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Abstract

Background: Biological models are used to relate the outcome of radiation therapy to dose distribution. As use of
biological models in treatment planning expands, uncertainties associated with the use of specific models for
predicting outcomes should be understood and quantified. In particular, the question to what extent model
predictions are data-driven or dependent on the choice of the model has to be explored.

Methods: Four dose-response models–logistic, log-logistic, Poisson-based and probit–were tested for their ability
and consistency in describing dose-response data for radiation-induced optic neuropathy (RION) and retinopathy
(RIRP). Dose to the optic nerves was specified as the minimum dose, Dmin, received by any segment of the organ
to which the damage was diagnosed by ophthalmologic evaluation. For retinopathy, the dose to the retina was
specified as the highest isodose covering at least 1/3 of the retinal surface (D33%) that geometrically covered the
observed retinal damage. Data on both complications were modeled separately for patients treated once daily and
twice daily. Model parameters D50 and g and corresponding confidence intervals were obtained using maximum-
likelihood method.

Results: Model parameters were reasonably consistent for RION data for patients treated once daily, D50 ranging
from 94.2 to 104.7 Gy and g from 0.88 to 1.41. Similar consistency was seen for RIRP data which span a broad
range of complication incidence, with D50 from 72.2 to 75.0 Gy and g from 1.51 to 2.16 for patients treated twice
daily; 72.2-74.0 Gy and 0.84-1.20 for patients treated once daily. However, large variations were observed for RION
in patients treated twice daily, D50 from 96.3 to 125.2 Gy and g from 0.80 to 1.56. Complication incidence in this
dataset in any dose group did not exceed 20%.

Conclusions: For the considered data sets, the log-logistic model tends to lead to larger D50 and lower g
compared to other models for all datasets. Statements regarding normal tissue radiosensitivity and steepness of
dose-response, based on model parameters, should be made with caution as the latter are not only model-
dependent but also sensitive to the range of complication incidence exhibited by clinical data.

Background
Modeling of dose-volume response for normal tissues
has been used to establish correlation between toxicity
and dose-volume parameters, determine safe dose distri-
butions in organs at risk and make projections for risks
of adverse effects associated with dose escalation. Biolo-
gically-based radiotherapy optimization has progressed
in recent years from pioneering work presenting the

concept [1-3] to commercial implementation [4]. It is
expected that biologically-based radiotherapy planning
will play a more prominent role. This could be facili-
tated by expanding use of biological imaging intended
to map biological properties of tumors and organs at
risk [5,6] thereby making planning not only biologically-
based but also patient-specific [7].
The dose-response follows the basic sigmoid shape

and numerous models have been proposed based either
on a purely statistical approach or assumptions regard-
ing organ architecture and its influence on the develop-
ment of complications [8]. The popular choices to
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describe the sigmoid dose-response curves are: Poisson-
based, probit, logistic and log-logistic functions [9-12].
Dose-response can be plotted as a function of a dosi-
metric parameter deemed significant for a particular
complication. This can be mean or maximum dose or
equivalent uniform dose (also known as effective dose),
EUD [13]. If the intent of the model is to specifically
account for volume effect, typically a parameter to
account for this effect is introduced [9,10]. Fits to multi-
ple models have been reported in the literature [14,15].
The purpose of these studies is typically two-fold: 1) to
establish a model that provides the most accurate
description of clinical data and; 2) to test consistency of
model predictions, e.g., strength of volume effects.
A sigmoid curve can be readily described by a two-

parameter function, one parameter describing the dose
at which 50% of patients exhibit complications, D50, and
the second parameter, g, the normalized dose-response
gradient [16]. Because all models follow a similar sig-
moid shape it is generally acknowledged that fits to typi-
cally noisy human data do not allow establishing
superiority of a particular model over other models [8].
It is further acknowledged that different models with
the same D50 and g would follow a similar dose-
response. Figure 1 shows the dose - response relation-
ship predicted by the four above-mentioned models
with matching D50 = 80 Gy and g = 1.5. The curves
overlap around 50% incidence but separate in the low-
and high-dose regions. It is, therefore, also acknowl-
edged that model parameters are not interchangeable.
That is, D50 and g obtained following the fitting of one
model to a specific data set should not be used with
another model. (Figure 1)
Bentzen and Tucker, 1997, provided the most detailed

and insightful analysis of specific features of the

Poisson-based, logistic and probit models. The authors
carefully considered the location of the maximum dose-
response slope and maximum normalized dose-response
gradient for these models and relationships between
measures describing the slope at various response levels.
Notably, Bentzen and Tucker, 1997 demonstrated that if
logistic and Poisson models are forced to predict identi-
cal D10, dose corresponding to 10% response, and their
slopes are matched at D10, a substantial deviation in D50

would be observed. Two clinical examples of fitting
these three models to describe tumor control probability
(TCP) data showed minor variations in D50 and g. The
data used in their clinical example covered a broad
range of local control including data points correspond-
ing to 50% TCP.
The emphasis of this report is on normal tissue com-

plications, incidence of which is kept low. This often
leaves the parameter D50 lying outside of the range of
clinical data. Despite the stipulations regarding non-
transferability of model parameters and ambiguities in
quantifying dose-response slope uncovered by Bentzen
and Tucker, 1997, the following statements or observa-
tions are often made in the literature: 1) organs are clas-
sified as radiosensitive or radioresistant based on D50; 2)
dose-response is described as shallow or steep based on
g; 3) review articles interpret differences in D50 and g
reported by various institutions as a reflection of differ-
ences in underlying data. This is based on an assump-
tion that the parameters governing the dose-response
would be reasonably consistent if fitting was performed
to the same data set.
Plotting or tabulating model parameters from different

studies is a good way to obtain a broad overview of
dose-response data. A recently published special issue of
the International Journal of Radiation Oncology Biology
Physics was dedicated to the Quantitative Analysis of
Normal Tissue Effects in the Clinic (QUANTEC). This
included 16 consistently structured organ-specific papers
[17] and a number of papers contained summarized
dose-response parameters in a form of a table or a
graph, typically showing a significant spread in these
parameters. These comparisons are usually presented in
a guarded manner. For example, in the QUANTEC
paper on salivary function [18], the plot showing D50

values for incidence of xerostomia is followed by a qua-
lifying statement that “The wide variation in the
reported TD50 values is unexplained but could result
from several factors, including differences in dose distri-
butions, salivary measurement methods, segmentation,
intragland sensitivity, and so forth”. It is, however, nota-
ble that three particularly large values of D50 [19,20] are
associated with the use of the log-logistic model,
whereas the probit model was used in other studies.
Therefore, any systematic and predictable trends and

Figure 1 Dose-response predicted by four studied models.
Model parameters were commonly set to D50 = 80 Gy and g = 1.5.
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biases in models should be determined and quantified.
As will be shown in this work, for the considered data
sets, the log-logistic model indeed tends to lead to larger
D50.
Use of model predictions for doses beyond those used

in fitting is associated with uncertainties. Marks et al.
2010 in their general QUANTEC paper preceding
organ-specific QUANTEC articles stipulated: “Some stu-
dies use models to estimate the complication risk. Care
should be taken when applying models, especially when
clinical dose/volume parameters are beyond the range of
data”. Making projections is, however, one of the pur-
poses of the biological models. These projections are
used for a variety of purposes such as changing doses
per fraction or dose escalation. Use of model predictions
in the dose range not covered by clinical data is una-
voidable in IMRT optimization which allows large dose
heterogeneity in target volumes and organs at risk
which can afford hot spots. Because partial volume
response is mathematically connected to NTCP for the
whole organ [8], calculating NTCP values for doses on
the order of prescription doses is required. As above,
any systematic trends and biases should be accounted
for. Putting it simply, the question to what extent this is
model dependent as well as data-dependent needs to be
answered, in particular for severe morbidity incidences
which should be kept to manageable minimum.
In this article we present results of fitting radiation-

induced optic neuropathy and retinopathy dose-response
data to the aforementioned four NTCP models. This is
the simplest case where volume dependence is not
accounted for and all models have exactly two para-
meters. Consistency of model parameters, consequences
of extrapolating model predictions beyond the dose
range covered by clinical data and their dependence on
incidence range are reported.

Methods
Patient data
Previously reported results of incidence of optic neuro-
pathy and retinopathy in patients treated with radiation
for head and neck cancers were used [21,22]. A detailed
description of the patient cohort is beyond the scope of
this paper. In brief, clinical outcomes data from head
and neck cancer patients who received radiation therapy
between 1964 and 2000 at the University of Florida
were used. Overall incidence of optic neuropathy was 5
in 101 patients treated twice-daily and 19 in 172
patients treated once daily. For retinopathy this inci-
dence was 7 in 78 for patients treated twice daily and 23
in 108 for patients treated once daily. To analyze dose-
response for optic neuropathy the dose to the optic
nerves was specified as the minimum dose, Dmin,
received by any segment of the organ to which the

damage was diagnosed by ophthalmologic evaluation.
For retinopathy the dose to the retina was specified as
the highest isodose covering at least 1/3 of the retinal
surface (D33%) that geometrically covered the observed
retinal damage. Note that Dmin and D33% apply to seg-
ments where damage was seen rather than whole organ.
For the purpose of dose-response analysis, dose was
converted into normalized total dose (NTD), i.e., isoef-
fective dose given in 2 Gy fractions. Conversion to NTD
was performed using previously reported a/b ratios,
1.76 Gy for optic neuropathy and 2.65 Gy for retinopa-
thy [23,24]. The purpose of this conversion is to aid
ease of comparison with literature data. In the remain-
der of this report terms dose and NTD are used inter-
changeably, i.e., 2 Gy per fraction is assumed. To test
for sensitivity of the model, parameters to a/b value fit-
ting were repeated for the optic neuropathy data set
with conversion to NTD performed using a/b values of
1 and 5 Gy.

NTCP models
Four models were used in this study. Specifically logistic,
log-logistic, Poisson-based and probit [9-12] models,
equations (1)-(4), respectively.

NTCP =
exp(4γ (

D

D50
− 1))

1 + exp(4γ (
D

D50
− 1))

(1)

NTCP = [1 +
(
D50

D

)4γ

]−1 (2)

NTCP = 2
− exp(eγ (1−

D

D50
)) (3)

NTCP = 0.5 + 0.5erf (t/
√
2)

t =
D − D50

mD50

(4)

where NTCP is normal tissue complication probability,
D is dose. For convenience and clarity of presentation
the parameter m describing the steepness of dose-
response in the probit model was converted to common
with other models’ normalized slope, g = D∂NTCP/∂D
using the conversion g = [m√(2π)]-1. The formulation of
the Poisson-based model shown in equation (3) was
proposed by the Stockholm group [9]. A normalized
slope for the Poisson-based model maximizes just above
NTCP = 1/e≈0.37 [9,16]. In contrast, it maximizes at
D50 (log-logistic) or just above D50 (probit) for other
models. The above formulation of the Poisson-based
model was criticized because the parameter g never
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truly equals D∂NTCP/∂D, although the difference is
small except for very shallow dose-response [16]. At D50

the normalized slope is equal to geln(2)/2≈0.94g. These
inaccuracies were deemed minor for the purposes of
this study.
Fitting for D50 and g was performed using the maxi-

mum likelihood method in which parameter values were
found that maximized the log-likelihood of the model,
given the observed data [25]. The 95% confidence inter-
vals were obtained using the profile likelihood method
[26]. Although fitting used individual data points, the
figures grouped patient doses in bins of width no larger
than 5 Gy. Standard deviations for dose in each group
were calculated. Binomial confidence intervals for the
incidence of complications were calculated using the
score method [27].

Results
Figures 2 and 3 show incidence data and model predic-
tions for optic neuropathy and retinopathy. Within the
dose range bounded by available clinical data, the model
predictions are very similar. Notably, for optic neuropa-
thy in patients treated twice daily, curves substantially
deviate at doses beyond available clinical data. (Figures 2
and 3)
Table 1 lists the calculated model parameters and con-

fidence intervals. For the considered RION and RIRP
data, log-logistic and Poisson-based models consistently
yield larger D50 and smaller g compared to logistic and

probit models. In case of optic neuropathy in patients
treated twice daily the difference in model parameters is
particularly pronounced, albeit with broad confidence
intervals due to the small number of events. D50 is 96.3
Gy in the logistic model and 125.2 Gy in the log-logistic
one while g is respectively 1.56 and 0.80.
Figures 4 and 5 show profile likelihood projections on

D50 and g planes as well as model-specific cut-off lines
used in derivation of confidence intervals. Similar values
of maximum likelihood indicate that different models fit
the data equally well. However, not only profiles reach
maxima at different D50 and g values. As shown in
Table 1 there is also a substantial difference in calcu-
lated confidence intervals. (Figures 4 and 5)
The sensitivity of model parameters to the used a/b

value were assessed. When a/b = 1 Gy was used to con-
vert Dmin to NTD values of the model parameters, D50

and g for RION in patients treated once daily were 96.0
Gy and 1.34, 107.6 Gy and 0.82, 103.9 and 0.95, and
98.1 Gy and 1.20 for the logistic, log-logistic, Poisson-
based and probit models, respectively. For a/b = 5 Gy,
corresponding values in the same order were 92.2 Gy
and 1.52, 101.2 Gy and 0.98, 100.0 Gy and 1.05, and
94.6 Gy and 1.34. For RION in patients treated twice
daily and a/b = 1 Gy, parameter values were 91.0 Gy
and 1.52, 120.9 Gy and 0.76, 113.1 Gy and 0.91, and
98.8 Gy and 1.24 for the logistic, log-logistic, Poisson-
based and probit models, respectively. After a/b was set
to 5 Gy, the corresponding values were 106.9 Gy and

Figure 2 Incidence of radiation-induced optic neuropathy and dose-response curves predicted by studied four models. Horizontal error
bars show standard deviation for dose for patients from each dose group, vertical error bars are 68% confidence intervals.
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1.61, 135.8 Gy and 0.85, 132.3 Gy and 0.95, and 116.4
Gy and 1.30. Parameter values obtained for a/b = 1 Gy
and 5 Gy envelop values shown in Table 1. Sensitivity
to a/b was modest.

Discussion
Despite astute observations by Bentzen and Tucker, 1997,
showing that the slope of TCP dose-response is model-
dependent, even if fitting was performed to the same data,
dependence of the model parameters on the choice of the
model is generally not appreciated. Limited attention has
also been devoted to demonstrating conflicts in plan rank-
ing or in predicting consequences of dose boosting in par-
tial volumes between common models [28-30]. In this
report, the lingering question to what extent model pre-
dictions are model dependent has been studied in a

systematic manner. As expected no model can be deemed
a preferred model and all four models agree well within
the range of the clinical data. Dosimetric parameters of
clinical relevance, for example NTCP at 55 and 60 Gy,
doses typically used as constraints in IMRT planning [31],
would therefore be model-independent as long as there is
incidence data in this dose range. These NTCP differences
were in fact < 1% for RION and < 3% for RIRP, see Figures
2 and 3. The same applied to D5 and D10, doses corre-
sponding to 5 and 10% incidence of complications. Figures
2 and 3 show that the differences in these values predicted
by different models were < 1.5 Gy for RION and < 4.5 Gy
for RIRP.
However, for the RION data set for patients treated

twice daily, where incidence data covered the smallest in
range of the four sets, predictions beyond the range of

Figure 3 Incidence of radiation-induced retinopathy and dose-response curves predicted by studied four models. Horizontal error bars
show standard deviation for dose for patients from each dose group, vertical error bars are 68% confidence intervals.

Table 1 Calculated model parameter values and 95% confidence intervals (in parentheses)

Data set Parameter Logistic Log-logistic Poisson Probit

RION, twice daily* D50, Gy 96.3 (69.8,∞) 125.2 (71.8, ∞) 119.0 (75.6, ∞) 104.4 (71.7, ∞)

g 1.56 (0.49,3.18) 0.80 (-0.09,2.38) 0.93(0.42,1.65) 1.27(0.47,2.42)

RION, once daily D50, Gy 94.2 (80.5,146.8) 104.7 (82.8,254.2) 102.0 (83.9,161.9) 96.7 (81.5,150.0)

g 1.41 (0.84,2.16) 0.88 (0.34,1.60) 0.99 (0.66,1.41) 1.25 (0.78,1.85)

RIRP, twice daily D50, Gy 72.2 (63.9,115.7) 74.2 (63.8,188.7) 75.0 (63.6,133.5) 73.0 (63.8,120.9)

g 2.16 (0.98,3.97) 1.66 (0.42,3.47) 1.51 (0.72,2.73) 1.91 (0.89,3.43)

RIRP, once daily D50, Gy 72.2 (64.0,91.0) 74.0 (63.1,108.1) 73.0 (62.9,94.4) 72.4 (63.9,91.6)

g 1.20 (0.73,1.80) 0.84 (0.42,1.40) 0.96 (0.64,1.34) 1.12 (0.71,1.62)

*Abbreviations: RION - radiation-induced optic neuropathy; RIRP - radiation-induced retinopathy.
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data availability became quite model dependent. Not
only is this reflected in large discrepancies in D50 values;
D20, dose corresponding to 20% incidence of RION, is
74.9 Gy for the logistic model. This contrasts with 81.2
Gy calculated from the log-logistic model. This would

be consequential for dose escalation protocols relying
on extrapolated incidence of complications.
The trend that the log-logistic and Poisson-based mod-

els yielded larger D50 and smaller g compared to logistic
and probit models was observed. This is likely related to

Figure 4 Log-likelihood function projected onto D50 (right panels) and g (left panels) planes for optic neuropathy in patients treated
once daily (a) and twice daily (b).
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the shape of the dose-response characteristic of a specific
model as well as the limited range of incidence of compli-
cations. While this ideally has to be proven mathemati-
cally, we can speculate that the trend is driven by

differences in model predictions in the incidence range of
concern for this study. Figure 1 shows that the log-logistic
and Poisson-based models reach complication probabil-
ities of the order of 10-20% at doses larger than the logistic

Figure 5 Log-likelihood function projected onto D50 (right panels) and g (left panels) planes for retinopathy in patients treated once
daily (a) and twice daily (b).
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and probit models. In Figure 1, models were matched
according to D50 and g. One can speculate that if models
were forced to overlap in the range of clinically observed
incidences of complications, i.e., < 20%, larger D50 would
be expected for the log-logistic and Poisson-based models.
The model dependence is typically not specifically

addressed in literature reviews that present compilations
of model parameters [32]. It is conceivable that the
large D50 values reported for xerostomia by Munter et
al. 2004 and Munter et al. 2007 were at least partly due
to their choice of the log-logistic model. In this regard,
generic statements based on shallow dose-response of
g≤1 should be made with caution as well. As shown in
this study a difference on the order of factor of two has
been observed for the RION data set for patients treated
twice daily (g = 0.8 and 1.56, Table 1). This data set was
limited in complication incidence. Even for the RIRP
data set covering a broad range of incidence, substantial
variations in g were seen while variations in D50 were
minor. Disagreement in model parameters cannot be
viewed solely as a reflection of differences in underlying
data. While this conclusion would be valid for data sets
covering a broad range of incidences, human data for a
good reason is typically limited to low incidences of
complication. It has to be stated that while the log-logis-
tic model predicted shallow dose-response, the only way
to claim inferiority of this model is to demonstrate that
its predictions contradict clinical data. The model can-
not be disregarded based on how plausible its para-
meters and predictions to larger doses may appear
compared to other models. It is unfortunate that publi-
cations showing model predictions often do not also
show clinical data in the same plot, as shown in Figures
2 and 3. This provides readers with a better understand-
ing of the spread of clinical data in dose, incidence of
toxicity and statistical uncertainty.
Variations in confidence intervals were substantial. This

at least in part can be connected with model parameters
themselves. In particular, log-logistic model yielded the
larger D50 as well as broader upper limit for D50. Having
said that, for RIRP data sets, D50 were consistent between
the models and still upper confidence interval was by far
the largest for the log-logistic model. The reverse argu-
ment applies to g, log-logistic model providing the broad-
est lower limit. Confidence intervals calculated for model
parameters were broad, which relates to the small number
of events. In particular, patients treated twice daily showed
a low incidence of complications. Consequently, model
parameters can be only estimated with substantial uncer-
tainties. While this precludes being definitive in comparing
model behavior, this is a common problem in testing
model predictions. The presented analysis therefore is
representative of a practical situation of dose-response
analysis and use of model parameters.

The maximum likelihood method was used in this
study to estimate model parameters. It should be noted
that the choice of the method may impact parameter
values and confidence intervals. Bentzen and Tucker
[16], 1997, analyzed dose-response for control of neck
nodes. The authors showed that the D50 value was not
sensitive to whether the maximum-likelihood or least-
squares method was used to estimate parameters of the
logistic model. Least squares, however, led to a substan-
tially narrower confidence interval. Also, a significant
difference in g was seen. This potentially adds to uncer-
tainties associated with comparing model parameters
reported by various authors.
In this study the analysis was restricted to dose-response

rather than dose-volume response. The way volume effect
is handled by different models will have an impact on
obtained model parameters. Commonly, dose-volume-
response models have a designated parameter describing
the strength of volume dependence. However, models
designed to describe the incidence of complications in
serial organs may not require this parameter [12]. Further-
more, the slope of dose-response may or may not be
volume-dependent. This leads to differences in model
parameters. However, the preferred model often cannot be
established because of the uncertainties in clinical data.
Venturing in dose range not covered by clinical data is

unavoidable in biologically-guided IMRT optimization.
This makes the choice of the model critical. Presently
the choice of NTCP models is driven by personal prefer-
ences, availability of software and historical reasons. A
practice of selecting a model and “calibrating” the model
to make it consistent with locally seen outcomes is
encouraged [8]. When advanced biologically-driven
treatment planning is used, e.g., to account for biological
properties of tumors and normal tissues [5] or effect of
geometric errors [33] there has to be an understanding
that a choice of the model would dictate the penalty.
The results of IMRT optimization, including biologi-

cally-driven optimization, are of course subject to asses-
sing the plan for its clinical suitability. If the plan is
deemed clinically unsuitable, optimization can be re-run
and navigated towards the desired result by changing
weighting factors. Therefore, differences in model pre-
dictions can be offset in biologically-based optimization
unless absolute values are used. A similar argument
applies to plan ranking. The model does not have to be
quantitatively accurate as long as it ranks a radiobiologi-
cally more desirable plan higher than less desirable. Use
of biological models for plan ranking cannot be sepa-
rated from DVH handling. If NTCP is calculated follow-
ing a DVH reduction using an independent method, e.
g., using power-law-based EUD [13], then plan ranking
based on EUD is sufficient. Further, calculation of
NTCP becomes redundant. If, however, NTCP is
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calculated directly from the DVH or a popular effective
volume DVH reduction method is used [34], ranking
would be based on calculated NTCP. It has been shown,
however, that plan ranking can be model-dependent
[30]. Quantitative use of biological models to predict
complication rates for a proposed clinical trial or treat-
ment schedule may depend on the choice of the model.
Commonly, approaches based on changing fractionation
to maintain the rate of complications but to improve
local control are used. Also, RT protocols based on indi-
vidualized prescription with an intent to keep NTCP
below a pre-set level have been advocated and used
clinically [35]. These approaches indirectly validate
model predictions; however, their clinical implementa-
tion has to have clearly stated rules for what would be
regarded as excess toxicity.

Conclusions
Based on the analysis of radiation-induced optic neuropa-
thy and retinopathy data, we conclude that large variations
in model parameters may be observed between the models
if data are restricted in incidence range. This leads to
inconsistencies in model projections. For the considered
data sets the log-logistic model tends to lead to larger D50

and lower g compared to other models. This, however,
does not constitute reasons for claiming inferiority of this
model. This claim can be only made based on a compari-
son of model predictions and clinical data. Statements
regarding inconsistencies between data sets from different
institutions should not be based solely on reported model
parameters as the latter are model-dependent.
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