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Abstract
Background: To compare morphological gross tumor volumes (GTVs), defined as pre- and
postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological
tumor volumes (BTVs), defined by the uptake of 18F fluoroethyltyrosine (FET) for the radiotherapy
planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner
equipped with three triangulation lasers for patient positioning.

Methods: Nineteen patients with malignant glioma were included into a prospective protocol
using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual
disease after surgery. Planning was performed using the clinical target volume (CTV = GTV ∪ BTV)
and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV
delineation was assessed among three observers. Second, the BTV and GTV were quantified and
compared. Finally, the geometrical relationships between GTV and BTV were assessed.

Results: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient
0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 ± 30.4
cm3) were significantly larger than BTVs (mean 42.1 ± 24.4 cm3; p < 0.01) or GTVs (mean 38.7 ±
25.7 cm3; p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended ≥ 10 and 20 mm
from the margin of the gadolinium enhancement.

Conclusion: Using FET, the interrater reliability had excellent agreement for BTV delineation.
With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a
majority of patients.
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Background
Positron emission tomotherapy (PET) is used in neuro-
oncology practice essentially for diagnosis[1,2], prognosis
evaluation[3], staging procedures[4] and monitoring the
tumor response after treatment[5]. It can also be used for
planning purposes, as to combine the biological and mor-
phological information to guide radiation dose delivery.
As such, biologically image-guided radiation therapy
(RT), coupled to the current anatomical imaging technol-
ogy, will deliver optimally radiation, with a high-degree of
geometrical precision and biological conformity.

High-precision radiation therapy necessitates however
precise anatomical and biological target delineation.
[(18)F]fluoroethyltyrosine (FET) has been shown to have
a high sensitivity (>90%) and specificity (>80%) for gli-
oma[6]. In vitro and in vivo experiments have demon-
strated that FET enters the cell by specific amino acids
transports, but is not incorporated into proteins [7-9]. The
delineation of the glial tumor extent is easier with radiola-
belled amino acids than with 18F-fluorodeoxyglucose
(FDG)[10], as a result of the high glucose metabolism in
the cerebral cortex of the latter tracer and is thus the
rational for the integration of FET in glioma volume delin-
eation for RT planning. Although inter-observer variabil-
ity has been assessed for tumor definition with other
amino-acids, no such analysis has been taken in glioma
delineation with FET. If the tumour delineation with FET
proves to be unreliable, the consequential treatment plans
may be inappropriate. As such, the inter-observer variabil-
ity of FET during the planning process must be thoroughly
evaluated.

Defining biological target volumes (BTVs) can result in
substantial changes of target volumes for the planning of
RT, as the size and location of FET is defined by metabolic
activity rather than by the morphologic process of glioma
growth, defined by magnetic resonance imaging
(MRI)[11,12]. This may consequently lead to larger radio-
therapy fields that will irradiate a larger volume of brain
and possible increase of acute or late adverse events. It is
therefore of paramount importance to determine whether
FET can be used to delineate glioma for radiation therapy
and how this method compares to more traditional meth-
ods, such as conventional gross tumour volumes (GTVs)
delineation using MRI.

The purpose of this study was 1) to assess the interrater
variability of high-grade glioma delineation using FET; 2)
to quantify the BTVs and GTVs and to assess their volu-
metric and geometric relationships and 3) to assess the
treatment characteristics after FET PET RT planning.

Methods
Patients
The study population comprised 19 patients (10 females,
9 males), referred to Geneva University Hospital, who
were prospectively entered into a protocol assessing the
value of postoperative FET-PET imaging for the RT plan-
ning of high-grade glioma. The inclusion criteria for the
trial were: 1) the diagnosis of high-grade glioma; 2) resid-
ual tumor on MRI performed ≤ 24 hours postoperatively;
3) Karnofsky performance status ≥ 70; 4) age between 18
years and 70 years; and 5) written informed consent. The
patient's and tumor's characteristics are detailed in Table
1. Patients undergoing stereotactic biopsy were eligible.
Patients presenting de novo or recurrent high-grade glioma
were eligible for this study. No previous RT to the brain or
meninges interfering with the protocol treatment plan
was however allowed for the latter patients. Postoperative
treatment consisted of RT, using a linac with multileaf col-
limation (Varian 2100 CD, Palo Alto, CA), and concomi-
tant temozolomide, followed by adjuvant temozolomide
for all patients[13]. This study was approved by the insti-
tutional ethical committee. All subjects gave written
informed consent for their participation in the study.

PET-CT scan
Patients underwent subtotal resection or stereotactic
biopsy (Table 1) and brain FET PET/CT imaging postoper-
atively (mean, 8.3 days) (Biograph 16; Siemens Medical
Solutions, Erlangen, Germany) using listmode PET data
acquisition at the Department of Nuclear Medicine
between July 2006 and December 2007. One accrued
patient presented with a heterogeneous brainstem mass in
T1-weighted MRI images, with a subtle rim of peripheral
enhancement after gadolinium enhancement, which was
considered a grade IV glioma (Table 1). FET was prepared
at the cyclotron unit of the University Hospital of Zürich.
Patients were placed in scanning position and CT imaging
was performed (120 kVp, 90 mAs, 16 × 1.5 collimation, a
pitch of 0.8 and a 0.5 second rotation) with an individu-
alized immobilization plastic mask. Patients were injected
intravenously with 200 MBq of FET after a 4–6-h fasting
period. The PET data acquisition was started immediately
after tracer injection[14] and was collected in list-mode
format to allow flexible choice of frames. The dynamic
studies (3 × 10 minutes) corresponding to 1 bed position,
were covering the head up to the second cervical vertebral
body. Following Fourier rebinning and model-based scat-
ter correction, PET images were reconstructed using two-
dimensional iterative normalized attenuation-weighted
ordered subsets expectation maximization[15]. The CT-
based attenuation correction map was used to reconstruct
the emission data. The default parameters used were
ordered subsets expectation maximization iterative recon-
struction with four iterations and eight subsets followed
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by a post-processing Gaussian filter (kernel full-with half-
maximal height, 5 mm).

A set of three triangulation lasers (central and laterals)
identical to those used on the linear accelerators were
used for patient accurate positioning. Two-mm thick CT
images were acquired for planning purposes.

Magnetic resonance imaging/CT fusion
Patient's diagnostic 1.5 Tesla MRI (Gyroscan Intera,
Philips, Cleveland, OH) studies (axial T1-weighted with
gadolinium enhancement) were transferred through the
hospital picture archiving communication system (PACS)
to the virtual simulation workstation (AcQSim® System,
Philips Medical System, Cleveland OH) and were fused
with the CT performed during the metabolic imaging. The
head was not immobilized during the preoperative MRI
examination. Acquisition was done using a standard head
coil from the second cervical vertebral body upwards.
Patients' CT and MRI were automatically fused according
to the bony and non-bony anatomy (orbital cavity, clivus,
nasal cavity, mastoid air cells, and optic nerve). The data
from the postoperative MRI, performed within 24 hours
on the same MRI unit, was not fused with the planning CT
but these data (T1- [with gadolinium] and T2- weighted
sequence) were used mainly to assess the extend of resec-
tion and any residual disease was comprehensively
included during the GTV delineation for any residual dis-
ease.

Biological and morphological gross tumor volume 
delineation
First, BTVs, as conceptualized by Ling et al [16], were inde-
pendently contoured by 3 experienced radiation oncolo-
gists (D.C.W, HV and T.Z), one with nuclear medicine
training (H.V), using the Leonardo® platform (Siemens
Medical Solutions/CTI, Knoxville, TN). All brain CT
images were interpreted by an experienced diagnostic
radiologist. The PET, CT, and fused PET/CT images were
displayed for review in axial, coronal, and sagital planes.
All studies were interpreted and reviewed with knowledge
of the patient's clinical history and results of previous
imaging studies. The biopsied tumor, or residual tumor,
defined by FET uptake was delineated manually. Maxi-
mum standardized uptake values (SUVmax) were calcu-
lated for ROIs of focal hyperactivity by dividing the
observed activity per gram in attenuation corrected PET
with the injected activity per gram body weight[17]. A
threshold value of 40% of SUVmax was considered for the
tumor margin in all patients, as FET tumor/brain uptake
ratio may be inappropriate in high-grade glioma
patients[14]. This value was determined previously in a
set of high-grade glioma patients in a delineation compar-
ative study, as the best thresholding value discriminating
optimally the tumoral and background (grey matter in the
opposite hemisphere) maximum SUV[18].

Table 1: Patient characteristics (n = 19)

Characteristics n (%)

Gender

Female 10(53)

Male 9(47)

Age (years)

Median 53.5

Range 20.9 – 75.0

Karnofsky performance status

70 5(26)

80 7(37)

90 3(16)

100 4(21)

Type of surgery

Biopsy 10(52)

Subtotal removal 8(42)

Gross total removal 0(0)

None* 1(5.5)

Histology

Glioma, grade WHO IV* 14(74)

Glioma, grade WHO III 5(26)

MiB1 (%) n = 16

Median 15

Range 5 – 50
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In the delineation process, the same windowing was used.
Each physician (DCW, HV and TZ) manually delineated
the BTVs. Within the Eclipse treatment planning station
(TPS), composite, common and differential BTVs were
generated using a Boolean algorithm. Common BTV (COM-

MONBTV) were defined as the intersection of all observers'
BTVs (COMMONBTV = BTVDCW ∩ BTVHV ∩ BTVTZ). Finally,
differential BTVs were defined as: DIFFBTV = [BTVDCW ∪
BTVHV ∪ BTVTZ] - [BTVDCW ∩ BTVHV ∩ BTVTZ]. Observer's
BTVs, COMMONBTVs and DIFFBTVs were transferred to the
AcQSim® workstation using the PACS for planning pur-
poses. A BTV-interrater agreement was assessed by intrac-
lass correlation coefficient (ICC) computations[19].

Second, gross tumor volume (GTV) was defined as the
residual macroscopic tumor after surgery or biopsy and
the preoperative GTV (gadolinium ring contrast enhance-
ment). GTVs were defined by one radiation oncologist
(D.C.W) in the AcQSim® virtual simulation workstation.

Comparative assessment of the metabolic- and 
morphologic tumor volumes
The GTV data was also transferred from the AcQSim®

workstation to the Eclipse® (Varian Medical Systems, Palo
Alto, CA) TPS, for volume analysis and volumetric com-
parison. The selected BTV for comparison was defined by
one radiation oncologist (D.C.W) for consistency. Clini-
cal target volume (CTV) was defined as the union of the
GTV and BTV (CTV = GTV ∪ BTV). Noteworthy, CTV
defined the volume of microscopic spread but was not
defined as per the ICRU formalism in this prospective pro-
tocol. The common volume between the GTVs and BTVs

was also assessed (COMMONCTV = GTV ∩ BTV). Additionally
the differential CTV (DIFFCTV = [GTV ∪ BTV] - [GTV ∩
BTV]) was computed. The Boolean operator in the
Eclipse® TPS was used for volume measurements and vol-
ume mismatch analysis. In case of BTV/GTV mismatch,
the differential margins of these two volumes were meas-
ured on axial slices.

RT planning
For treatment planning, the MD Anderson Cancer Center
target policy was used[20]. Planning was performed on
the CTVs. The planning target volume (PTV) included the
CTV plus an anisotropic margin of 20 mm, not including
however comprehensively the T2-weighted sequence
hyperintense signal seen on the postoperative MRI.

Treatment characteristics with FET PET planning
As to determine the impact of FET PET-guided RT plan-
ning, the treatment characteristics of the study patients
were retrospectively assessed. The treatment characteris-
tics of 19 other matched high-grade glioma patients
(tumor location, GTV) were also analyzed. The difference
of all study and matched patient's GTV were less than
10%, except for a patient with a brainstem glioblastoma.
For this case and his matched counterpart, GTVs were 4.5
and 2.2 cm3, respectively. Excluding this latter patient, the
median percentage-difference between the study and
matched patients was 0.7% (range, -7.3 – 8.4).

Statistical analysis
We performed all analyses using the Statistical Package for
Social Sciences (SPSS, Ver. 15.1, SPSS Inc, Chicago, IL).
For descriptive analyses of patients' characteristics and
volumes sizes we used percents and mean score. The GTV,
BTV and CTV delineation methods were compared using
the Wilcoxon signed-rank test as numerical data were not
normally distributed. The field size comparisons of the
FET PET-guided- and non-FET PET-guided RT were per-
formed using the Man Whitney U test. Statistical analyses
used to test the interrater reliability of the biological
tumor volume delineation by the three observers were the
intraclass correlation coefficient and analysis of variance
with the expectation to uphold the null hypothesis[19]. A
two-sided random effect model was used. A p value of less
than 0.05 was considered to indicate statistical signifi-
cance.

Results
Abnormal FET uptake was observed in all patients.
Median SUVmax at 0 – 10, 10 – 20, 20 – 30 minutes were
3.05 (range, 0.51 – 4.52), 3.64 (range, 1.6 – 6.31) and
3.77 (range, 1.91 – 7.22), respectively. Fig. 1 details the
BTV contoured by each observer. Mean BTVs for observer
1, 2 and 3 were 35.8 ± 21.7, 39.1 ± 23.6 and 36.3 ± 21.8
cm3, respectively. The interrater agreement was excellent

Glioma

De novo presentation (primary) 17(89)

Secondary 2(11)

Localisation

Frontal 10(52)

Temporal 4(21)

Parietal 3(16)

Thalamus 1(5.5)

Brainstem* 1(5.5)

*Heterogeneous brainstem mass in T1-weighted MRI images, with a 
subtle rim of peripheral enhancement after gadolinium enhancement, 
considered a grade IV glioma in one patient

Table 1: Patient characteristics (n = 19) (Continued)
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(ICC = 0.9) and volumetric difference between observer's
BTV delineation did not reach statistical significance (p =
0.99). The mean COMMONBTV was 32.0 ± 20.1 cm3. The DIFF-
BTV ranged from 0.3 to 19.0 cm3 (mean, 8.0 ± 5.3).

The results of volumetric measurements of GTV, BTV and
CTV are presented in Table 2. The BTVs were usually
larger, but not significantly so (p = 0.9) than their mor-
phologic counterpart: mean BTV and GTV were 35.8 ±
21.7 and 38.4 ± 25.7 cm3, respectively (Table 2).

Unsurprisingly, the CTV, with which the patients were
planned, were significantly larger than the GTV (p < 0.01)
or the BTV (p < 0.01). For the whole group, the mean CTV
was 57.8 ± 30.4 cm3and the mean COMMONCTV was 22.8 ±
15.1 cm3 (Table 2). The DIFFCTV ranged from to 7.6 to 98.3
cm3 (mean 33.8 ± 23.6; Table 2). The mean ratio (COM-

MONCTV)/(CTV) was 37.3% and ranged from 6.8% to
67.5%, indicating a mismatch in a substantial number of

patients. FET uptake was detected up to 34.8 mm beyond
gadolinium enhancement (mean, 15.1 ± 8.1 mm; range,
4.6 – 34.8) in 1 patient. The mean BTV located outside the
GTV was 18.3 ± 12.4 cm3 and ranged from 3.2 to 45.5.
Thus, the percentage of BTV not included in the GTV
ranged from 3.9% to 155.2% (mean, 62.6%), bearing in
mind that occasionally the BTV was larger than the GTV.
In 13 (68%) and 6 (32%) of 19 patients, FET uptake
extended = 10 and 20 mm from the margin of the gado-
linium enhancement. Likewise, gadolinium enhancement
was detected up to 35.9 mm beyond FET uptake (mean,
13.4 ± 9.6 mm; range, 0.0 – 35.9) in 1 patient. The mean
GTV located outside the BTV was 15.0 ± 22.3 cm3and
ranged from 0.0 to 93.8. In 12 (63%) and 4 (21%) of 19
patients, gadolinium enhancement extended = 10 and 20
mm from the margin of the FET uptake. The target vol-
umes are presented in Fig 2, with a relevant case present-
ing a good BTV-GTV matching (Patient # 14, Table 2; Fig.
2). Target volumes of 2 other patients are detailed, pre-

Biological tumor volume measurements by three observers for each high-grade glioma case (1 through 19)Figure 1
Biological tumor volume measurements by three observers for each high-grade glioma case (1 through 19).
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senting with FET uptake located beyond the gadolinium
enhancement (Patient # 8, Table 2; Fig. 3) and gadolin-
ium enhancement located beyond the FET uptake (Patient
# 1, Table 2; Fig. 4), respectively.

The mean number of treatment fields for the FET PET-
guided- and non-FET PET-guided RT were 2.5 (range, 2 –
3) and 2.6 (range, 2 – 4), respectively. The size of the lat-
eral (median, 9.6 vs. 9.1 cm; p = 0.83 and 9.5 vs. 8.2 cm;
p = 0.37) and axial treatment fields (median, 9.6 vs. 8.8

cm; p = 0.33 and 9.5 vs. 8.9 cm; p = 0.37) of FET PET-
guided and non-FET PET-guided RT were not significantly
different.

Discussion
For this prospective study, the choice of FET was dictated
by its easy biosynthesis, in vivo stability and wide clinical
distribution[9,21]. With an 18F-109 minutes half-life, FET-
PET scanning is possible in centers without an in house
cyclotron facility, and thus makes this tracer ideal for
brain imaging in oncology. It is also hypothesized that
FET may be superior to MET, as the former tracer in ani-
mal models exhibits no uptake in inflammatory cells, cer-
ebral abscess and lymph nodes, showing potentially a
higher specificity for the detection of cancer cells [22-24].
In a clinical setting, these two tracers can be however
equally used. Weber et al. reporting on 16 brain tumor
patients observed that the contrast between tumor and
brain was not significantly different between MET and FET
and that MET and FET uptake correlated well (r = 0.98),
although the tracer's kinetics were indeed different[25].
Using FET to define the target volume for conformal RT
necessitates however that the use of this radiolabeled
amino acid for tumor delineation is reproducible and
thus that the interobserver variability during this process
is minimal. Van Laere et al. reported on 30 patients with
suspected recurrent primary brain tumors[26]. A direct
comparison of FDG and MET-PET was performed and the
inter-observer agreement was assessed. It was 100% for
MET and 73% for FDG. Our data are in keeping with these
results, as the interrater correlation during target delinea-
tion using FET was excellent (ICC = 0.9; Fig. 1) and ena-
bled the observer to define the BTV, using the selected
SUVmax threshold value, appropriately.

In their seminal paper, Hochberg et al. have described the
propensity of malignant cell to invade the peritumoral
edema or normal-appearing brain parenchyma. In 35
GBM untreated cases, 29 (> 80%) showed postmortem
macro- and microscopic tumor invasion within a 2-cm
margin of the tumor visualized by CT scan[27]. MRI has
provided an incremental advance in high-grade glioma
imaging. Several series have shown undisputedly that
tumor infiltration, proven with stereotactic biopsies, was
identified in areas congruent with abnormal signal on
MRI images[28,29]. In a biopsy-controlled glioma study,
MET and FET improved the tumor extension delineation
by the combined use of FET-PET and MRI or CT, in com-
parison with conventional imaging alone[30,31]. We are
presently left with the question of how to integrate opti-
mally these various imaging modalities for tumor deline-
ation. Grosu et al. reporting on 39 resected high-grade
patients have shown that only a minority of patients
(13%) had a good morphological and biological tumor
volume concordance[11]. Moreover, a substantial mis-

Table 2: Measurements of tumor volumes in 19 patients with 
high-grade gliomas.

Pt. No. BTV GTV CTV COMMONCTV DIFFCTV

(cm3) (cm3) (cm3) (cm3) (cm3)

1 26.1 30.1 51.3 16.1 34.3

2 61.6 59.9 85.0 52.6 29.7

3 58.6 35.3 78.0 29.6 48.1

4 12.4 24.9 40.6 11.1 28.3

5 65.1 37.2 73.7 36.2 35.6

6 53.8 50.0 66.5 44.9 20.7

7 34.6 22.2 45.4 14.0 30.8

8 62.8 41.2 68.1 41.2 24.4

9 68.5 73.4 120.2 30.7 88.1

10 52.3 63.1 84.4 37.5 43.4

11 22.0 28.8 39.8 14.5 23.6

12 33.7 15.4 40.1 10.7 28.6

13 20.8 113.0 117.6 19.0 98.3

14 26.6 24.0 36.1 22.8 13.2

15 3.9 5.0 10.1 0.7 9.1

16 32.7 39.9 48.5 27.2 19.4

17 6.2 39.0 42.8 2.9 39.3

18 33.7 22.1 40.7 19.6 19.5

19 5.0 4.5 8.8 1.1 7.6
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match between these two volumes was observed: one
patient out of two had MET uptake extension beyond the
hyperintensity signal on T2-weigted MRI. Likewise, gado-
linium extension was observed outside the MET uptake in
a majority (69%) of patients. This morphological and bio-
logical non-conformity has been observed in other
series[12] and is in line with our results (Table 2; Fig. 3
and 4). Consequentially to these published results, the
CTV was prospectively defined as the union of both BTV
and GTV in this protocol. According to the ICRU defini-
tion, CTV should include all region of possible micro-
scopic spread. Using a biologic paradigm, we believe that
this region may be best defined by the summation of the
morphological and biological data and not by a generi-

cally-defined 3D margin. In our series, the region of FET
uptake beyond 20 mm of the Gadolinium enhancement
in one third of patients is however remarkable. In short,
this observation suggests that in a substantial number of
patients the current RT margins may not be appropriate.
This aforementioned consideration should be however
validated in the follow-up of this study. Plan is to fuse the
PD-volumes with the target volumes (i.e. BTV, GTV and
CTV).

In our study, the BTVs were usually larger than their mor-
phologic counterpart (Table 2). This observation is in line
with the German data, which showed that the MET PET
volumes were also larger than the ones defined by gado-

Biological (BTV, blue) and morphological gross tumour (GTV, red) volume defining the clinical target volume in 19 patients with high-grade gliomaFigure 2
Biological (BTV, blue) and morphological gross tumour (GTV, red) volume defining the clinical target volume 
in 19 patients with high-grade glioma. Note the common volume between the tumour volumes (yellow chicken wire). 
Good BTV-GTV matching is shown in 1 patient.
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linium enhancement (19.0 vs. 11.0 cm3). Unlike the
aforementioned data, Mahasittiwat et al. reported smaller
MET PET- (mean, 6.4 cm3), when compared to gadolin-
ium-defined (mean, 92.1 cm3), tumor volumes[12]. The
definition of the amino acid threshold SUV value may
partially explain this discrepancy, although the extent of
surgery could also be a factor. A delineation-threshold
value of 1.7 for the tumor/normal tissue index was used
in both studies. We used a defined percentage of the SUV-

max. Our group has investigated various strategies for FET-
PET high-grade tumor delineation (Vees H, personal com-
munication) using various functional image segmenta-
tion algorithms. This data will be published shortly. It
remains to be determined which segmentation technique
is the most appropriate for glioma delineation, further
research using amino acid for tumor definition is justified
in the framework of prospective protocols.

The use of the combined BTV and GTV for the FET-guided
RT planning resulted in a non-significant increase of the
fields' sizes. The FET-guided RT was however equitoxic to
non-FET-guided RT, as none of the patients presented

with CTCAE grade > 2 acute treatment morbidity (data
not shown). It is somewhat paradoxical that the introduc-
tion of newer imagery modality, such as FET-PET, would
translate into an enlargement of field size, as a result of
the target volume increase. Planning techniques for RT in
high-grade glioma patients, relying on CT or MRI for tar-
get delineation, usually result in a reduction in
PTV[32,33]. As mentioned earlier, our group is currently
following prospectively the patients from the current
study, as to define precisely where the tumoral progres-
sion is located, relative to the BTV, GTV and CTVs. Plan is
to import the diagnostic MRI performed for tumor pro-
gression into our TPS and to assess the BTV and recurrent
tumor volumetric and geometric relationships. Ulti-
mately, if the tumor progression is indeed documented in
the BTV in a majority of cases, it may be advantageous to
administer a simultaneous integrated boost (SIB) to the
BTV, as dose escalation may have a possible effect on sur-
vival as shown in mathematical models using Monte
Carlo simulations[34,35]. Several historical and contem-
porary series have shown however that dose escalation
above 60 Gy, using non-metabolic target volumes, does

substantial BTV-GTV mismatch is also detailed in 2 other patientsFigure 3
substantial BTV-GTV mismatch is also detailed in 2 other patients.
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not result in improved survival but causes, more often
than not, more adverse events [36-39]. Moreover, the fail-
ure pattern analysis of high-grade glioma treated with
high-dose (> 80 Gy) radiation indicates generally a pre-
dominant local pattern, suggesting that the morphologi-
cal-defined tumor volumes are indeed inappropriate[40].
Other series have reported a significant increase in out-
field failures after high dose RT[41,42]. It is however
unclear if this differential failure pattern results from dis-
similar failure definitions or parameters related to RT
techniques or surgery. Boosting the radiation dose to a
limited volume containing [34,35] tumor cells, not iden-
tified by non-metabolic imaging, may be highly desirable,
using amino acids. The SIB paradigm has been success-
fully applied in a small Japanese series, delivering 68 Gy
hypofractionated RT to the GTV, defined as the area of
intensive MET uptake[5].

Conclusion
Using a threshold value of 40% of FET SUVmax for BTV
delineation, the interrater delineation was excellent. FET
PET- and MRI-defined tumor volumes differed substan-

tially. In our series, only a minority (5%) of patients had
good BTV and GTV concordance. The RT planning for
high-grade glioma, based on a biologic paradigm, has
shown a non significant treatment field increase, when
compared to conventionally (i.e. GTV based on MRI
enhancement) planned RT.

Abbreviations
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