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Abstract

Background: The impact of food animals as a possible reservoir for extended-spectrum beta-lactamase (ESBL)
producing Enterobacteriaceae, and the dissemination of such strains into the food production chain need to be
assessed. In this study 334 fecal samples from pigs, cattle, chicken and sheep were investigated at slaughter.
Additionally, 100 raw milk samples, representing bulk tank milk of 100 different dairy farms, 104 minced meat (pork
and beef) samples and 67 E. coli isolates from cattle E. coli mastitis were analyzed.

Results: As many as 15.3% of the porcine, 13.7% of the bovine, 8.6% of the sheep and 63.4% of the chicken fecal
samples yielded ESBL producers after an enrichment step. In contrast, none of the minced meat, none of the bulk
tank milk samples and only one of the mastitis milk samples contained ESBL producing strains. Of the total of 91
isolates, 89 were E. coli, one was Citrobacter youngae and one was Enterobacter cloacae. PCR analysis revealed that
78 isolates (85.7%) produced CTX-M group 1 ESBLs while six isolates (6.6%) produced CTX-M group 9 enzymes. Five
detected ESBLs (5.5%) belonged to the SHV group and 2 isolates (2.2%) contained a TEM-type enzyme. A total of
27 CTX-M producers were additionally PCR-positive for TEM-beta-lactamase. The ESBL-encoding genes of 53
isolates were sequenced of which 34 produced CTX-M-1, 6 produced CTX-M-14, 5 produced CTX-M-15 and also 5
produced SHV-12. Two isolates produced TEM-52 and one isolate expressed a novel CTX-M group 1 ESBL, CTX-M-

lactamase, TEM-186.

117. One isolate—aside from a CTX-M ESBL- contained an additional novel TEM-type broad-spectrum beta-

Conclusions: The relatively high rates of ESBL producers in food animals and the high genetic diversity among
these isolates are worrisome and indicate an established reservoir in farm animals.

Background

Antimicrobial resistance in bacteria has emerged as a
problem in both human and veterinary medicine. One
of the currently most important resistance mechanisms
in Enterobacteriaceae, which reduces the efficacy even
of modern expanded-spectrum cephalosporins (except
cephamycins and carbapenems) and monobactams is
based on plasmid-mediated production of enzymes that
inactivate these compounds by hydrolyzing their B-lac-
tam ring. Such resistance is encoded by an increasing
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number of different point-mutational variants of classi-
cal broad-spectrum f-lactamases (BSBL). These variants
are called extended spectrum P-lactamases (ESBL): most
are derivates of TEM and SHV B-lactamase families,
whereas other groups, such as CTX-M, PER and KPC
B-lactamases have been described more recently [1].
The phenotypical difference between BSBLs and ESBLs
is that the latter efficiently hydrolyze 3rd- and 4th-gen-
eration cephalosporins, additionally to penicillins and
lower generation cephalosporins as the BSBLs are cap-
able of. BSBLs and ESBLs are inhibited by clavulanic
acid, sulbactam and tazobactam [2], a feature that is
used (i) as a criterion for classification of f-lactamases
and (ii) for diagnostic ESBL detection purposes. Until
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now more than 600 ESBL variants are known http://
www.lahey.org/Studies/ (last accessed January 2012).
Among them, the over 100 CTX-M enzymes so far
reported may be grouped into five main subgroups.
Each of them is characterized by a group-representative
single structure according to their amino acid sequence
(group 1: CTX-M-1, group 2: CTX-M-2, group 8: CTX-
M-8, group 9: CTX-M-9, and group 25: CTX-M-25) [3].
As a matter of growing concern, resistance caused by
ESBLs is often associated with resistance to other classes
of antibiotics like fluoroquinolones, aminoglycosides and
trimethoprim-sulfmethoxazole [1,4].

Since the first description of ESBL producing Entero-
bacteriaceae isolated from hospitalized humans [5], many
nosocomial outbreaks have been reported. However,
since a few years, there is an increase in the detection of
ESBL producing strains in the community [6]. More
recently, reports have also raised concern about the dis-
semination of ESBL producing E. coli in healthy food
producing animals in several countries in Europe [7-9]
and Asia [10,11] or in food products like meat, fish and
raw milk [12-14]. Recently, Wittum et al. [15] and Doi et
al. [16] described for the first time ESBL producers in
healthy dairy cattle and retail meat in the USA.

Therefore, the impact of healthy farm animals as a pos-
sible reservoir for ESBL producing Enterobacteriaceae on
the food processing chain has to be assessed. The aim of
the present study was to screen for the occurrence of
ESBL producing Enterobacteriaceae in healthy swine, cat-
tle, sheep and chicken at slaughter as well as in milk and
meat in Switzerland and to further characterize isolates.

Results
After an enrichment step ESBL producers were isolated
from 90 (26.9%) of the investigated 334 fecal samples,
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and one ESBL producer (1.5%) was found in 67 E. coli
mastitis milk isolates, but none was isolated from either
minced meat (pork and beef) or bulk tank milk samples.
The ESBL prevalence among cattle was 13.7%, 25.3%
among calves (animals under 6 months), 8.6% among
sheep, and 15.3% among pigs. For chickens (herd level)
a very high prevalence of 63.4% was determined (Table
1). All suspected isolates were phenotypically confirmed,
in that they showed a synergy effect with at least 1 of 3
strips when tested with Etest-ESBL strips containing
cefepime, cefotaxime or ceftazidime, and they yielded
factors > 8 when ratios of MIC (cephalosporin)/MIC
(cephalosporin plus clavulanic acid) were calculated.

Almost all isolated ESBL producers were E. coli (89
out of 91), the exceptions being one Enterobacter cloa-
cae isolated from a sheep, and one Citrobacter youngae
isolated from a calf (Table 2).

The ESBL-encoding genes of all isolates were further
characterized by PCR. A total of 78 isolates (85.7%) pro-
duced CTX-M group 1 ESBLs while six isolates (6.6%)
produced CTX-M group 9 enzymes. Five isolates (5.5%)
were detected as producers of the SHV-ESBLs and 2
isolates (2.2%) exclusively produced TEM-type enzymes.
Twenty-seven CTX-M carriers were additionally PCR-
positive for blatgy genes. Of the 91 ESBL producing
isolates, 53 were selected for sequencing of the involved
bla genes (Figure 1). Thirty-four isolates were CTX-M-1
producers, eight expressed additional TEM-1 and one
isolate—from a pig— additionally expressed a TEM-type
enzyme, TEM-186 http://www.lahey.org/Studies/, never
found before (nucleotide sequence accession number
JN227084). Six isolates carried CTX-M-14 with TEM-1
and five isolates specified CTX-M-15, one of which pro-
ducing additional TEM-1. One isolate from a calf pro-
duced TEM-1 in combination with CTX-M-117 http://

Table 1 Occurrence of ESBL producers in food-producing animals at slaughter as well as in minced meat, bulk tank

milk and isolates from bovine mastitis in Switzerland

Origin n Number of samples with ESBL producers (percentage)

Cattle, fecal samples 124 17 (13.7%; [95% Cl, 8.1; 21.01)
calves 63 16 (25.3%; [95% Cl, 15.3; 37.9])
others 61 1 (1.6%; [95% Cl, 0.4; 8.7])

Pig, fecal samples 59 9 (15.3%; [95% (I, 7.2; 26.9])

Chicken, fecal samples from crates of different flocks 93 59 (63.4%; [95% Cl, 52.8; 73.2])

Sheep, fecal samples 58 5 (8.6%; [95% Cl, 2.9; 18.9])
lambs 40 2 (5.0%; [95% Cl, 0.6; 16.9])
others 18 3 (16.7%; [95% ClI, 3.5; 41.4])

Mined meat (pork, beef) 104 0 (0.0%; [95% ClI, 0.0; 3.4])

Bulk tank milk 100 0 (0.0%; [95% Cl, 0.0; 3.6])

E. coli isolates from mastitis milk 67 1 (1.5%; [95% (I, 0.3; 8.0))

n: number of samples tested
Cl: confidence interval
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Table 2 Identification and further characterization of the 91 ESBL producers isolated from 334 healthy food-producing
animals at slaughter and from 67 Escherichia coli mastitis milk samples in Switzerland

Sample Origin  Species Expressed ESBL & accompanying B-lactam antibiotic resistances Additional
number B- lactamase resistance
AM AMC CF CXM CPD CTX CAZ FEP FOX IPM

13 pig E. coli CTX-M-1 r S roor r i? s? S s NA. S, SXT, TE

14 pig E. coli CTX-M-1 r S roor r i? s? i s s NA, TE

64 pig E coli  CTX-M-1 r s roor r r 77 s s SXT

65 pig E coli  CTX-M-1 r s roor r i 77 s s NA, TE

17 pig E. coli CTX-M-1 & TEM-1 r S roor r r s? ¢ s s CIP, NA, S, TE

18 pig E. coli CTX-M-1 & TEM-1 r S roor r r s? i? s s C, CIP, NA, S,
SXT, TE

72 pig E coli  CTX-M-1 & TEM-1 roos roor r s s s S, SXT

60 pig E coli  CTX-M-1 & TEM-186 roos roor r s s s S, SXT

16 pig E coli CTX-M-14 & TEM-1 r S roor r r s? ¢ s S CIP, GM, NA, S,
SXT, TE

46 calf E. coli CTX-M-1 r s roor r i? s? S S C, GM, S, SXT, TE

112 calf E. coli CTX-M-1 r 3 roor r r s? ¢ s S C, GM, S, SXT, TE

114 calf E. coli CTX-M-1 r s roor r r s? ¢ s S C, GM, S, SXT, TE

142.09_b calf E. coli CTX-M-1 r s roor r r s ¢ s S C, GM, S, SXT, TE

142.09_g calf C CTX-M-1 r s roor r r s S s C, GM, S, SXT, TE

youngae
68 young  E coli  CTX-M-1 roos ror r r s s s s NA
cow

128 calf E. coli CTX-M-1 r S roor r i? s? r S S S, SXT, TE

136 calf E coli CTX-M-1 r S roor r r s? ¢ s S CIP, NA, TE

129 calf E coli  CTX-M-1 & TEM-1 r s roor r i s s S S, SXT, TE

104 calf E coli  CTX-M-1 & TEM-1 r s roor r i s s S C, GM, S, SXT, TE

47 calf E coli CTX-M-15 r S roor r r i2 S S C, GM, S, SXT, TE

52 calf E. coli CTX-M-15 r S roor r r i@ r S S CIP, NA, GM,
SXT, TE

53 calf E. coli CTX-M-15 r i roor r r i@ i S S CIP, NA

124 calf E. coli CTX-M-15 r S roor r r r @ s S CIP, NA, S

14211 n calf E coli  CTX-M-117 & TEM-1 r s roor r i s ¢ s s C, CIP, GM, NA,
S, SXT, TE

115 calf E. coli CTX-M-14 & TEM-1 r i roor r i? s? S S C, CIP, NA, SXT

116 calf E. coli CTX-M-14 & TEM-1 r i roor r i? s? ¢ s S C, CIP, GM, NA,
S, SXT, TE

2 lamb E coli  CTX-M-1 & TEM-1 r s roor r r s s S C, NA, S, TE

108 sheep E coli  CTX-M-15 & TEM-1 r i roor r r i i° s s CIP, GM, S, SXT,
TE

100 sheep E. coli CTX-M-14 & TEM-1 r S roor r i? s? ¢ s s C, CIP, GM, NA,
S, TE

102 sheep E coli CTX-M-14 & TEM-1 r roor r i? s? ¢ s S C, CIP, GM, NA,
S, TE

1 lamb E. SHV-12 & TEM-1 r r roor r i? r ¢ S C, S, SXT, TE

cloacae

3 chicken  E coli CTX-M group 1* r S roor r i? s? ¢ s s NA, TE

4 chicken E coli  CTX-M group 1* roos roor r r s s s s TE

8 chicken E coli  CTX-M group 1* r s roor r i 7 s s SXT, TE

10 chicken  E. coli CTX-M group 1* r S roor r r s? ¢ s s S, SXT, TE

12 chicken  E. coli CTX-M group 1* r S roor r r s? ¢ s s NA, SXT, TE

16 chicken  E. coli CTX-M group 1* r S roor r i? s? ¢ s s NA, TE
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Table 2 Identification and further characterization of the 91 ESBL producers isolated from 334 healthy food-producing
animals at slaughter and from 67 Escherichia coli mastitis milk samples in Switzerland (Continued)

17 chicken  E coli CTX-M-1 S NA, TE

26 chicken E coli  CTX-M group 1* S TE

30 chicken E coli  CTX-M group 1* S TE

31 chicken  E coli CTX-M-1 S SXT, TE

33 chicken E coli  CTX-M group 1* s NA, TE

35 chicken  E coli CTX-M-1 S NA, SXT, TE
40 chicken E coli  CTX-M group 1* S SXT, TE

4 chicken E coli  CTX-M group 1* S SXT

42 chicken E coli  CTX-M group 1* s NA, TE

43 chicken E coli  CTX-M group 1* s SXT, TE

44 chicken E coli  CTX-M group 1* s NA, SXT, TE
45 chicken E coli ~ CTX-M group 1* s NA, SXT

46 chicken E coli  CTX-M group 1* S SXT, TE

47 chicken  E coli CTX-M-1 S S, SXT, TE
48 chicken E coli  CTX-M group 1* s SXT, TE

49 chicken  E coli CTX-M-1 S S, SXT, TE
51 chicken E coli  CTX-M group 1* s NA, SXT, TE
52 chicken E coli  CTX-M group 1* s NA, SXT, TE
53 chicken E coli  CTX-M group 1* S SXT, TE

58 chicken  E coli CTX-M-1 S GM, NA, SXT, TE
59 chicken  E coli CTX-M-1 S C, SXT, TE
60 chicken  E coli CTX-M-1 S SXT, TE

62 chicken E coli  CTX-M group 1* s SXT, TE

63 chicken E coli  CTX-M group 1* s SXT, TE

64 chicken E coli  CTX-M group 1* s NA, SXT

65 chicken E coli  CTX-M group 1* S TE

67 chicken E coli  CTX-M group 1* s SXT, TE

68 chicken E coli  CTX-M group 1* s SXT, TE

73 chicken E coli  CTX-M group 1* s NA, TE

74 chicken  E coli CTX-M-1 s TE

76 chicken E coli  CTX-M group 1* S NA

78 chicken E coli  CTX-M group 1* s NA, TE

86 chicken  E coli CTX-M-1 s TE

87 chicken  E coli CTX-M-1 s TE

88 chicken  E coli CTX-M-1 S NA, SXT

91 chicken E coli  CTX-M group 1* s NA, TE

92 chicken  E coli CTX-M-1 S S, TE

94 chicken E coli  CTX-M group 1* S TE

96 chicken E coli  CTX-M group 1* s NA, SXT, TE
20 chicken  E coli CTX-M group 1/TEM* S CIP, NA, SXT, TE
27 chicken  E. coli CTX-M group 1/TEM* S S, SXT, TE
32 chicken  E coli CTX-M-1 & TEM-1 S SXT, TE

36 chicken E coli  CTX-M group 1/TEM* s SXT, TE

82 chicken  E. coli CTX-M group 1/TEM* s SXT, TE

84 chicken  E coli CTX-M-1 & TEM-1 S NA, SXT, TE
85 chicken  E. coli CTX-M group 1/TEM* S NA, SXT, TE
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Table 2 Identification and further characterization of the 91 ESBL producers isolated from 334 healthy food-producing
animals at slaughter and from 67 Escherichia coli mastitis milk samples in Switzerland (Continued)

97 chicken  E. coli CTX-M group 1/TEM* r S roor r r s ¢ s S SXT, TE

5 chicken E coli  SHV-12 r s rooi r i i T s s -

2 chicken  E coli SHV-12 r S rooqf r ° s? ¢ s s C, NA, TE

34 chicken  E. coli SHV-12 & TEM-1 r S ro< r s? i? ¢ s s NA, SXT, TE

77 chicken  E. coli SHV-12 & TEM-1 r S rooqf r i? i@ ¢ s s NA, SXT, TE

23 chicken E coli  TEM-52 r s rooi r i s s s s NA

70 chicken E coli  TEM-52 r s roor r i s s s s NA

1,006 mastitis £ coli CTX-M-14 & TEM-1 r r roor r i? s? ¢ s s C, GM, NA'S,
milk SXT, TE

*) not further characterized
s, sensitive; i, intermediate; r, resistant

?) It is known that many ESBL producers may appear susceptible or intermediate to oxyimino cephalosporins in vitro if CLSI criteria are applied strictly, but do
not respond to the respective therapies. Consequently, for clinical reporting these results have to be corrected to “resistant”.
AM, ampicillin; AMC, amoxicillin-clavulanic acid; CF, cephalothin; CXM, cefuroxime; CPD, cefpodoxime; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX,

cefoxitin; IPM, imipenem

C, chloramphenicol; CIP, ciprofloxacin; GM, gentamicin; NA, nalidixic acid; S, streptomycin; SXT, trimethoprim-sulfamethoxazole; TE, tetracycline

www.lahey.org/Studies/, a novel CTX-M group 1 ESBL
with an amino acid sequence never found before
(nucleotide sequence accession number JN227085).
Finally, two TEM-52 ESBL producers, and 5 SHV-12
carriers were found, three of the latter featuring addi-
tional TEM-1 (Table 2).

Besides the B-lactam resistances, the isolates were also
tested for resistance to other classes of antibiotics. We
found 76 (cattle: 13/17, pig: 6/9, sheep: 5/5, chicken: 51/
62, milk: 1/1) out of 91 isolates resistant to tetracycline
(83.5%), 59 isolates (cattle: 13/17, pig: 6/9, sheep: 2/5,
chicken: 37/62, milk: 1/1) resistant to trimethoprim-sul-
famethoxazole (64.8%), 43 isolates (cattle: 8/17, pig: 6/9,
sheep: 4/5, chicken: 24/62, milk: 1/1) resistant to nali-
dixic acid (47.3%) and 31 (cattle: 13/17, pig: 6/9, sheep:

'd Y
A 10% B C 1%
20% 20% 5%
19%
71% 56%
40%
D E 6% 3% CTX-M-1
1% w CTX-M-15
CTX-M-117
21% \ 9% CTX-M-14
89% w CTX-M-2
SHV-12
u TEM-52
Figure 1 Prevalence of different blagsg. genes in

Enterobacteriaceae isolated from food producing animals in
Switzerland in comparison to isolates from healthy humans.
Prevalence of different blagsg, genes in Enterobacteriaceae isolated
from food producing animals in Switzerland in comparison to
isolates from healthy humans. A, chickens; B, sheep; C, cattle; D,
pigs; E, humans [17].

5/5, chicken: 6/62, milk: 1/1) resistant to at least one
aminoglycoside (34.0%). Furthermore, 20 isolates (cattle:
11/17, pig: 2/9, sheep: 4/5, chicken: 2/62, milk: 1/1)
showed resistance against chloramphenicol (22.0%), and
18 isolates (cattle: 7/17, pig: 3/9, sheep: 3/5, chicken: 4/
62, milk: 1/1) showed resistance against ciprofloxacin
(19.8%). One isolate from chicken faeces showed only
resistance to f3-lactam-antibiotics, and none of the tested
isolates was resistant to imipenem (Table 2).

Discussion

Recently, an increase in studies, carried out in different
countries, and describing the prevalence and characteris-
tics of ESBL producing Enterobacteriaceae in cattle for
example [2,15,18,19] and in pigs and chicken for exam-
ple [20-25] were published. Moreover, some studies
describing ESBL producing Enterobacteriaceae in salads
[6], in meat [13,14] and in raw milk [12] are available.
Since there seem to be geographical variations in the
occurrence of different ESBL variants (e.g. CTX-M-9 in
Spain as opposed to CTX-M group 1 in the Northern
European countries [26]), it is therefore important to
have a detailed overview based on geographical distribu-
tion and this knowledge was so far limited in Switzer-
land. Therefore, the present study provides further data
concerning healthy animals (among them about sheep
for the first time in literature), minced meat and bulk
tank milk samples in Switzerland.

The high ESBL occurrence determined for all investi-
gated animals in this study is surprising, given the fact
that Switzerland is a country with a strict policy of anti-
biotic use [27]. Nevertheless, one reason could be the
use of B-lactams—and even 4th generation cephalospor-
ins—in veterinary medicine [28,29]. Another reason
could be co-selection of multiple resistance mechanisms
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through the use of various antibiotics, due to the fact
that resistance genes for aminoglycosides, tetracycline
and trimethoprim-sulfametoxazole are frequently placed
on single conjugative plasmids, as is often also the case
with blagsg; genes [4,26]. For food producing animals
very limited data on the occurrence of ESBL producing
Enterobacteriaceae had been available before in Switzer-
land, but there is a study about CTX-M producers in
Swiss patients [30], and a recent report about occur-
rence of ESBL carriers in the healthy Swiss human
population (5.8%) [17]. This is lower than the rates from
food animals (8.6% to 63.4%) presented in this study.
These frequencies primarily imply a reservoir of ESBL
producers in farm animals. Supporting this view, a study
from the Netherlands described the same CTX-M-type
in chicken meat and humans [31]. In Switzerland, these
findings cannot be confirmed because of the predomi-
nance of CTX-M-1 in animals and the predominance of
CTX-M-15 in humans [17,30]. The predominance of
CTX-M group 1 enzymes and the rare prevalence of
CTX-M group 9, as seen in our study, has also recently
been described in strains from healthy food-producing
animals in Denmark, Portugal and France [8,32,33]. All
of the TEM enzymes co-expressed alongside with CTX-
M ESBLs were broad-spectrum f-lactamases—mostly
TEM-1-conveying no ESBL phenotype. In contrast, two
strains, expressing TEM enzymes exclusively, featured
the TEM-ESBL TEM-52 (Table 2). In other countries
TEM-ESBLs are much more frequently found in ani-
mals, especially in chickens [21,34].

Given the relatively high occurrence of ESBL produ-
cers in fecal samples from animals in our study, it is
striking, that no ESBL producers could be found in
either bulk tank milk or beef and pork minced meat.
We hypothesise that the very high hygiene standards for
slaughtering together with the selection of the raw meat
for minced meat production and the quality based priz-
ing system of bulk tank milk in Switzerland could be
the reason for this favourable situation.

Conclusion

The occurrence of ESBL producing Enterobacteriaceae
in the fecal microflora of farm animals represents an
obvious risk for contamination of raw food products
from animal origin. However, since no ESBL producers
were found in the examined food samples and our data
concerning the ESBL type distribution in animals com-
pared to healthy human carriers do not correlate well,
animal food products can hardly be the major vector for
ESLB carriage in the human population in Switzerland.
Nevertheless, due to the generally high ESBL occurrence
in food animals in Switzerland prudent use of antibiotics
in veterinary medicine and strict hygiene measures dur-
ing slaughtering and milking still remain important.
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Finally, on the basis of the massive CTX-M-1 predo-
minance in animals in our study compared to its rela-
tively low frequency in healthy humans, further
investigational efforts into the origin of the unexplained
high occurrence of CTX-M-15 in the human population
are warrented.

Methods

Sampling

Fecal samples were collected in October 2009 and from
November 2010 to March 2011 from 334 healthy food-
producing animals at slaughter in Switzerland: 59 pigs
(57 fattening pigs, 2 piglets), 124 cattle (63 calves, 26
young cows, 18 fattening bulls, 10 cows and 7 bullocks)
and 58 sheep (40 lambs, 18 sheep older than one year).
To prevent sample clustering, at most two samples per
farm were taken. The farms are distributed throughout
Switzerland (16 cantons). Sampling was done with one
swab per animal at a big EU-approved slaughterhouse
(on average 1,000 pigs, 800 cattle, 60 sheep per day).
Furthermore, 93 fecal samples of chicken were collected
at the entry of a big EU-approved poultry slaughter-
house (on average 50,000 animals per day) from the
crates of 93 poultry flocks (approximately 6,000 chicken
per flock) distributed throughout Switzerland (14 can-
tons). Afterwards the swabs were put into an empty
sterile tube, transported to the lab and processed within
6 hours of collection.

A total of 104 fresh minced meat samples (55 beef, 15
pork, 9 beef/pork, 3 veal, 3 beef/veal/pork, 2 lamb, 2
beef/lamb, and 15 of unknown origin) collected at 20
different days from a big meat processing plant (67.3%
of the samples), which is supplying minced meat to
retail stores and covers about 50% of the Swiss market
and from local butcher shops (32.7% of the samples)
were investigated.

Finally, 100 raw milk samples, representing bulk tank
milk of 100 different dairy farms, were collected in April
2011 at a big dairy manufacturing plant in Switzerland.
Furthermore, 67 E. coli isolates from cattle E. coli masti-
tis milk were investigated.

Microbiological analysis

About 1 g of each fecal sample was enriched in 10 ml
EE broth (BD, Franklin Lakes, USA) for 24 hours at 37°
C. Moreover, 10 ml of the milk or 10 g of the meat
samples were enriched for 24 hours at 37°C in 100 ml
of EE Broth. Thereafter the enrichment was streaken
onto Brilliance ESBL agar (Oxoid, Hampshire, UK),
which was incubated at 37°C for 24 hours under aerobic
conditions. All grown colonies of different color and/or
morphology were selected and subcultured onto triple
sugar iron (TSI) agar (BD, Franklin Lakes, USA) at 37°C
for 24 hours. By the oxidase test, nonfermenters were
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discarded, and oxidase-negative colonies were subjected
to identification by API ID 32 E (bioMérieux, Marcy
1’Etoile, France). Some isolates, yielding doubtful results,
were subjected to genetic identification based on
sequencing of 16S rRNA and rpoB gene fragments [35].

Antimicrobial susceptibility testing and ESBL detection
All isolates were subjected to susceptibility testing
against 17 antimicrobial agents by the disc diffusion
method according to CLSI protocols and the results
were evaluated according to CLSI criteria [36]. The
antibiotics (Becton Dickinson, Sparks, MD USA) tested
were: ampicillin (AM), amoxicillin/clavulanic acid
(AMC), cephalothin (CF), cefuroxime (CXM), cefpo-
doxime (CPD), cefotaxime (CTX), ceftazidime (CAZ),
cefepime (FEP), cefoxitin (FOX), imipenem (IMP),
chloramphenicol (C), ciprofloxacin (CIP), gentamicin
(GM), nalidixic acid (NA), streptomycin (S), trimetho-
prim-sulfamethoxazole (SXT), tetracycline (TE). The
AMC disc was placed between those containing CPD
and CAZ, and the resulting synergy effects were docu-
mented. The isolates, which showed a synergy effect
between AMC and CPD and/or AMC and CAZ, were
then confirmed as ESBL producers on Muller-Hinton
agar plates using E-Test-ESBL strips containing cefo-
taxime, cefepime or ceftazidime each alone and in
combination with clavulanic acid (bioMérieux, Marcy
1’Etoile, France) according to the manufacturer’s
recommendations.

Characterization of B-lactamases

Bacterial isolates confirmed for producing ESBLs were
further analysed by PCR. DNA was extracted by a stan-
dard heat lysis protocol. Thereafter, five specific primer
sets (custom-synthesized by Microsynth, Balgach, Swit-
zerland) were used to search for blartgym, blasyy and
blacrx.m genes [37-39].

PCR amplification and sequencing of bla open reading
frames (ORF)

The ESBL-encoding genes of the isolated ESBL produ-
cers from cattle (17), sheep (5), pigs (9) and mastitis
milk, as well as of 21 of the 59 isolates from chickens
were sequenced. To be able to sequence the whole
OREFs, five PCR/sequencing primers were used. Two per
bla family were the respective screening primers (see
above), three per bla family were designed newly (this
study), and custom-synthesized by Microsynth (Balgach,
Switzerland). Primers were: primer 1, forward 5-AAA-
CACACGTGGAATTTAGGG-3’ primer 2; forward, 5'-
AAAAATCACTGCGCCAGTTC-3’ [39], primer 3,
reverse, 5-AGCTTATTCATCGCCACGTT-3’ [39], pri-
mer 4, reverse, 5-CCGTCGGTGACGATTTTAGCC-3,
primer 5; reverse, 5-CCGATGACTATGCGCAC
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TGGG-3’, for blactx-m-group1; 12 forward, 5°-TTT
TGCCGTACCTGCGTACCC-3, primer 2, forward, 5'-
CGACGCTACCCCTGCTATT-3" [39], primer 3,
reverse, 5-CCAGCGTCAGATTTTTCAGG-3’ [39], 4,
reverse, 5-CCGTGGGTTACGATTTTCGCC-3’, 5,
reverse, 5-TTGGTCCAGAAAAAAGAGCGG-3’ for
blacrx-m-groupz and 1o forward, 5-TGATGTAACACG
GATTGACCG-3’ 24 forward, 5-CAAAGAGAGTGCA
ACGGATG-3’ [39], 39 reverse, 5-ATTGGAAAGCGTT
CATCACC-3" [39], 49 reverse, 5-AAACCAGTTA
CAGCCCTTCGG-3" and 59 reverse, 5-TGGAGC
CACGGTTGATGAGGG-3’ for blacrx-m-groupo- Primer
pairs for PCR were: 1-3, 1- 4, 1-5, 2-4 and 2-5 and
PCR-conditions comprised initial denaturation at 94°C
for 15 sec, followed by 35 cycles each including steps
for denaturation at 94°C for 30 sec, annealing at 53°C
for 30 sec and elongation at 72°C for 30 sec, followed by
a final extension at 72°C for 7 min. For sequencing of
TEM genes the same primers and PCR conditions as
before were used [38], whereas for the SHV genes
sequencing primers were used as described previously
[40]. PCR-conditions for blasiy genes were the same as
those for TEM genes [38]. Resulting amplicons were
purified using the PCR Purification Kit (QIAGEN, Cour-
taboeuf, France) according to the manufacturer’s recom-
mendations. Custom-sequencing was performed at
Microsynth (Balgach, Switzerland) and the nucleotide
and protein sequences were analyzed with Codon Code
Aligner V. 3.7.1.1. For database searches NCBI at the
BLASTN program package http://www.ncbi.nlm.nih.gov/
blast/ was used.

Statistical analysis
95 percent confidence intervals were calculated using R
software http://www.R-project.org/.
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