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Abstract
p107 and its related family members Rb and p130 are critical regulators of cellular proliferation and tumorigenesis. Due 
to the extent of functional overlap within the Rb family, it has been difficult to assess which functions are exclusive to 
individual members and which are shared. Like its family members, p107 can bind a variety of cellular proteins to affect 
the expression of many target genes during cell cycle progression. Unlike Rb and p130, p107 is most highly expressed 
during the G1 to S phase transition of the cell cycle in actively dividing cells and accumulating evidence suggests a role 
for p107 during DNA replication. The specific roles for p107 during differentiation and development are less clear, 
although emerging studies suggest that it can cooperate with other Rb family members to control differentiation in 
multiple cell lineages. As a tumor suppressor, p107 is not as potent as Rb, yet studies in knockout mice have revealed 
some tumor suppressor functions in mice, depending on the context. In this review, we identify the unique and 
overlapping functions of p107 during the cell cycle, differentiation, and tumorigenesis.

Review
Introduction
The Rb tumor suppressor was first identified as the gene
whose loss causes hereditary retinoblastoma in children
[1-4]. Further studies identified a variety of cancers with
mutations in the Rb gene or deregulation of the Rb path-
way, leading to the hypothesis that Rb is a major tumor
suppressor whose loss of function is a common factor in
most human tumors [5]. Independent studies with viral
oncogenes such as SV40 Large T antigen, adenovirus
E1A, and human papilloma virus E7 showed that Rb
could be bound and inactivated by these oncoproteins,
leading to the transformation of various cell types [6-11].
These discoveries have paved the way for over 20 years of
studies on the mechanisms of cell cycle control and
tumor suppression. But Rb was not the only protein that
could bind to these viral oncoproteins, and the exact
regions necessary for binding to Rb could also bind two
other cellular proteins, eventually identified as p107 and
p130 [11-13]. Together, the Rb gene family makes up a
critical component of the cell cycle machinery and is con-
served across many species [Reviewed in [14]]. However,
we still do not have the answers to many essential ques-
tions about how these genes function and in what cellular
context they are required for cell cycle control and tumor

suppression. Additionally, the overlapping functions of
each of the three genes further complicates our under-
standing of how they control critical cellular functions
such as exit from and entry into the cell cycle, differentia-
tion, and cell death. We will focus this review on our
understanding of p107 and what is known about its func-
tions in the cell cycle, cellular differentiation, and tumor
suppression.

Evolution of the Rb gene family
Rb-related genes can be found across multiple species,
including humans, mice, chickens, reptiles, flies, and even
some plants. Most unicellular and lower organisms have
only one Rb-related gene, while higher organisms tend to
have two or three family members, perhaps reflecting an
increasing complexity of cell cycle control in these spe-
cies. For example, the unicellular alga Chlamydomonas
reinhardtii only contains one Rb-like gene (mat3), whose
loss leads to a deregulation of proliferation and a reduced
cell size [15]. In yeast, the gene Whi5 appears to play a
functionally similar role to Rb, despite a lack of sequence
homology [16-18]. Most plant species seem to contain
only one Rb-related gene, although recently a second Rb-
related gene was identified in maize and rice [19,20].
Caenorhabditis elegans also contains one Rb-like gene,
lin-35, which in sequence homology is more similar to
p107 than to Rb [21]. Further up the evolutionary scale,
an independent gene duplication is thought to have cre-
ated two Rb-related genes in Drosophila, RBF1 and RBF2
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[22-24]. Like lin35 in C. elegans, these two genes are more
similar to mammalian p107 and p130 than they are to Rb
itself. Interestingly, the gene duplication events in plants
and flies are only two examples of many duplication
events within the Rb-family over the course of evolution
as additional duplication events have occurred in Gallus
gallus (chicken), Danio rerio (zebrafish), and Anolis caro-
linensis (lizard) (Figure 1).

Based on the sequence similarities, many of the Rb-
related genes in non-mammals resemble p107 or p130
more so than Rb, suggesting that Rb is likely to be the
more recent addition to the family. In other words, p107
and p130 may be closer in sequence to the ancestral Rb
gene than Rb itself. Regardless, it is striking that an ances-
tral Rb-like gene existed and has evolved across numer-
ous species, often independently undergoing duplication
multiple times throughout evolution. Furthermore, once
duplicated, these Rb-related genes independently evolved
complex regulatory systems in which one Rb-related gene
can be transcriptionally regulated by the other, as was
observed in flies, plants, and mammals [25-27]. This
repeated and independent evolution of the gene family
and its associated regulatory networks emphasize the
critical role the Rb-related genes share in controlling the
cell cycle across many different species. But why is there
such a strong selection for multiple Rb genes across so
many species? If two or more genes performed identical
functions, then there would be no selection to keep all of
them throughout evolution. One explanation for the
selection to keep multiple Rb family members is that they
have evolved unique functions in addition to their over-

lapping functions, which would allow for individual
members to be essential in different cellular processes or
cell types [28,29]. Another explanation is that they may
individually become more specialized after duplication,
with one gene losing some functions in favor of others
[28,30]. Finally, it is also possible that the regulatory
regions surrounding the Rb family genes become
mutated instead of the coding sequence itself [30]. This
type of mutation would allow the proteins to retain
redundant functions, but be regulated in different ways
or expressed in different patterns throughout the organ-
ism. Given the wide variety of ways in which the individ-
ual Rb family members are expressed and their unique
and overlapping cellular functions in different organisms,
it is likely that the Rb gene family underwent multiple
rounds of subfunctionalization and neofunctionalization
over time. These observations raise the question of why
p107 was retained throughout the evolution of higher
organisms, and what specific functions it performs in
mammalian cells.

Characterization and expression
p107, or Rb-like 1 (Rbl1) as it was originally named, was
identified through its interaction with SV40 Large T anti-
gen and adenovirus E1A [31]. Structurally, p107 contains
a bipartite pocket structure similar to Rb, but it shares
more sequence homology with p130. Both p107 and p130
contain the A and B regions of the pocket domain sepa-
rated by a spacer region. Both p107 and p130 also contain
insertions in the C-terminal B pocket that are absent
from Rb, as well as a distinct Cyclin-binding domain in
the spacer region between the A and B pocket domains.
Additionally, p107 and p130 also contain a Cdk inhibitor
domain in the N-terminus that is not present in Rb (Fig-
ure 2).

Unlike Rb and p130, p107 levels are generally, but not
always, low in quiescent and differentiated cells and
higher when cells proliferate [32-37]. p107 molecules can
be detected in both the cytoplasm and the nucleus in var-
ious cell types. It is thought that p107 binds to repressor
E2F family members such E2F4 in the cytoplasm to bring
these repressors to their target genes in the nucleus
[38,39]. During G1 and in early S phase of the cell cycle,
high-resolution deconvolution microscopy has revealed
that p107 and its family members can be found in perinu-
clear foci, where they co-localize with E2Fs and HDAC
proteins [40,41]. These complexes are largely found in
interchromatin regions, where active transcription is
thought to occur. Whereas p130/E2F4 complexes are
mainly found in G0 and G1 phase, p107/E2F4 complexes
increase after G1 and are largely found in S phase [41].
These data suggest that p107 can recruit transcription
factors from the cytoplasm and the nucleus to regulate

Figure 1 Phylogenetic tree illustrating the evolutionary relation-
ships among Rb family homologs in several different species. 
Branch length corresponds to the estimated evolutionary distance be-
tween protein sequences. The protein sequence homology is shown 
in blocks on the right. Tree was constructed using the Alignment Ana-
lyzer from the Sol Genomics Network [137]. These observations sug-
gest that the ancestral Rb family gene was closer to p107 or p130 than 
to Rb itself.
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transcription at the promoters of actively transcribed
genes.

Of the three Rb family members, p107 is thought to be
the most heavily regulated at the transcriptional level
[26,36]. p107 itself is a known E2F target gene, containing
two E2F consensus sites in its promoter [27]. Upon Rb
ablation, increased E2F activity is thought to cause an
increase in p107 expression, which may be able to com-
pensate for the loss of Rb in certain contexts [42-44].
Indeed, many cell types express increased levels of p107
in the absence of Rb [45-49]. One hypothesis is that Rb
directly controls p107 expression through direct binding
to E2Fs at the p107 promoter. Interestingly, in the absence
of p107, no significant increase is seen in Rb or p130 [50],
suggesting that one of the main functions of p107 may be
to serve as a backup for loss of Rb.

Cell cycle functions
p107, like p130 and Rb, is a substrate for Cyclin/Cdk
kinase activity during cell cycle progression, which is
thought to cause p107 to release E2F transcription factors
and relieve repression of target gene promoters [51-54].
In quiescent cells, p107 is usually expressed at low levels
and is generally hypophosphorylated similarly to Rb;
p107 becomes phosphorylated as cells progress towards S
phase, with the first phosphorylation events occurring
roughly when Cyclin D/Cdk4 is activated [33,55]. Thus,
the highest expression levels of p107 in S phase correlate
to a time when the protein is functionally deactivated by
phosphorylation. After S phase, p107 remains phospho-
rylated throughout the rest of the cell cycle until the next
G1 phase, when it is rapidly dephosphorylated, presum-
ably by phosphatase 2A, and can bind E2F target genes in

late G1 and S phase before it is hyperphosphorylated
again [56-59].

Once bound to E2Fs, Rb family members repress tran-
scription through a variety of methods. The Rb family
can directly recruit chromatin modifying enzymes such
as histone deacetylase HDAC1 (Figure 2), which alters
chromatin structure around the E2F site to repress tran-
scription at E2F target genes [60-68]; alternatively, Rb
family members may interfere with pre-initiation com-
plex assembly at the promoters of E2F target genes [69].
While Rb mainly associates with E2F1, E2F2, E2F3, and
E2F4 in vivo, p107 preferentially binds to E2F4 and E2F5
at the promoters of E2F target genes in cycling cells [70-
77]. In quiescent cells, p107 levels are generally low, and
not detected at target gene promoters [56]. In the absence
of Rb, however, p107 may play a compensatory role and
can be found in complex with E2F1-3 [70], and transcrip-
tion of E2F targets can be regulated normally, at least in
certain contexts [45]. Interestingly, in the combined
absence of p107 and p130, some E2F target genes are
deregulated such as those coding for E2F1, Cyclin A2, B-
myb, DHFR, and Cdc2, and these targets are different
than the ones deregulated in the absence of Rb [45]. This
evidence suggests that Rb cannot compensate for the loss
of p107 and p130 at certain promoters, and that certain
E2F target genes rely on either Rb or p107/p130 for nor-
mal expression and regulation. While the basis for this
specificity is unknown, it points to some unique func-
tions of p107 and p130 that are distinct from Rb. A
remaining question is whether p107 and p130 themselves
share the same targets, or whether they each bind to a
distinct set of E2F target genes in vivo. Future experi-
ments should aim to identify more extensive sets of target
genes bound by individual Rb family members in various
cellular contexts. Experiments such as genome-wide
chromatin immunoprecipitation followed by sequencing
(ChIP-Seq) with antibodies specific to p107, p130, and Rb
in different cell types or at different phases of the cell
cycle may help to shed light on this question.

In addition to its role as a transcriptional repressor of
E2F activity, p107 may also control entry into S phase by
regulating the levels of the F-box protein Skp2 within a
cycling cell. p107 can down-regulate Skp2 levels, causing
the stabilization of the cell cycle inhibitor p27 [78]. Stabi-
lized p27 can then bind and inhibit Cyclin E/Cdk2 com-
plexes, which are essential for the progression into S
phase [78,79].

Recent evidence further points to a unique role for
p107 during S phase, in addition to its function in late G1.
While SAOS-2 cells transiently transfected with physio-
logic levels of Rb arrest in G1, the same cells transfected
with physiologic levels of p107 arrest in both G1 and S
phase [80]. A small pool of under-phosphorylated p107

Figure 2 Schematic diagram of the shared domains for p107, 
p130, and Rb. p107 and p130 are more similar to each other than to 
Rb due to more extensive sequence homology and the shared Cyclin 
binding and Cdk inhibitory domains. Regions of p107 known to be im-
portant for specific protein interactions are shown above in blocked 
lines. The minimal sequences required for binding Sp1 and B-myb 
have not yet been identified, however the region N-terminal from the 
pocket domains has been shown to be critical for binding to both pro-
teins.
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persists throughout S-phase, and this pool may interact
with other cell cycle regulators such as Smad3 to repress
transcription of cell cycle genes like c-Myc [77]. In
response to DNA damaging agents such as UV irradia-
tion or addition of cisplatin, p107 can be rapidly dephos-
phorylated in cells progressing though S phase [81,82],
and the phosphatase responsible for the de-phosphoryla-
tion of p107 may be protein phosphatase 2A [59,82]. This
increase in hypophosphorylated p107 in response to
DNA damage is independent of p53 or p21 activity, as
cells with a null mutation in either inhibitor can still
dephosphorylate p107 after DNA damage [82]. This evi-
dence suggests a model in which massive dephosphoryla-
tion of p107 in response to genotoxic stress can
contribute to the DNA damage response by invoking cell
cycle arrest, although the exact mechanisms for how
p107 induces an S-phase arrest are still unknown.

p107 and p130 bind to and inhibit Cyclin E/Cdk2 and
Cyclin A/Cdk2 kinases through a unique spacer region in
between the A and B pockets that is not present in Rb
(Figure 2) [52,74,83-89]. This region is phosphorylated
when bound by Cyclin/Cdk complexes [88]. In addition
to the spacer region, there is a domain in the amino-ter-
minus of both pl07 and p130 that can inhibit Cyclin/Cdk
kinase activity similarly to the Cyclin-dependant kinase
inhibitors p21 and p27 [83,88,89]. p107/Cyclin/Cdk com-
plexes can be found in two distinct populations within a
cell: those that contain E2F4/DP complexes and those
that do not [89]. Recent evidence suggests that Cyclin D1
itself can bind to the promoters of many genes [90], and it
would be interesting to determine whether Cyclin D
binding had any correlation to known p107 or E2F target
genes.

Through its N-terminus region, p107 binds the tran-
scription factor Sp1 and represses Sp1 transcriptional
activation, and this interaction may be unique to p107
among Rb family members [91,92]. In transient transfec-
tion assays [91], p107 can repress Sp1 transcription acti-
vation, and endogenous Sp1/p107/E2F4 complexes have
been identified at the promoter of the Fgfr1 gene in chick
myoblasts [92]. Additionally, the N-terminal domain of
p107 can bind to the transcription factor B-myb, which
competes with binding of Cyclin/Cdk complexes and pre-
vents their sequestration by p107 [93]. The N-terminus of
p107 can also bind to Smad3 in response to TGFβ signal-
ing, and in this context p107 serves as an adaptor that is
required to bring both E2F4-5/DP complexes and Smad3
to the nucleus. Once in the nucleus, p107/E2F4-5/Smad3
complexes bind to the promoter of c-Myc and repress its
transcription. This interaction can explain how TGFβ sig-
naling is able to selectively repress c-Myc transcription
upstream of Cyclin/Cdk inactivation, and it is a unique
function of p107, as Rb and p130 are unable to bind to
Smad3 [77]. Interestingly, p107 can also directly bind c-

Myc through the pocket domain and prevent its transac-
tivation in transient transfection assays [94,95]. These
experiments provide additional evidence for the many
ways in which p107 is able to inhibit cell cycle progres-
sion through multiple interactions with various transcrip-
tion factors and other proteins in addition to E2F
(Summarized in Table 1).

In vivo phenotypes for loss of p107 function in mice
Proper development requires the tight integration of cell
cycle control, differentiation signals, migration, and cell
death. Interestingly, numerous studies have demon-
strated that Rb can not only affect cell cycle arrest in mul-
tiple cell lineages, but it can also interact with tissue-
specific differentiation factors to promote the transcrip-
tion of differentiation genes [Reviewed in [96-98]]. Like
Rb, p107 has also been implicated in the regulation of
numerous cell types during development, however its
specific functions in different cell types are much less well
defined. Does p107 affect differentiation largely though
its influence on cell cycle control? Or can it, like Rb, inte-
grate control of classical cell cycle genes and tissue-spe-
cific differentiation genes?

p107-deficient mice in a mixed 129/Sv:C57/BL6 back-
ground are viable and fertile, and mouse embryonic fibro-
blasts (MEFs) derived from these animals display no
significant cell cycle defects [50]. Interestingly, p107-defi-
cient mice in a Balb/c background show a severe postna-
tal growth deficiency, as well as myeloid hyperplasia in
the spleen and liver. MEFs and myoblasts derived from
these animals exhibit increased proliferation that was
associated with constitutive expression of Cyclin E [99].
These mice have a significant decrease in white adipose
tissue differentiation, although this decrease in differenti-
ation was shown to be due to the fact that p107-/- pre-adi-
pocytes could not upregulate Rb, which is required to
initiate differentiation in vivo through interaction with
Pgc1α [100].

p107 and p130 seem to play overlapping roles during
embryonic development in the mouse, and one reason for
the lack of severe phenotypes in the p107-/- mouse may be
due to compensation from p130 or Rb. p107-/-;p130-/-

embryos die at birth with multiple defects in tissue devel-
opment. Interfollicular keratinocytes from p107-/-;p130-/-

newborns show impaired terminal differentiation in the
epidermis, decreased numbers of hair follicles, and a
developmental delay in hair, whisker, and tooth formation
[101]. These defects may be due to a general decrease in
the amount of critical signaling molecules such as BMP
and p63 in the double knockout epidermis, and implies
that p107 can contribute to epithelial development along
with p130.

p107 has also been implicated in the control of bone
and cartilage development. Double knockout p107-/-
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;p130-/- embryos as well as p107-/-;p27-/- embryos display
defects in ossification of the long bones and chondrocyte
proliferation [102,103]. During chondrogenesis, FGF sig-
naling induces a potent cell cycle arrest, and dephospho-
rylation of p107 is one of the earliest distinguishing
events during this process, occurring 10-11 hours sooner
than dephosphorylation of Rb and p130 [104]. Overex-
pression of Cyclin/Cdk complexes in developing chon-
drocytes prevented the dephosphorylation of p107 and
completely abolished the growth suppression affects
mediated by FGF signaling [58]. Biochemical studies in
these cells have identified an interaction between the pro-
tein phosphatase PP2A and p107, suggesting a model in
which FGF signaling stimulates PP2A to rapidly dephos-
phorylate p107, which results in a robust cell cycle arrest
(Figure 3). Interestingly, FGF signaling in most other cells
types has the opposite affect on cell growth; FGF signal-
ing in these tissues triggers rapid phosphorylation of Rb
family members and cell proliferation.

In the adult mouse brain, p107 expression is unique
from the other Rb family members in that it is restricted
to cycling progenitor cells in the ventricular zone, and its
expression decreases as these cells begin to differentiate
into cortical neurons [46,105]. Rb itself remains fairly
consistently expressed throughout the transition from

progenitor to neuron, and p130 expression increases with
neuronal differentiation [106,107]. In the developing cor-
tex of the mammalian brain, p107 may regulate the deci-
sion for a progenitor cell to exit the cell cycle and commit
to a neuronal fate (Figure 3). p107 has been shown to neg-
atively regulate neural precursor cell self-renewal both in
vitro and in vivo [105]. Newly committed neurons that
lack p107 die in the ventricular zone (VZ) before they can
begin migrating out of the VZ or express markers associ-
ated with neuronal differentiation [108]. This apoptosis
in the ventricular zone causes mice without p107 to have
decreased numbers of neurons in the developing frontal
cortex.

The mechanisms for how p107 can control cell cycle
exit and fate decisions in neural progenitors are still rela-
tively unknown. One potential explanation is that p107
acts through the repression of Hes1, a key downstream
target of the Notch signaling pathway, since p107-defi-
cient animals display increased Hes1 signaling (Figure 3).
Several E2F binding sites have been located in the Hes1
promoter, and loss of one allele of Hes1 is enough to par-
tially restore the numbers of neural progenitors to wild
type levels in p107-/- brains [108]. This interaction seems
to be specific to p107, as Rb cannot repress the expres-
sion of the Hes1 promoter in luciferase assays. To date,

Table 1: Summary of functional differences between p107, Rb, and p130.

Function p107 p130 Rb References

Binds to Smad3 yes no no [77]

Binds to Sp1 yes no no [91]

Binds to c-Myc yes unknown no [94,95]

Binds to Cyclins yes yes no [51,83-86,89,140]

Regulates 
chrondrocyte 

development in vivo

yes yes no [58,102-104,139]

Regulates neural 
precursor populations 
through FGF and Hes1 

in vivo

yes no no [105,108,112]

Regulates cerebellar 
granule cell survival

yes no yes [113]

Tumor suppressor weak weak yes [44,49,122,123,129,131
-133,141]
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however, Hes1 has yet to be proven to be a direct target of
p107.

p107 may also be acting through the FGF growth factor
signaling pathway to control the numbers of neural pre-
cursors in embryonic and adult brains (Figure 3). FGF is a
critical factor to promote the proliferation and survival of
neural precursors in the developing embryonic brain
[109-111]. Like Hes1, the expression of Fgf2 (but not Fgf1,
Fgfr1, or Fgfr2) is increased in neural progenitors of p107-
deficient brains. Recently, p107 was shown to repress
E2F3 activity at the promoter of Fgf2, an essential growth
factor that modulates the population of neural precursors
in the developing brain [112]. However, this model for
p107 regulation of neural precursors does not explain
why the increase in cell death observed in p107-/- brains,
as increased FGF2 would be expected to promote sur-
vival. Therefore, the mechanisms driving apoptosis in
p107-/- progenitors may be independent of FGF2 signal-
ing, and have yet to be identified.

The two examples in chondrocytes and neurons sug-
gest a scenario in which FGF signaling can indirectly acti-
vate p107, which could then repress FGF signaling
through direct promoter binding. Although this feedback
loop between p107 and FGF has yet to be identified
within one specific cell type, it suggests the potential for a
complex regulatory system for p107 and growth signaling
during development.

Recent studies have uncovered functions of p107 that
overlap with Rb during development. Additional loss of
p107 shortened the lifespan of Rb-/- embryos from birth

to E14.5, and further increased the abnormal levels of
proliferation and apoptosis that are present in the central
nervous system and the ocular lens of Rb-deficient
embryos. Mutation of p107 in an Rb-deficient back-
ground also caused heart development defects that were
not seen in the Rb-deficient or p107-deficient embryos
alone. These heart defects are likely the result of blood
vessel endothelium and endocardial cell proliferation in
the absence of both Rb and p107. Additionally, the cere-
bellar architecture is severely disrupted in adult mice
lacking both Rb and p107 in the dorsal mid-hind brain
junction, and these mice exhibit impaired terminal differ-
entiation and migration defects in granule cell precur-
sors, in addition to increased granule cell apoptosis upon
maturation [113]. While the mechanisms underlying
these defects are unknown, it is possible that p107 may be
acting as a co-factor for neuron-specific proteins such as
NeuroD1 [114], a basic helix-loop-helix transcription fac-
tor known to be important in the development of mature
neurons [115]. Thus, p107 can partially or fully compen-
sate for the loss of Rb in several tissues during develop-
ment.

Tumor suppression
Rb is mutated in a variety of sporadic and familiar human
cancers, most notably in pediatric retinoblastoma and
osteosarcoma. Mutations in p107 itself have not been
observed in human tumors [116]. So far, the only
observed deletion of p107 has been characterized in
myeloproliferative disorders, where a large region of
chromosome 20q containing up to 115 genes is deleted
[116-118]. Despite the lack of mutation or deletion of
p107 in human tumors, it still may play a role in tumori-
genesis, as mutations in upstream regulators of the Rb
family are common [119,120]. Inactivation of inhibitors
such as p16, or activating mutations in Cyclin/Cdk com-
plexes functionally inactivate Rb, p107, and p130 by
hyperphosphorylation, suggesting that inactivation of all
three Rb family members is necessary for tumorigenesis
in multiple settings [116]. This finding highlights the abil-
ity of the Rb family proteins to fulfill overlapping or
redundant roles in a variety of cellular contexts.

It is clear that p107 is not a strong tumor suppressor by
itself, as mice with mutations in p107 do not develop
spontaneous tumors [102]. Since p107 and p130 have
overlapping functions during development, it was postu-
lated that compound mutation of both genes might give
rise to tumors in mice. Studies of heterozygous p107+/-

;p130-/- and p107-/-;p130+/- mice revealed no spontaneous
loss of either p107 or p130 allele and no obvious tumor
phenotypes [121]. While cancer development in adult
p107-/-;p130-/- mice has not been described, these studies
suggest that p107 and p130 do not by themselves have
tumor suppressor functions in the mouse. However, these

Figure 3 Proposed mechanisms for how p107 can control neu-
ronal differentiation and endochondral bone formation. p107 can 
bind to E2Fs and potentially inhibit the transcription of Hes1 and Fgf2, 
two genes involved in cell cycle control, survival, and cell fate decisions 
during neurogenesis (left panel). During endochondral bone forma-
tion in mesenchymal progenitors, FGF signaling can induce the direct 
binding and de-phosphorylation is p107 by PP2A, which then leads to 
p107-mediated repression of target genes. Although the direct targets 
of p107 in this context have yet to be identified, candidates such as 
E2F1 and Cbfa1 have both shown to be critical mediators of bone and 
chondrocyte development and are deregulated in the absence of 
p107 and p130 [138,139].
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observations do not exclude the possibility that p107 and/
or p130 may act as tumor suppressors in other contexts.

Interestingly, in the context of Rb loss, p107 can con-
tribute some tumor suppressor functions within a cell
(Table 2). Mice with mutations in Rb specifically in the
epidermis develop epidermal hyperplasia and hyperkera-
tosis, however these mice do not develop tumors. Com-
pound mutation of both Rb and p107 leads to
papillomatous lesions within about 4 weeks; these lesions
progress to squamous cell carcinomas shortly thereafter
[122]. Just one wild-type allele of p107 is enough to con-
fer tumor suppression in this tissue [122,123]. Interest-
ingly, one allele of p107 is also sufficient to confer tumor
suppression in studies of myeloproliferation in Rb family
triple knock out mice [124,125]. The lung epithelium is
also sensitive to p107 loss in the absence of Rb. Rb-/-;p107-

/- lungs show increased proliferation compared to Rb-/-

lungs, and double knockout lung epithelia develop ade-
nomas or adenocarcinomas by 5 to 15 months of age. In
contrast, Rb-/-;p130-/- lungs did not develop spontaneous
tumors in this setting, indicating that p107, but not p130,
can enhance Rb tumor suppressor activity in the lung epi-
thelium [126].

While mutations of Rb in human patients predispose
them to retinoblastoma and osteosarcoma, mice with
mutations in Rb develop an entirely different spectrum of
tumors; pituitary and thyroid tumors are the most com-
mon malignancies, but not retinoblastoma or osteosar-
coma. This unexpected tumor spectrum in Rb-deficient
mice may be due to a functional compensation by p107 or
p130. Indeed, some evidence exists for an upregulation of
p107 protein in the absence of Rb in murine retinas, as
discussed above [127]. A critical question, however, is
whether p107 and p130 can suppress tumorigenesis simi-
larly to Rb, or whether they have different tumor suppres-
sor capabilities altogether. p107 is expressed highly in
retinal progenitors as they actively cycle during the late-
stages of embryonic development. p130, on the other
hand, is only expressed at later postnatal stages of devel-
opment in post-mitotic neurons [45,127,128]. Consistent
with this observation, the combined loss of Rb and p107
during embryogenesis resulted in massive retinal dyspla-
sia, whereas compound deletion of Rb and p130 had the
same affect as deleting Rb alone [129]. Massive retinal
dysplasia is also seen in adult chimeric mouse models
lacking both Rb and p107 in the retina [129,130]. These
results pointed to a potential role for p107 in suppressing
retinoblastoma in mice. The use of the Cre-lox technol-
ogy and conditional mouse models revealed further
insights into the tumor suppressor functions of p107.
Retina-specific deletion of Rb on a p107-/- background
with Pax6α -Cre or Chx10-Cre mice leads to predomi-
nantly unilateral retinoblastomas with about 60% pene-
trance. Interestingly, Rb-/-;p130-/- retinas in the same

system develop bilateral tumors with half of the tumor
latency [131,132]. The slower kinetics and partial pene-
trance of the Rb-/-;p107-/- retinas suggests that p107 muta-
tion in this context is not always sufficient for
tumorigenesis. A critical question that remains from
these studies is whether the Rb-/-;p107-/- tumors still
retain functional p130 [131]. Interestingly, mouse retinas
with triple compound mutation of Rb, p107, and p53
develop much more aggressive bilateral retinoblastoma in
only a few months [44], suggesting that indeed, additional
mutations are necessary for retinoblastoma formation in
this context.

While it appears that p130 is a more potent tumor sup-
pressor than p107 in retinal progenitors, p107 can still
function as a tumor suppressor in specific cell types in
the mouse retina. Studies of post-mitotic differentiated
neurons of the inner nuclear layer (INL) of the retina
showed that Rb expression was redundant with p130
[127]. In the absence of both Rb and p130 in this cell type,
presence of p107 was sufficient to prevent retinoblas-
toma. However, in the absence of even one copy in this
context, p107 was shown to be haploinsufficient for retin-
oblastoma development. Aggressive retinoblastomas
arise from Chx10-Cre;Rblox/lox; p130-/-;p107+/- horizontal
neurons several weeks faster than retinoblastomas from
Chx10-Cre; Rblox/lox; p130-/- retinas [133]. Thus, it appears
that in the INL of the retina, one copy of p107 is not
enough to prevent tumorigenesis, whereas in other con-
texts, such as in hematopoietic progenitors, one copy of
p107 is strong enough to prevent tumorigenesis [124].
The mechanisms underlying these contextual differences
have yet to be identified.

Rb-heterozygosity results in retinoblastoma with 100%
penetrance in humans but is not sufficient to cause retin-
oblastoma in mice. This difference in mice may be due to
the ability for other family members, namely p107, to
compensate for the loss of Rb in this context [127]. Inter-
estingly, human retinal cells do not upregulate p107 in
response to Rb loss, whereas mouse retinal cells do [127].
This difference may be due to different transcriptional
regulation of p107 expression in mouse and human reti-
nas; both mouse and human p107 promoters contain two
tandem E2F binding sites. The mouse promoter has a sin-
gle point mutation in the proximal 3' E2F site that may
affect the binding of E2Fs or other transcriptional
machinery that is recruited there [27]. Alternatively, dif-
ferences in the surrounding promoter regions may be
able to explain why one species can upregulate p107 in
response to Rb loss in specific contexts, while the other
cannot. These differences in p107 transcriptional regula-
tion may also be seen within the different tissues of the
same organism. For example, if deregulation of the Rb
pathway can be found in almost all human tumors, why,
then, do Rb-heterozygous patients primarily only develop
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Table 2: Summary of p107-deficient mouse models and their phenotypes.

Genotype Strategy Lethality Major Phenotypes References

p107-/-(Balb/c) Germline Viable Ectopic myeloid hyperplasia in the spleen and liver, severe 
postnatal growth deficiency, fibroblasts and myoblasts 

have increased cell cycle kinetics, decreased white adipose 
tissue.

[99,100]

p107-/-(mixed) Germline Viable No gross abnormalities, expanded neural progenitor pool 
in the embryonic and adult brain.

[105,108]

Rb+/-;p107-/- Germline Viable Pituitary tumors, reduced viability and growth retardation 
after birth until ~3 months of age, vaginal atresia (females).

[50]

Rb+/-;p107-/- Chimera Viable Pituitary glad tumors, adenocarcinoma of the caecum, 
osteosarcoma, lymphosarcoma, occasional retinal 

dysplasia but no retinoblastoma.

[130]

Rb-/-;p107-/- Chimera Viable Retinoblastoma development between 1 - 3 months of 
age, adult mice obtained at low frequency, apoptosis in the 

retina.

[130]

Rb-/-;p107-/- Germline Lethal E11.5 Accelerated apoptosis in the liver and CNS. [97]

Mox2Cre;Rblox/

lox;p107-/-
Conditional 

(embryo)
Lethal 

E13.5-E14.5
Hyperproliferation of the CNS, lens, blood vessel 

endothelial cells. Double-outlet right ventricle (DORV) 
heart defect.

[142]

p107-/-;p130-/- Germline Birth Hyperproliferation of chondrocytes, defective 
endochondral bone development, increased epidermal 

proliferation, decreased number of hair follicles, 
developmental delay in whisker, hair, and tooth formation.

[101,102]

Rb-/-;p107-/-

;hIRBPp53DD

Chimera Viable Retinoblastoma. [44]

SPC-
rtTA;tetCre;Rblox/

lox;p107-/-

Conditional 
(lung)

Viable ~70% of mice develop lung adenoma or adenocarcinoma. [126]

K14Cre;Rblox/

lox;p107-/-
Conditional 

(skin)
Viable Spontaneous squamous cell carcinomas. [49]

NesCre;Rblox/

lox;p107-/-
Conditional 

(retina)
Viable Retinal dysplasia, high levels of apoptosis in the retina. [129]

Chx10Cre;Rblox/

lox;p107-/-
Conditional 

(retina)
Viable Unilateral retinoblastoma, 60% penetrant, delayed onset 

compared to Rb/p53/p107.
[132]

Chx10Cre;Rblox/

lox;p53lox/lox; p107-/-
Conditional 

(retina)
Viable Aggressive bilateral retinoblastoma, 100% penetrant. [132,141]
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a narrow spectrum of tumors, mainly retinoblastoma and
osteosarcomas? This discrepancy may be explained by
the fact that some tissues can upregulate p107 in
response to Rb loss, whereas others cannot. Indeed
upregulation of p107 is seen in several cell types upon Rb
loss, including mouse retinal progenitors [127], keratino-
cytes [48], hepatocytes [36], and lung epithelial cells
[123,126]. Interestingly, p107 seems to be the main Rb
family member that can perform this function, as upregu-
lation of p130 is generally not seen in response to Rb or
p107 or both [127].

Conclusions
To fully understand the tumor suppressor functions of Rb
in human tumors, it is important to understand the func-
tions of each of the family members, both individually
and as a group. In particular, p107 functions in cell cycle
control and tumor suppression have remained elusive.

During cell cycle progression, p107 function may be
divided into two categories; those that require E2F and
those that do not. ChIP-Seq for Rb family members and
E2F family members in normal cells would shed light on
the normal binding patterns of these proteins and may
identify promoters that are regulated by individual Rb
family members or by several at once. Expanding upon
this, one could then compare the binding profiles of the
Rb family members in normal cells to that of tumor cells,
cells in different phases of the cell cycle, or cells from dif-
ferent tissues. p107 can also interact with several other
key transcription factors such as Sp1, B-myb, c-myc, and
Smad3. The significance of these interactions is not well
understood, and several questions remain. For example,
is p107's ability to regulate the cell cycle mainly exerted

through E2F repression or can the interaction with other
transcription factors also arrest the cell cycle indepen-
dently of E2Fα One way to answer these questions would
be to take advantage of the fact that E2Fs bind different
regions of p107 than do the other transcription factors.

Evidence for p107 function during S phase suggests that
it may play a critical role outside of the control of G1. Rb
and p130 have both been implicated in the control of G0
and G2 [134-136], so in some ways it is not surprising
that p107 would also play a role outside of G1. However,
evidence for an Rb family role during S phase has so far
been scarce. It is striking that the highest protein levels of
p107 are seen in S phase, a time when p107 should largely
be inactivated by phosphorylation. What would be the
advantage to having large pools of p107 sequestered
within a cell after the transition into S phase? One
hypothesis would be that in response to genotoxic stress,
p107 would be rapidly dephosphorylated by PP2A and
serve as a reservoir of a potent transcriptional repressor.
Large pools of p107 may also be able to stabilize p27,
which could inhibit the activity of the Cyclin/Cdk com-
plexes. The identification of downstream targets of p107
in this context will shed light on the exact mechanism for
this S-phase arrest.

It has yet to be determined whether p107 can serve as a
tumor suppressor in the context of other mutations out-
side of the Rb pathway. To date, there have been no stud-
ies crossing mice with p107 mutations to mice carrying
mutations in other known cancer causing genes outside
of the Rb pathway. Furthermore, no studies have exam-
ined whether p107 mutation and DNA damaging agents
can contribute to faster or more aggressive tumors.
Future studies should clarify the specific contexts in

Chx10Cre;Rblox/

lox;p130-/-;p107+/-
Conditional 

(retina)
Viable Differentiated horizontal neurons of the Inner Nuclear 

Layer re-enter the cell cycle and form metastatic 
retinoblastoma.

[133]

Pax6α Cre;Rblox/

lox;p107-/-
Conditional 

(retina)
Viable Unilateral retinoblastoma, 60% penetrant, delayed onset 

compared to Rb/p130.
[131,143]

En2Cre;Rblox/

lox;p107-/-
Conditional 
(dorsal mid-
hindbrain)

Viable Ataxia between P15 and P20, disorganized cerebellar 
architecture, shrunken dendritic arborization, laminar 

defects, hyperproliferation of granule cell precursors, and 
granule cell death upon differentiation.

[113]

p107-/-;p27D51/

D51

Germline Viable Chondrocyte hyperproliferation, defective chondrocyte 
maturation, defective endochondral bone formation.

[103]

Hes1-/-;p107-/- Germline Lethal E12.5 Embryonic lethality due to null Hes1 mutation, restoration 
of normal numbers of neural precursors in embryos and 

adults.

[108]

Table 2: Summary of p107-deficient mouse models and their phenotypes. (Continued)
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which p107 can act as a tumor suppressor, with or with-
out compound mutation of Rb.

Although much has been uncovered since the discovery
of the Rb family, the complexities in functional overlap,
regulation, and tumor suppressor abilities of each of the
Rb family members is only just beginning to be explored.
The use of transgenic, knock-in, and knock-out mouse
studies, as well as in vitro cell culture systems will be crit-
ical to increase our understanding of the role of these
genes during multiple cellular functions, and these tech-
niques will continue to reveal the subtle and distinct ways
in which these proteins can interact with each other as
well as the hundreds of other proteins known to associate
with them. More analysis of how the Rb family normally
functions is needed to understand their functions within
a single cell, in addition to their tumor suppressor capa-
bilities.

List of abbreviations
Rb: Retinoblastoma; Cdk: Cyclin-dependent kinase;
HDAC: histone deacetylase; DHFR: dihydrofolate
reductase; BMP: bone morphogenetic protein; FGF:
fibroblast growth factor; VZ: ventricular zone; ChIP:
chromatin immunoprecipitation.
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