%),
V15(64.1%), and V20(85.5%) with the values all being higher
for photons than for protons. For the kidneys and lungs,
there were significant differences observed between the
photon and proton plans for V15(64.1%), and V20(85.5%),
again with the values higher for photons than for pro-
tons. However, a similar difference was not observed at
the lower dose levels of 5 and 10 Gy (21.4% and 42.7%).

Discussion
In this study, we compared proton and photon CSI for
18 patients. It is important to note that this cohort
included both male and female medulloblastoma
patients whose ages, heights, and weights spanned a
clinically relevant and representative spectrum (age 2–
16, BMI 16.4–37.9 kg/m2) and that we compared the
current standard of care at our institution (UTMDACC)
for each modality. Furthermore, our patient cohort is
the largest, to date, in which CSI with proton and pho-
ton therapies have been compared, a feature that consti-
tutes this study’s major strength. Finally, this study
addressed differences in the various dosimetric para-
meters associated with variations in target volume defin-
ition, (i.e., that proton volumes were age-dependent,
whereas photon target volumes were the same for all
patients). In the end, we found that proton CSI improves
normal tissue sparing while also providing more homo-
geneous target coverage than photon CSI for patients
across a wide age and BMI spectrum.
For this population of patients, we found that proton

CSI provided similar CTV coverage to that of photon
CSI but allowed for a statistically significant reduction in
doses to non-target organs in close proximity to the cra-
niospinal axis. Moreover, proton treatment plans had
greater dosimetric homogeneity along the craniospinal
axis than photon treatment plans. Our results thus indi-
cate that proton CSI is superior to photon CSI over the
entire age range of children and adolescents affected by
medulloblastoma. These results are consistent with
those from earlier studies of fewer patients [30-33].
The differences that were observed between the pho-

ton and proton treatment plans were primarily due to
the differences in the physical properties of photon and
proton beams and the physical location of the organs
relative to the intended target volume. The esophagus,
heart, and thyroid were anterior to the treatment volume
and thus were located in a high dose gradient for the
photon plans, leading to a higher percentage of the
structures receiving 5, 10, 15, and 20 Gy (21.4%, 42.7%,
64.1%, and 85.5%). In contrast, for the proton plans,
these organs were beyond the distal edge of the Bragg
peak, leading to a substantially lower percentage of the
organs receiving 5, 10, 15, and 20 Gy (21.4%, 42.7%,
64.1%, and 85.5%). The kidneys and lungs are bilateral
organs situated to the right and left of the spinal fields.
They received higher dose from the proton plans com-
pared to the organs that were anterior to the target vol-
ume due to the lateral margins used for planning. This
effect was more pronounced for the younger patients
(Figure 2), whose treatment volumes included the entire
vertebral bodies and whose proton plans required
greater distal margins. As a consequence of the lateral
and distal margins we observed that similar percentages
the kidney and lung volumes receiving 5 and 10 Gy
(21.4% and 42.7%) for proton and photon CSI. Like the
lungs and kidneys, part of the liver is also lateral to the
spinal field, but it is not a bilateral organ. Therefore,
compared to the lungs and kidneys, a smaller percentage
of the liver volume received 5 and 10 Gy (21.4% and
42.7%) in the proton plans than in the photon plans.
Recently, Brodin et al. [38] reported differences be-

tween photon and proton CSI plans for 10 patients
whose ages also spanned the range of medulloblastoma
patients. However, they considered intensity-modulated
proton therapy (IMPT), volumetric-modulated arc pho-
ton therapy (VMAT), and conventional photon therapy
without modulation. Their findings are limited in their
clinical meaningfulness, however, because neither IMPT
nor VMAT is routinely used for CSI, and conventional
photon therapy has very heterogeneous dose distribu-
tions compared to the field-in-field photon therapy tech-
nique studied here. Another advantage of our work is
that we considered current standards of care for photon
and proton therapies that are currently in use. Thus, our
findings are directly relevant to clinicians who have the
option of treating patients with photon or proton CSI.
Despite the differences in study design, there is
consistency between the major findings of our study and
those of Brodin et al., i.e., that proton CSI improves nor-
mal tissue sparing while also providing more homoge-
neous target coverage than photon CSI.
One limitation of this study is that we only focused on

therapeutic dose and did not consider stray dose. For
photon therapy, the stray dose would comprise only
photons (patient scatter and scatter/leakage from treat-
ment head) because all the treatment plans used beams
with an energy of 6 MV, which is below the threshold
for photoneutron production. In a previous study, we
examined the accuracy of the TPS used in this study to
predict dose outside of the treatment field, where stray
dose is the main component; we found that the TPS was
accurate at doses of approximately 5% or more of the
prescribed dose [47], which would be 1.17 Gy in the
present study, with its prescribed dose of 23.4 Gy. The
lowest dosimetric parameter considered here was the V5,
and the photon dose at this level was accurate, as
reported by the TPS. For proton therapy, stray dose is
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composed almost entirely of secondary neutrons. Dose
from stray neutrons was not calculated by the TPS.
However, previous Monte Carlo studies [13,48,49] have
reported neutron organ doses (for the same proton
treatment apparatus used in this work) between 0.83
and 61 mSv/Gy for proton CSI, which in this study cor-
responds to between 0.0194 Sv and 1.43 Sv for the pre-
scribed dose of 23.4 Gy. As discussed above, the lowest
dosimetric parameter considered here was the V5, and
inclusion of the stray neutron doses would not have
changed the V5 values. Therefore, neglecting stray neu-
tron dose was not a serious limitation of this study.
Nevertheless, stray dose would be an important compo-
nent of a full comparison of photon and proton therapy
for CSI, especially for stochastic late effects such as sec-
ond cancers, and is therefore part of our ongoing re-
search in radiogenic late effects.

Conclusions
In conclusion, this study demonstrated that proton CSI
improved normal tissue sparing while also providing
more homogeneous target coverage than photon CSI.
Although the present study focused on medulloblas-
toma, our findings are generally applicable to other
tumors that are treated with CSI. Future work should
calculate organ equivalent doses, which include both
therapeutic and stray doses.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RH conceived of the study, drafted (and edited) the manuscript, participated
in creating the FIF photon plans, and performed the statistical analysis. AG
created the proton plans and helped draft the manuscript. WK created the
photon FIF treatment plans and specifically was involved in adapting the CSI
FIF technique for the TPS used in this study. AM provided guidance on
treatment plan design and reviewed all treatment plans, and reviewed/
edited the manuscript. WN assisted with reviewing/editing the manuscript
and provided funding for the study. CE provided guidance for the statistical
analysis and reviewed all statistical results in detail. AD participated in the
statistical analysis and wrote code to perform the Bonferroni procedure. KH
wrote codes to extract DVH data from TPS and format data for statistical
analysis; he also assisted with data analysis and in reviewing manuscript. All
authors read and approved the final manuscript.

Acknowledgments
This work was funded in part by a grant Northern Illinois University through
a Department of Defense subcontract (award W81XWH-08-1-0205) and by
the National Cancer Institute (award 1 R01 CA13146301A1).

Author details
1Department of Radiation Physics, The University of Texas MD Anderson
Cancer Center, Houston, TX, USA. 2Graduate School of Biomedical Sciences,
The University of Texas at Houston, Houston, TX, USA. 3Department of
Radiation Oncology, The Emory Clinic, Atlanta, GA, USA. 4Department of
Radiation Oncology, The University of Texas MD Anderson Cancer Center,
Houston, TX, USA. 5Department of Epidemiology, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA. 6Department of Radiation
Physics, Unit 094, The University of Texas MD Anderson Cancer Center, 1515
Holcombe Blvd, Houston, TX 77030, USA. 7Present Address: Louisiana State
University, Department of Physics and Astronomy, Baton Rouge, LA, USA.
Received: 26 March 2012 Accepted: 24 July 2012
Published: 24 July 2012

References
1. Dhall G: Medulloblastoma. J Child Neurol 2009, 24(11):1418–1430.
2. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S,

Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA,
Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D,
Gilbertson RJ: Risk-adapted craniospinal radiotherapy followed by high-
dose chemotherapy and stem-cell rescue in children with newly
diagnosed medulloblastoma (st jude medulloblastoma-96): Long-term
results from a prospective, multicentre trial. Lancet Oncol 2006,
7(10):813–820.

3. Gilbertson RJ: Medulloblastoma: signalling a change in treatment. Lancet
Oncol 2004, 5(4):209–218.

4. Deutsch M, Reigel DH: The value of myelography in the management of
childhood medulloblastoma. Cancer 1980, 45(8):2194–2197.

5. Allen JC, Epstein F: Medulloblastoma and other primary malignant
neuroectodermal tumors of the cns - the effect of patients age and
extent of disease on prognosis. J Neurosurg 1982, 57(4):446–451.

6. Fouladi M, Gajjar A, Boyett JM, Walter AW, Thompson SJ, Merchant TE,
Jenkins JJ, Langston LW, Liu AY, Kun LE, Heideman RL: Comparison of csf
cytology and spinal magnetic resonance imaging in the detection of
leptomeningeal disease in pediatric medulloblastoma or primitive
neuroectodermal tumor. J Clin Oncol 1999, 17(10):3234–3237.

7. Freeman CR, Taylor RE, Kortmann RD, Carrie C: Radiotherapy for
medulloblastoma in children: a perspective on current international
clinical research efforts. Medical and Pediatric Oncology 2002, 39(2):99–108.

8. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer
L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R:
Phase iii study of craniospinal radiation therapy followed by adjuvant
chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin
Oncol 2006, 24(25):4202–4208.

9. Packer RJ, Vezina G: Management of and prognosis with
medulloblastoma therapy at a crossroads. Arch Neurol 2008,
65(11):1419–1424.

10. Jarlskog CZ, Lee C, Bolch WE, Xu XG, Paganetti H: Assessment of organ-
specific neutron equivalent doses in proton therapy using
computational whole-body age-dependent voxel phantoms. Phys Med
Biol 2008, 53(3):693–717.

11. Jarlskog CZ, Paganetti H: Risk of developing second cancer from neutron
dose in proton therapy as function of field characteristics, organ, and
patient age. Int J Radiat Oncol Biol Phys 2008, 72(1):228–235.

12. NRC: Health risks from exposure to low levels of ionizing radation: Beir vii -
phase 2. Washington, D.C: Nation Research Council of the National
Academies; 2006.

13. Taddei PJ, Mirkovic D, Fontenot JD, Giebeler A, Zheng YS, Kornguth D,
Mohan R, Newhauser WD: Stray radiation dose and second cancer risk for
a pediatric patient receiving craniospinal irradiation with proton beams.
Phys Med Biol 2009, 54(8):2259–2275.

14. Silber JH, Littman PS, Meadows AT: Stature loss following skeletal
irradiation for childhood-cancer. J Clin Oncol 1990, 8(2):304–312.

15. Chin D, Sklar C, Donahue B, Uli N, Geneiser N, Allen J, Nirenberg A, David R,
Kohn B, Oberfield SE: Thyroid dysfunction as a late effect in survivors of
pediatric medulloblastoma primitive neuroectodermal tumors - a
comparison of hyperfractionated versus conventional radiotherapy.
Cancer 1997, 80(4):798–804.

16. Constine LS, Woolf PD, Cann D, Mick G, Mccormick K, Raubertas RF, Rubin P:
Hypothalamic pituitary dysfunction after radiation for brain-tumors. N
Engl J Med 1993, 328(2):87–94.

17. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM,
Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS,
Schwartz CL, Leisenring W, Robison LL, Study CCS: Chronic health
conditions in adult survivors of childhood cancer. N Engl J Med
2006, 355(15):1572–1582.

18. Grau C, Overgaard J: Postirradiation sensorineural hearing loss: a
common but ignored late radiation complication. Int J Radiat Oncol Biol
Phys 1996, 36(2):515–517.

19. Mulhern RK, Kepner JL, Thomas PR, Armstrong FD, Friedman HS, Kun LE:
Neuropsychologic functioning of survivors of childhood
medulloblastoma randomized to receive conventional or reduced-dose



Howell et al. Radiation Oncology 2012, 7:116 Page 12 of 12
http://www.ro-journal.com/content/7/1/116
craniospinal irradiation: a pediatric oncology group study. J Clin Oncol
1998, 16(5):1723–1728.

20. Bowers DC, Liu Y, Leisenring W, McNeil E, Stovall M, Gurney JG, Robison LL,
Packer RJ, Oeffinger KC: Late-occurring stroke among long-term survivors
of childhood leukemia and brain tumors: a report from the childhood
cancer survivor study. J Clin Oncol 2006, 24(33):5277–5282.

21. Jakacki RI, Goldwein JW, Larsen RL, Barber G, Silber JH: Cardiac dysfunction
following spinal irradiation during childhood. J Clin Oncol 1993,
11(6):1033–1038.

22. Mertens AC: Cause of mortality in 5-year survivors of childhood cancer.
Pediatr Blood Cancer 2007, 48(7):723–726.

23. Mertens AC, Liu Q, Neglia JP, Wasilewski K, Leisenring W, Armstrong GT,
Robison LL, Yasui Y: Cause-specific late mortality among 5-year survivors
of childhood cancer: the childhood cancer survivor study. J Natl Cancer
Inst 2008, 100(19):1368–1379.

24. Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME,
Skinner R, Stevens MC, Hawkins MM, Survivor BCC: Long-term cause-
specific mortality among survivors of childhood cancer. JAMA 2010,
304(2):172–179.

25. Inskip PD, Curtis RE: New malignancies following childhood cancer in the
united states, 1973–2002. Int J Cancer 2007, 121(10):2233–2240.

26. Inskip PD, Robison LL, Stovall M, Smith SA, Hammond S, Mertens AC,
Whitton JA, Diller L, Kenney L, Donaldson SS, Meadows AT, Neglia JP:
Radiation dose and breast cancer risk in the childhood cancer survivor
study. J Clin Oncol 2009, 27(24):3901–3907.

27. Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M,
Hammond S, Yasui Y, Inskip PD: Second neoplasms in survivors of
childhood cancer: Findings from the childhood cancer survivor study
cohort. J Clin Oncol 2009, 27(14):2356–2362.

28. Neglia JP, Friedman DL, Yasui Y, Mertens AC, Hammond S, Stovall M,
Donaldson SS, Meadows AT, Robison LL: Second malignant neoplasms in
five-year survivors of childhood cancer: Childhood cancer survivor study.
J Natl Cancer Inst 2001, 93(8):618–629.

29. Bentel G: Radiation therapy planning: Including problems and solutions.
Health Professions Division, New York: McGraw-Hill; 1996.

30. Lee CT, Bilton SD, Famiglietti RM, Riley BA, Mahajan A, Chang EL, Maor MH,
Woo SY, Cox JD, Smith AR: Treatment planning with protons for pediatric
retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons
compare with other conformal techniques? Int J Radiat Oncol Biol Phys
2005, 63(2):362–372.

31. Miralbell R, Lomax A, Bortfeld T, Rouzaud M, Carrie C: Potential role of
proton therapy in the treatment of pediatric medulloblastoma primitive
neuroectodermal tumors: Reduction of the supratentorial target volume.
Int J Radiat Oncol Biol Phys 1997, 38(3):477–484.

32. Slater JD, Yuh GE, Loredo LN, Yonemoto LT, Bush DA, Shahnazi K, Preston
W, Slater JM: Reducing toxicity from craniospinal irradiation: Using
proton beams to treat medulloblastoma in young children. Cancer J
2004, 10(6):386–390.

33. St Clair WH, Adams JA, Bues M, Fullerton BC, La Shell S, Kooy HM, Loeffler
JS, Tarbell NJ: Advantage of protons compared to conventional x-ray or
IMRT in the treatment of a pediatric patient with medulloblastoma. Int J
Radiat Oncol Biol Phys 2004, 58(3):727–734.

34. Newhauser W, Fontenot J, Zheng YS, Polf J, Titt U, Koch N, Zhang X, Mohan
R: Monte carlo simulations for configuring and testing an analytical
proton dose-calculation algorithm. Phys Med Biol 2007, 52(15):4569–4584.

35. Das IJ, Cheng CW, Watts RJ, Ahnesjo A, Gibbons J, Li XA, Lowenstein J, Mitra
RK, Simon WE, Zhu TC: Accelerator beam data commissioning equipment
and procedures: Report of the TG-106 of the therapy physics committee
of the AAPM. Medical Physics 2008, 35(9):4186–4215.

36. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J:
American association of physicists in medicine radiation therapy
committee task group 53: Quality assurance for clinical radiotherapy
treatment planning. Medical Physics 1998, 25(10):1773–1829.

37. ICRU: International comission on radiation units and measurements
report 78: Prescribing, recording, and reporting proton-beam therapy
(ICRU report 78). J ICRU 2007, 7(2):1–210.

38. Brodin NP, Rosenschold PMAF, Aznar MC, Kiil-Berthelsen A, Vogelius IR,
Nilsson P, Lannering B, Bjork-Eriksson T: Radiobiological risk estimates of
adverse events and secondary cancer for proton and photon radiation
therapy of pediatric medulloblastoma. Acta Oncol 2011, 50(6):806–816.
39. Newhauser WD, Giebeler A, Langen KM, Mirkovic D, Mohan R: Can
megavoltage computed tomography reduce proton range uncertainties
in treatment plans for patients with large metal implants? Phys Med Biol
2008, 53(9):2327–2344.

40. Zhang XD, Dong L, Lee AK, Cox JD, Kuban DA, Zhu RX, Wang XC, Li YP,
Newhauser WD, Gillin M, Mohan R: Effect of anatomic motion on proton
therapy dose distributions in prostate cancer treatment. Int J Radiat
Oncol Biol Phys 2007, 67(2):620–629.

41. Urie M, Goitein M, Wagner M: Compensating for heterogeneities in
proton radiation-therapy. Phys Med Biol 1984, 29(5):553–566.

42. Moyers MF, Miller DW: Range, range modulation, and field radius
requirements for proton therapy of prostate cancer. Technol Cancer Res
Treat 2003, 2(5):445–447.

43. Moyers MF, Miller DW, Bush DA, Slater JD: Methodologies and tools for
proton beam design for lung tumors. Int J Radiat Oncol Biol Phys 2001,
49(5):1429–1438.

44. Vann A, Dasher B, Chestnut S, Wiggers N: Portal design in radiation therapy.
Columbia, S.C: R.L. Bryan Co.; 2006.

45. Yom SS, Frija EK, Mahajan A, Chang E, Klein K, Shiu A, Ohrt J, Woo S: Field-
in-field technique with intrafractionally modulated junction shifts for
craniospinal irradiation. Int J Radiat Oncol Biol Phys 2007, 69(4):1193–1198.

46. Benjamini Y, Hochberg Y: "Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 1995, 57(1):289–300.

47. Howell RM, Scarboro SB, Kry SF, Yaldo DZ: Accuracy of out-of-field dose
calculations by a commercial treatment planning system. Phys Med Biol
2010, 55(23):6999–7008.

48. Newhauser WD, Fontenot JD, Mahajan A, Kornguth D, Stovall M, Zheng YS,
Taddei PJ, Mirkovic D, Mohan R, Cox JD, Woo S: The risk of developing a
second cancer after receiving craniospinal proton irradiation. Phys Med
Biol 2009, 54(8):2277–2291.

49. Taddei PJ, Mahajan A, Mirkovic D, Zhang R, Giebeler A, Kornguth D, Harvey
M, Woo S, Newhauser WD: Predicted risks of second malignant neoplasm
incidence and mortality due to secondary neutrons in a girl and boy
receiving proton craniospinal irradiation. Phys Med Biol 2010,
55(23):7067–7080.

doi:10.1186/1748-717X-7-116
Cite this article as: Howell et al.: Comparison of therapeutic dosimetric
data from passively scattered proton and photon craniospinal
irradiations for medulloblastoma. Radiation Oncology 2012 7:116.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study patients

	link_Tab1
	Proton therapy treatment planning

	link_Fig1
	Photon treatment planning
	Comparison of photon and proton treatment plans
	Statistical methods

	Results
	link_Fig2
	CTV coverage

	link_Fig3
	Tissue sparing of &b_k;in-&e_k;&b_k;field&e_k; organs

	link_Fig4
	link_Fig5
	link_Tab2
	link_Tab3
	Tissue sparing of partially &b_k;in-&e_k;&b_k;field&e_k; organs and &b_k;out-&e_k;&b_k;of-&e_k;&b_k;field&e_k; organs

	link_Tab4
	Discussion
	Conclusions
	Competing interests
	Authors´ contributions
	Acknowledgments
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49

