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Abstract

Early studies in lower Eukaryotes have defined a role for the members of the NimA related kinase (Nek) family of
protein kinases in cell cycle control. Expansion of the Nek family throughout evolution has been accompanied by
their broader involvement in checkpoint regulation and cilia biology. Moreover, mutations of Nek family members
have been identified as drivers behind the development of ciliopathies and cancer. Recent advances in studying
the physiological roles of Nek family members utilizing mouse genetics and RNAi-mediated knockdown are
revealing intricate associations of Nek family members with fundamental biological processes. Here, we aim to
provide a comprehensive account of our understanding of Nek kinase biology and their involvement in cell cycle,
checkpoint control and cancer.
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Introduction
Deregulation of the cell cycle is a hallmark of neoplastic
transformation and plays a central role in the initiation
and progression of cancer. The fidelity of the cell cycle
is tightly maintained by numerous regulatory proteins,
most notably kinases. Cyclin dependent kinases (CDK),
in complex with their partner cyclins, are considered the
master regulators of the cell cycle. Members of the Aur-
ora and Polo families are also critical components of the
cell cycle machinery. More recently, the NimA related
kinase (Nek) family protein kinases begun to emerge as
important players in regulation of the eukaryotic cell
cycle both during normal cell cycle progression and in
response to genotoxic stress. This review aims to pro-
vide a systematic account of our understanding of Nek
kinase biology and their involvement in disease drawn
from biochemical, cell biology, animal model and
genetic studies.

Nek kinase family
The filamentous fungus Aspergillus nidulans Never in
mitosis A (NimA) is the founding member of the (NEK)
family of serine-threonine kinases, and an essential

regulator of mitosis [1,2]. NimA is required for trans-
port of active CDC2 into the nucleus thus allowing
initiation of mitosis [3]. Moreover, NimA promotes
mitotic chromosome condensation through phosphory-
lation of histone H3 at serine 10 and may regulate
nuclear membrane fission during mitotic exit [4,5].
The critical role for NimA in promoting cell cycle

progression in A.nidulans raised the possibility that
homologues of NimA existed in higher eukaryotes. Con-
sistent with this, overexpression of NimA in S.pombe
and in human HeLa cells induced chromosome conden-
sation in the absence of other mitotic events, such as
the microtubule spindle assembly or Cdc2 activation
[6,7]. Indeed, NimA-related kinases have been identified
throughout higher eukaryotes with a significant expan-
sion of the family through evolution. While a single
NimA homologue exists in yeast, 2, 4 and 11 NimA-
related kinases were identified in D.melanogaster, C.ele-
gans and mammals respectively.
NimA consists of an N-terminal catalytic domain,

coiled-coiled domains, which mediate oligomerization,
and PEST sequences, which participate in ubiquitin-
dependent proteolysis, a process that may be required
for A.nidulans to exit mitosis [8] (Figure 1). NimA
kinase activity exhibits a preference for N-terminal
hydrophobic residues and a phenylalanine at position -3
relative to the phosphorylated residue (FR/KR/KS/T,
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target residue underlined) [9]. Despite low overall
sequence homology, the organizational features of
NimA are broadly conserved among mammalian Nek
kinases. For instance, all Nek kinases except Nek10 con-
tain N-terminal catalytic domains, whereas Nek4, 6 and
7 are the only family members that do not contain
coiled-coiled motifs. Moreover 6 of 11 mammalian Nek
kinases contain putative PEST sequences (Figure 1).
Outside regions of homology, certain Nek kinases

contain unique protein domains that point to the
acquistion of novel functions relative to the ancestral
NimA protein. Nek8 and Nek9 contain regulator of
chromosome condensation (RCC1) repeats, which are
homologous to RCC1, a guanine nucleotide exchange
factor (GEF) for the small GTPase, Ras-related nuclear
protein (Ran). While the role of the RCC1 domain has
not been characterized in Nek8, in Nek9 this domain

acts as a negative regulator of Nek9 catalytic activity
and can interact with Ran. However, there is no evi-
dence that Nek9 can act as a GEF towards Ran [10].
Additional unique domains in Nek family members
include a predicted DEAD-box helicase-like domain
in Nek5 and a cluster of armadillo repeats in Nek10
(Figure 1).
A recent determination of the three dimensional

structure of Nek7 revealed a novel autoinhibitory
sequence within the kinase domain. This tyrosine-down
motif within the nucleotide binding lobe projects into
the active site of the kinase, generating an inactive con-
formation. Activation of Nek6/7 occurs in two distinct
ways, by interaction with Nek9’s non-catalytic C-term-
inal tail, which relieves the autoinhibition, and by direct
Nek9-mediated phosphorylation within the activation
loop [10,11]. An equivalent autoinhibitory tyrosine can
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Figure 1 Alignment of the key structural features of the 11 mammalian NIMA-related kinases and the fungal Aspergillus NIMA kinase.
The relative positions of significant motifs and regions are indicated.
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be found in 8 of 11 Nek kinases (including Nek2 and
Nek6) (Figure 1), and 10% of all human kinases [11].
A divergence in function between mammalian Neks

and the ancestral NimA is highlighted by the fact that
only nim-1 from the related fungus Neosporra crassa
can functionally complement the nimA mutation [12].
Neither the yeast nimA homologues (fin1 in S.pombe;
KIN3 in S.cervisae) nor Nek2, the closest mammalian
nimA homologue, are able to rescue the cell cycle defect
incurred by defects in nimA [13,14]. While mammalian
Nek kinases do not phenocopy the NimA mutation,
they are involved in many aspects of cell cycle progres-
sion. Notably, many of these functions can be attributed
to the regulation of microtubules and microtubule con-
taining structures. More recently, several Nek family
members have also been shown to participate in control
of cell cycle checkpoints following cellular stress and
DNA damage, as well as development of cancer.

Nek kinases, microtubules and microtuble-based
organelles
a) Nek2 in control of centrosome splitting
Based on sequence homology within the kinase domain,
Nek2 is the closest mammalian NimA homologue.
Unlike NimA however, Nek2 is not essential for mitotic
entry, but instead regulates centrosome separation dur-
ing mitosis [15,16]. Nek2 localizes to centrosomes dur-
ing interphase and early mitosis where it interacts with
and phosphorylates several centrosomal proteins includ-
ing cNap-1, Rootletin and b-catenin [16-19]. Nek2 loca-
lization and ability to phosphorylate c-Nap and
Rootletin is mediated by interaction with members of
the Hippo pathway, Mst2 and hSav1 [20]. Inhibition of
Nek2 catalytic activity or knockdown of its’ substrates,
cNap-1, Rootletin or b-catenin, inhibits centrosome
separation, spindle assembly and formation of multinu-
cleated cells [15,18-20]. In addition to the centrosome,
Nek2 localizes to the condensed chromatin, the mid-
body and the kinetochores of dividing NIH3T3 cells
[21]. Significantly, knockdown of Nek2 causes displace-
ment of the centromeric protein Mad2 from the kineto-
chores and impairs chromosome segregation [21].
Taken together, these studies indicate that Nek2 may
coordinate cell division on multiple levels.
A fundamental role of Nek2 in control of the cell

cycle progression and division is strongly corroborated
by its function in early embryogenesis. Downregulation
of Nek2 in one-cell mouse embryos through microin-
jection of dsRNA prevented 75% of the embryos from
reaching the blastocyst stage, with most arresting at
the four-cell stage [22,23]. Most embryos displayed
morphological defects in both mitotic and interphase
blastomeres, forming abnormal spindle structures
and displaying irregular nuclear morphologies,

including dumbbell shaped nuclei, nuclear bridges, and
micronuclei.
b) Nek 6, 7 and 9 and the mitotic spindle
Nek6 and Nek7 are highly related and are almost
entirely composed of catalytic domains, which share
87% identity. While they were originally identified based
on their ability to phosphorylate p70 S6 kinase in vitro,
the physiological significance of this interaction remains
unclear [24,25]. Instead, Nek6 and Nek7 were found to
act downstream of Nek9 and regulate the mitotic spin-
dle and cytokinesis [26]. Specifically, Nek6 or Nek7
depletion led to fragile spindle formation during mitosis
and prolonged the activation of the spindle assembly
checkpoint (SAC) preventing progression to anaphase
[26]. In addition to regulation of spindle formation,
Nek6/7 contribute to the final stage of cell division, as
cells that are treated with pharmacological inhibitors of
the SAC continue to progress through mitosis but arrest
again during cytokinesis [26]. Consistent with these
findings, Nek9 function in spindle dynamics has also
been demonstrated, whereby inhibition of Nek9 through
microinjection of a-Nek9 antibodies impaired spindle
assembly and chromosome alignment during metaphase
[10]. Finally, Nek6, 7 and 9 have recently been impli-
cated in centrosome splitting [27]. In HeLa cells, Nek9
is activated by sequential phosphorylation by CDK1 and
PLK1 during mitosis, which leads to Nek6/7-dependent
phosphorylation of Eg5, and its accumulation at centro-
somes, an event required for centrosome separation
[27].
Taken together, these cell-based studies suggested that

Nek6/7/9 might be critical for regulation of microtubule
organization during mitosis. Indeed, targeted disruption
of the Nek7 gene in mice revealed that this kinase was
indispensable for murine development, with only rare
homozygous-null animals surviving to one month of age
[28]. At birth, Nek7-deficient mice weighed slightly less
than their littermates, but thereafter exhibited severe
growth retardation, weighing roughly half as much as
their littermates by twenty days of age. Furthermore,
Nek7-/- MEFs were frequently found to be bi/multinuc-
lear or mononuclear with enlarged nuclei. Analysis of
metaphase chromosome spreads revealed increased
polyploidy and genetic instability leading to aneuploidy.
Evidence of multi-centrosomes in the binucleated cells,
as well as more frequent incidence of chromosomal lag-
ging and bridges at anaphase or telophase were further
indicative of cytokinesis failures. Interestingly, judged by
the strong phenotypes elicited by Nek7 deletion, despite
their strong homology, Nek6 could not compensate for
loss of Nek7 in both cultured cells and the whole organ-
ism. This may in part be explained by differential tissue
distribution and subcellular localization of Nek6 and 7
[26,29].
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In addition to Nek6, 7 and 9, Nek3 and Nek4 are also
implicated in control of microtubule dynamics. For
example, in post-mitotic neurons, expression of a Nek3
mutant lacking the regulatory phosphorylation site
(T475) within the PEST sequence, believed to act as a
dominant negative, resulted in disruption of microtubule
deacetylation, polarity and overall neuronal morphology
[30]. Finally, knockdown of Nek4 in MCF7 cells altered
the cellular sensitivity to the microtubule poisons taxol
and vincristine, suggesting that Nek4 may also regulate
microtubule dynamics [31].
c) Nek1, Nek8 and Ciliagenesis
Nek kinases prominently feature in the biology of cilia,
which are microtubule-based organelles that are structu-
rally and functionally similar to flagella (reviewed in
[32]). Two types of cilia exist. The motile cilia function
to move extracellular fluid and debris and are found on
certain cell types such as the tracheal epithelia where
they work to sweep debris out of the airway. On the
other hand, primary cilia are present on most cell types
and coordinate the cellular responses with the extracel-
lular environment. Primary cilia form during interphase
from the mother centriole and dissemble prior to mito-
sis (reviewed in [33,34]). Ciliary protein mutations are
the basis of a number of human genetic disorders
termed ciliopathies, including retinal degeneration, poly-
cystic kidney, liver and pancreatic diseases, abnormal-
ities in neural tube closure and skeletal defects
(reviewed in [35]).
Nek kinases were first linked with ciliagenesis with

the discovery that mutations in Nek1 and Nek8 are the
causal events in independent mouse models of polycys-
tic kidney disease (PKD) [36,37]. The Kat and Kat2J
strains, harbor mutations in the NEK1 gene that result
in production of truncated Nek1 proteins. Mice carry-
ing these mutations display facial dysmorphism, dwarf-
ing, male sterility due to testicular hypoplasia and
reduced spermatogenesis, anemia, and progressive
polycystic kidney disease [38,39]. Another model of
PKD is the Jck mouse strain, which harbors a G448V
missense mutation in the C-terminal RCC1 domain of
NEK8 [36,40,41]. The Kat, Kat2J and the Jck strains
recapitulate the characteristics of PKD seen in humans
to varying degrees, with the phenotype of the Jck mice,
in particular, strongly resembling the autosomal domi-
nant human disease. Specifically, Jck mice recapitulate
many of the hallmark features of the human condition,
including onset and sites of the disease, as well as the
abnormal epidermal growth factor receptor (EGFR)
expression and increased cAMP signaling [41].
Recently, loss-of-function Nek1 mutations in 2 families
were identified and found to be the underlying cause
of the ciliopathy, autosomal-recessive short-rib poly-
dactyly syndrome [42].

In vitro work with cultured cells has provided further
insight into the roles of Nek1 and Nek8 in ciliagenesis.
In wildtype kidney epithelial cells, Nek8 localizes to pri-
mary cilia, while in cells derived from Jck mice, mutant
NEK8 exhibits cytoplasmic and perinuclear localization,
which correlates with increased cilia length [41]. In Jck
mice, the expression of the polycystins PC-1 and PC-2
is elevated and while they are ordinarily restricted to the
basal bodies of wild-type cilia, both proteins are found
along the length of the cilia of kidney cells [43]. Notably,
the accumulation of polycystins in cilia has been
reported in other polycystic kidney disease models and
mutations in PC-1 and PC-2 themselves can lead to
PKD [44]. In the case of Nek1, a role in cilia formation
was demonstrated in IMCD3 cells. Overexpression of
Nek1 in these normally ciliated cells derived from the
inner medullary collecting duct of the murine kidney,
led to inhibition of ciliagenesis [45]. This is likely depen-
dent on Nek1 catalytic activity, as a catalytically inactive
mutant of Nek1 while localizing to cilia failed to affect
cilia formation [45].
It has been proposed that the ability to coordinate the

primary cilium with the cell cycle coevolved with the
expansion of the Nek family [34]. For example, A.nidu-
lans and yeast are non-ciliated and only contain a single
NimA-related kinase. In D.melanogaster and C.elegans,
which have 2 and 4 NimA-related kinases respectively,
ciliated cells are terminally differentiated and thus do
not coordinate cilia function with the cell cycle. In con-
trast, organisms such as mammals, Chlamydomonas and
Tetrahymena which feature proliferating ciliated cells
display an expansion of the Nek family, as they contain
11, 10 and 35 members respectively [34].

Nek Kinases and Checkpoint Control
In addition to the established functions during mitosis,
certain Nek kinases also participate in cell cycle regula-
tion following genotoxic stress. All eukaryote cells have
multiple molecular mechanisms to identify and repair
damaged DNA and preserve genomic integrity (reviewed
in [46]). An important aspect of this process is activa-
tion of a checkpoint and induction of cell cycle arrest,
to allow the cell time to repair damage. Cell cycle arrest
can be triggered at G1/S, intra-S and G2/M phases of
the cell cycle following damage caused by endogenous
sources, such as stalled replication forks, or by exogen-
ous agents, including ultraviolet (UV) radiation, ionizing
radiation (IR), reactive oxygen species (ROS) and certain
chemotherapeutic agents. Upon successful repair, the
cell will re-enter the cell cycle.
Checkpoint activation is initiated by the PIKK family

serine/threonine kinases ATM (ataxia-telangiectasia
mutated) and ATR (ATM and rad3-related), and their
effector kinases Chk1/2 (checkpoint kinase 1/2). Parallel
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to Chk1/2 signaling, p38 MAPK and it’s downstream
kinase MK2 (MAPK activated protein kinase 2) have
also been identified as key regulators of cell cycle arrest
(reviewed in [47]). Ultimately, the two checkpoint path-
ways culminate in inactivation of CDKs.
Some of the key molecular targets that mediate check-

point engagement are the transcription factor p53 and
the CDK-activating phosphatases Cdc25A, B and C.
Activation of the ATM/ATR/Chk1/2 cascade leads to
stabilization of p53, and subsequent upregulation of a
number of antiproliferative genes, including p21 [48-53].
While p53 likely contributes to all checkpoints it is
absolutely required for the G1/S cell cycle arrest. Many
human tumors and immortalized cell lines exhibit com-
promised p53 activity and G1/S arrest following damage.
In such cells, the G2/M checkpoint takes on increasing
importance for maintaining genomic stability. Cdc25A,
B and C are inactivated via phosphorylation by mutiple
kinases, including Chk1/2 and Nek11 (reviewed in
[54,55]). Following genotoxic stress, Cdc25A undergoes
ubiquitin-mediated degradation, which occurs in a
Chk1/2-dependent manner [56,57]. On the other hand,
Chk1/2 and/or MK2 phosphorylation of Cdc25B and C
leads to association with 14-3-3 and their cytoplasmic
sequestration, away from their targets CDKs [58-61].
Amongst the Nek family, Nek11 contribution to

checkpoint control has been best characterized. Meliexe-
tian et al. demonstrated that in response to IR, Nek11
gets activated via phosphorylation on S273 by the ATM
effector kinase, Chk1, which also phosphorylates
Cdc25A on S76, priming it for further phosphorylation
within the DSG motif [55]. Significantly, Nek11 acted as
the Cdc25A DSG motif kinase promoting its ubiquitina-
tion and degradation. Consistent with this, HeLa cells
depleted for Nek11 display elevated levels of Cdc25A
protein and fail to undergo IR-induced G2/M arrest
[55].
Nek1 and Nek2 also participate in IR-induced check-

points. For instance, IR of Cos-7 cells results in reduc-
tion of Nek2 catalytic activity, likely in an ATM/
protein-phosphatase-1 (PP-1)-dependent manner, inte-
gral to the IR-induced inhibition of centrosome splitting
[62]. Unlike Nek2, in HK2 and HeLa cells, Nek1 expres-
sion and catalytic activity are elevated in response to IR
[63]. Highlighting the importance of Nek1 levels follow-
ing IR, Nek1-/- cells displayed defective G1/S and G2/M
checkpoints and were unable to repair their DNA, lead-
ing to accumulation of double strand breaks [64]. Nek1
subcellular localization is also regulated by IR. While in
unstimulated cells Nek1 is predominantly cytoplasmic,
following treatment with various genotoxic agents
including IR, UV, etoposide and cisplatin, Nek1 localizes
to g-H2AX positive nuclear foci [63,64]. Significantly,
unlike Nek11 and Nek2, IR-induced changes in Nek1

activity and localization occur independently of ATM/
ATR [65].
Work from our laboratory on Nek10, a previously

uncharacterized Nek family member, has uncovered its
role in G2/M checkpoint control [66]. In response to
UV irradiation, HEK293 and MCF10A cells depleted for
Nek10 displayed an impaired G2/M arrest. Intriguingly,
these studies revealed that Nek10 can promote autoacti-
vation of MEK1 in response to UV irradiation, but not
mitogenic stimuli. While ectopic expression of Nek10
enhanced, its depletion inhibited UV-induced MEK1/2
and ERK1/2 phosphorylation. Nek10 was shown to
interact with both Raf-1 and with MEK1 in a Raf-1-
dependent manner. Surprisingly, Raf-1 was required for
Nek10 complex formation with MEK1, but its catalytic
activity was dispensable for activation of MEK1 in
response to UV irradiation. Instead, MEK1 underwent
auto-activation upon exposure to UV irradiation. Integ-
rin-stimulated MEK1 autophosphorylation has pre-
viously been described in the context of cell adhesion
[67], but unlike the response to UV irradiation, it
required prior phosphorylation at S298 by PAK1.
Regardless of the nature of the upstream signal, MEK1

autoactivation represents an alternate means of ERK
pathway activation. Significantly, ERK1/2 activation has
been linked to checkpoint control upon genotoxic stress,
as well as recovery from cell cycle arrest and DNA
repair [68-71]. MEK1 autophosphorylation can be
detected following UV irradiation, as well as other stres-
sors such as anisomycin and sorbitol treatment, but not
following EGF or PMA stimulation (Moniz L. and Stam-
bolic V., unpublished observation) consistent with the
notion that MEK autoactivation occurs in stimulus-spe-
cific manner. Other means of communication between
Nek kinases and the ERK signalling cascade may also
exist. For instance, during the first meiotic prophase,
Nek2 activity is sensitive to U0126/MEK inhibition,
while in vitro it can be phosphorylated and activated by
p90Rsk2, a downstream target of ERK1/2 [72]. More-
over, Nek2A directly interacts with ERK2 and may spe-
cify its localization to centrosomes [73].

Involvement of Nek Family Members in Cancer
Sequencing and resequencing of cancer genomes has
identified mutations of several Nek family members.
Cancer-associated mutations in Nek kinase genes
appearing in the COSMIC database, a curated catalogue
of somatic mutations identified in sequenced tumors or
cancer cell lines maintained by the Sanger Institute/
Wellcome Trust, are listed in Table 1. As additional
data from sequencing projects is incorporated, further
mutations will undoubtedly be uncovered. Nevertheless,
it remains to be determined which, if any, of the
observed mutations represent driver mutations that
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Table 1 Functions of mammalian Nek kinases

ID Functions Disease associations Cancer Mutations

Nek1 -excess catalytic activity leads to loss of primary
cilia (IMCD3 cells) [45]
-Nek1-/- cells display defective G1/S and G2/M
checkpoints and DNA repair after IR [64]

-mutation is causal in Kat, Kat2J mouse models of PKD [37]
-mutation identified as causal in 2 families with autosomal-recessive
short-rib polydactyly syndrome [42]

tumor samples:
ovarian (C191F,
K779N)
large intestinal
(N181N*)
lung (E25K)
cultured cells:
lung (A294P)

Nek2 -promotes centrosome splitting at G2/M and
chromosome segregation [15,16,73,15,16,21]
-regulates chromosome segregation [73]
-catalytic activity inhibited following IR,
preventing centrosome separation [62]

-elevated expression in: colangiocarcinoma tumors [74,75]
- elevated expression in MDA-MB-231 and MCF7 cells; knockdown
suppresses proliferation in vitro and tumor burden of xenografts in
vivo [75]

tumor samples:
breast (R115Q,
E278K)
stomach (G134D)

Nek3 -regulates microtubule deacetylation in neurons
[30]
-regulates prolactin-mediated cytoskeleton
rearrangement and motility of T47D breast
cancer cells [84]

tumor samples:
ovarian (D413Y)
cultured cells:
stomach(Y398**)

Nek4 - knockdown alters sensitivity of MCF7 cells to
microtubule poisons taxol and vincristine [31]

tumor samples:
large intestinal
(R777K)

Nek5 -uncharacterized tumor samples:
mouth (K201**)

Nek6 -required for mitotic spindle formation and
cytokinesis [26]
-promotes centrosome separation [27]
-activated downstream of Nek9 [85]

-overexpressed in a variety of human tumors [77]
-knockdown inhibits HeLa xenografts [77]
-Nek6 expression downregulated following p53-induced
senescence [78]

tumor samples:
ovarian (Y295C,
Y291Y*)
cultured cells:
kidney (I99S)

Nek7 -required for mitotic spindle formation and
cytokinesis [26]
-promotes centrosome separation [27]
-activated downstream of Nek9 [85]

-rare Nek7-/- mice survive to birth and exhibit severe growth
retardation [28]

tumor samples:
lung (G7**)
ovarian (I275M)
cultured cells:
stomach (M8L,
V285I)

Nek8 -regulation of primary cilia; regulates localization
and expression of ciliary proteins PC-1, PC-2
[40,43]

-mutation is causal in Jck mouse model of PKD [36]
-overexpressed in primary human breast tumors [86]

tumor samples:
liver (G605D)
ovarian (P703***)
stomach (R292Q)
cultured cells:
pancreatic (A197P)
skin (L621F)
stomach (L341P)

Nek9 -regulation of primary cilia; regulates localization
and expression of ciliary proteins PC-1, PC-2
[40,43]

tumor samples:
ovarian (V319***)
cultured cells:
lung (P870S)
stomach (V631I,
R786Q)

Nek10 - regulates establishment of UV-induced G2/M
checkpoint [66]
- interacts with Raf-1/MEK1 to promote MEK1
autoactivation following UV irradiation [66]

-GWAS identified Nek10 as a strong breast cancer susceptibility
locus [80]
- various mutations identified in primary tumours and cancer cells
lines [82]

tumor samples:
ovarian (V319***)
cultured cells:
lung (P870S)
stomach (V631I,
R786Q)

Nek11 -required for G2/M arrest following IR [55]
-activated by Chk1 phosphorylation
-phosphorylates DSG motif of Cdc25A leading to
its ubiquitination and degradation [55]

tumor samples:
ovarian (A66V,
V568I, D875Y, F50L,
S852S*),
lung (R878M)
brain (I783V,
S797S*)
cultured cells:
skin (E379K)

Nek kinase somatic mutations in tumor samples and cultured cells as catalogued in the COSMIC database (Sanger Institute/Wellcome Trust). (*) silent mutations;
(**) nonsense mutations; (***) deletion-frameshift mutations.
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actively promote oncogenesis, and which are merely
passenger mutations created by the genetic instability
endemic to tumorigenesis. In addition to the mutation
data, a series of studies are documenting direct involve-
ment of Nek family members in cell transformation and
tumorigenesis. The following section summarizes results
of such studies.
Nek1
Renal tubular epithelial cells established from Kat2J
mice exhibit abnormal nuclear morphologies including
multinuclei, micronuclei, and bridging chromosomes
[65]. Multipolar spindles, lagging chromosomes, impro-
per chromosome movements, and incomplete cytokin-
esis were also observed during mitosis. As a
consequence of these mitotic defects, populations of
Kat2J cells manifest progressively worsening aneuploidy,
with three quarters of cells having greater than 4N
DNA content after several passages. Indicative of their
transformation, xenograft injection of Kat2J mutant, but
not wild-type renal tubular cells led to formation of
tumors [65]. Consistently, 89% of mice heterozygous at
the Kat2J locus (Nek1+/-) developed lymphomas between
17 and 24 months of age, compared to 30% of wild-type
mice [65]. Importantly, lymphoma cells were devoid of
Nek1 immunoreactivity, suggestive of loss of heterozyg-
osity at this locus.
Nek2
Elevated levels of Nek2 has been found in certain
human cancers, raising the possibility that they may
represent potential therapeutic targets. Colangiocarci-
noma is an aggressive cancer originating in the liver bile
duct epithelium with a markedly poor clinical prognosis.
A cDNA array analysis comparing gene expression in
colangiocarcinoma and normal liver tissue revealed
Nek2 upregulation in these tumors, which was further
confirmed in a subsequent evaluation of seven colangio-
carcinoma cell lines [74]. Significantly, siRNA-mediated
knockdown of Nek2 in xenografts generated by femoral
injection of HuCCT1 colangiocarcinoma cells, attenu-
ated cancer progression. Similar observations were made
in several breast cancer cell lines, both ER-positive and
ER-negative [75]. Namely siRNA-mediated knockdown
of Nek2 in MCF7, MDA-MB-231 and Hs578T mam-
mary carcinoma cell lines suppressed their proliferation,
invasiveness, and anchorage-independent growth in vitro
[75]. Further, Nek2 siRNAs significantly reduced tumor
burden in mice femorally injected with either MCF7
(ER-positive) or MDA-MB-231 (ER-negative) cells [75].
Elevated Nek2 expression has also been noted in col-

orectal cell lines, as well as in tumor biopsies [76]. Simi-
lar to the effects in breast cancer cell lines, Nek2 siRNA
impaired the in vitro proliferation of the DLD-1 and
Colo320 carcinoma cell lines, as well as xenografts gen-
erated by injection of DLD-1 cells [76]. Finally, Nek2

siRNA and Cisplatin displayed an additive suppressive
effect in treating DLD-1 xenografts, suggesting a possi-
ble therapeutic opportunity in targeting Nek kinases
[76].
Nek6
Similar to Nek2, Nek6 is overexpressed in tumors from
a variety of tissues including breast, uterus, colon, ovary,
thyroid, and cervix, as well as a number of associated
carcinoma cell lines [77]. A recent study linking Nek6
to p53-induced senescence has shed light on how Nek6
may promote tumorigenesis. In both human lung fibro-
blasts and EJ human bladder carcinoma cells, Nek6
expression decreased upon p53-induced senescence [78].
Importantly, ectopic expression of Nek6 in EJ cells
reduced markers of senescence, including cell-cycle
arrest, production of reactive oxygen species (ROS) and
senescence-associated b-galactosidase activity caused by
expression of p53 expression or treatment with che-
motherapeutic agents such as doxorubicin [78,79]. Con-
sistently, knockdown of Nek6 suppressed anchorage-
independent growth of several carcinoma cell lines,
including colon (HCT-15), stomach (NCI-N87) and
cevix (HeLa), as well as growth of HeLa xenografts [77].
Nek10
A potential association of Nek10 and cancer was uncov-
ered by a comprehensive genome wide association study
(GWAS) involving over 37,000 breast cancer samples
and 40,000 controls, which identified a strong breast
cancer susceptibility locus within human chromosome
3p24 (p value = 4.1 × 10-23) [80]. Importantly, the sub-
region of 3p24 identified by this GWAS contains only
two genes, Nek10 and the solute carrier family 4,
sodium bicarbonate co-transporter, member 7 (SLC4A7)
[80]. Interestingly, this susceptibility locus associates
with increased risk of breast cancer for BRCA2 but not
BRCA1 mutation carriers [81].
Nek10 may also be subject of direct mutations in can-

cer. Namely, whole genome sequencing of 210 primary
tumors and immortalized human cancer cell lines
uncovered more than a 1000 somatic mutations within
the coding sequences of the 518 predicted human pro-
tein kinases [82,83]. One parameter for distinguishing
driver and passenger mutations is the ratio of non-
synonymous to synonymous mutations appearing in dis-
tinct cancers. In this regard Nek10 is noteworthy in hav-
ing thirteen catalogued missense mutations in six
cancers. Based on mutation frequency, Nek10 was
defined as one of 120 kinases predicted to contain a dri-
ver mutation [82]. This raises the possibility that dis-
rupted Nek10 function contributes to oncogenesis,
though this remains to be formally tested through rigor-
ous experimentation. Of note, Nek10 mutations were
found with the same frequency (4/33) as the mutations
of B-Raf and liver kinase B1 (LKB1), kinases previously
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firmly implicated in tumorigenesis [82]. Nek10 muta-
tions were found in both primary tumors (ovarian
(A66K, V568I, D875Y, F50L), lung (R878M), brain
(I783V)) and cultured cell lines (skin (E379K), lung
(P1115L), pancreas (D665Y, stomach (R878K, R103C))
[82]. While none of the identified mutations map to the
catalytic domain of Nek10, their effect on protein func-
tion is currently unknown.

Summary
Early phenotypic analyses of the mutant fungi for the
archetypal Nek kinase revealed their involvement in cell
cycle regulation. Subsequent studies in yeast and frogs,
and more recently mice, have uncovered the fascinating
intricacy in the control of the cell cycle and its checkpoints
by various members of the Nek family. Further, mutations
of Nek family members have also been identified as drivers
behind the development of ciliopathies and cancer. Recent
emergence of comprehensive cancer genomes is highlight-
ing certain members of the Nek family as targets of fre-
quent mutations. Despite remarkable progress in
understanding the biology of the Nek family, the most
interesting work is yet to be done, fuelled by the advent of
gene knockout, RNAi-mediated knockdown, naturally
occurring mutant and xenograft tumor models.
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