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Abstract

Background: VP2 of chicken anemia virus (CAV) is a dual-specificity phosphatase required for virus infection,
assembly and replication. The functions of the nuclear localization signal (NLS) and nuclear export signal (NES) of
VP2 in the cell, however, are poorly understood. Our study identified the presence of a NLS in VP2 and showed
that the protein interacted significantly with mini-chromosome maintenance protein 3 (MCM3) in the cell.

Results: An arginine-lysine rich NLS could be predicted by software and spanned from amino acids 133 to 138 of
VP2. The critical amino acids residues between positions 136 and 138, and either residue 133 or 134 are important
for nuclear import in mammalian cells based on systematic mutagenesis. A NES is also predicted in VP2; however

the results suggest that no functional NES is present and that this protein is CRM1 independent. It was also shown
that VP2 is a chromatin binding protein and, notably, using a co-immunoprecipitation assay, it was found that VP2

during nuclear export and associates with MCM3 in cells.

association with MCM3 and that this interaction does not require DSP activity.
Conclusions: VP2 contains a NLS that span from amino acids 133 to 138. VP2 is a CRM1 independent protein

Background

CAYV is a small non-enveloped, single-stranded, circular
DNA virus and was first isolated in Japan [1]. This virus
belongs to the genus Gyrovirus of the Circoviridae
family and causes a severe immunosuppressive syn-
drome and anemia in chickens [2]. It is a ubiquitous
pathogen of chickens and has a worldwide distribution.
According to epidemiological studies, it has been shown
that almost all newly hatched chicks are susceptible to
CAV as a clinical syndrome, but not mature chickens
[3]. Normally, young chickens, generally fewer than 2
weeks of age, are very susceptible to this virus through
vertical transmission via hatching eggs [4]. The virus
typically induces aplasia of the bone marrow and
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damage to lymphoid tissue, which causes anemia and
acute immunodeficiency syndrome [5,6]. Up to the pre-
sent, a large number of isolates, including strains from
Australia, Bangladesh, Brazil, China, Germany, Malaysia,
Nigeria, Slovenia, Taiwan and USA, have been reported
and have had full or partial sequences published [7-9].
The DNA genome of CAV is about 2.3 kb in size
[10-12] and there are three ORFs present on the nega-
tive sense genome. At least three proteins are produced
from a single polycistronic 2.1 kb mRNA that is reliable
produced as a single molecule and contains a promoter,
TATA-box, and poly (A) signal [11,13,14]. The three
translated proteins are called VP1, VP2 and VP3. VP1 is
a 51 kDa protein that is the structure protein involved
in assembly of the viral caspid [15]. VP2 is a 24 kDa
protein that contains a dual-specificity phosphatase
(DSP) activity and some apoptotic activity [2,16,17].
However, VP2’s apoptotic activity is much weaker than
that of VP3. VP3 is a 13 kDa protein, also named
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apoptin, which induces apoptosis in infected chicken
cells and human tumor cell lines [2,18,19]. During virus
infection, VP2 and VP3 are detected very early, namely
12 h post infection, while VP1 is detected only after 30
h post infection [16]. Some additional proteins have
been reported to be translated after further splicing of
the mRNA, but their biological functions have not been
elucidated [20].

As mention above, VP2 is a DSP enzyme [17]. The
key catalytic residues of active site have been identified
to be serine, threonine, and tyrosine. The cysteine resi-
dues, respectively, are located at positions 95 and 97 in
the catalytic motif of VP2. Furthermore, mutation of
these residues to serine results in reduced virus replica-
tion efficiency in the cell [17]. This effect indicates that
the phosphatase activity of VP2 is required for virus
replication. It has been reported that co-expression of
VP1 and VP2 allows neutralizing antibodies to be raised
[21,22] and it has been suggested that VP2 is a scaffold
protein [23] that corrects the conformation of VP1.
Therefore, it is expected that VP2 is a multifunctional
protein with roles in virus infection, assembly and repli-
cation. VP2 possess a putative NLS and the protein is
known to accumulate to a large extent in the nucleus of
infected chicken cells [16,24]. A recent study has shown
that VP2, when fused to GFP, shows nuclear localization
and this result indicates that the NLS of VP2 is also
functional in plants [25].

Until now, the specific mechanism for the cellular
localization of VP2 is not well understood. In this study,
we first use bioinformatics to analysis the amino acid
sequence of various different isolates of VP2, and were
able to predict and examine for the presence of putative
NLS and NES motifs, which have never been character-
ized previously. We generated GFP fused to various ver-
sions of VP2 created by truncation, site directed
mutagenesis, and multiple site directed mutagenesis in
order to confirm the locations of these putative NLS
and NES sequences. Leptomycin B (LMB) can be used
to identify the presence of a NES motif in a protein
because it inhibits the CRM1 pathway and such a result
has been found for VP3 of CAV. Using LMB, our results
suggest that VP2 does not contain a functional NES and
also that VP2 is CRM1 independent. Additionally, using
a co-immunoprecipitation assay, we also found that VP2
associates with MCM3 and that this interaction does
not require DSP activity.

Results

Localization of VP2 in mammalian cells

In previous studies, it has been shown by indirect immu-
noperoxidase staining that VP2 is localized within the
nuclei of MDCC-MSB 1 cells infected with CAV [16]. In
2007, Lacorte et al. reported that transient expression of

Page 2 of 12

GFP-VP2 could be observed throughout the nucleoplasm
in plant cells [25]. In the present study, we constructed
expression plasmids of VP2-GFP in order to identify the
nuclear localizing characteristics in cells. After transient
transfection, the bright fluorescence of VP2-GFP was
observed mostly in the nucleus of both HeLa and CHO
cells. In contrast, when GFP alone was introduced, not
only the nucleus but also the cytoplasm was fluorescent.
This indicates that a functional NLS was present in VP2
as suggested by previously (Figure 1A and 1B).

Using bioinformatics to predict the NLS and NES
containing regions

In order to identify if there are any NLS or NES motifs
in VP2, we first compared the amino acid sequence of
VP2 (Taiwan CIA-89) with a range of other CAV iso-
lates to explore the protein’s sequence divergence. The
various VP2 sequences of the different CAV isolates
were obtained from the UniProtKB database (http://
www.uniprot.org/). Based on the sequence alignment,
the VP2 proteins of these CAV isolates are highly con-
served compared to strain CIA-89 from Taiwan. There-
fore, the full length of amino acid sequence of VP2
(Taiwan CIA-89) was used and examined in order to
predict NLS sequences using the WoLF PSORT and
NLStradamus programs (Figures 2 and 3A). A bipartite
NLS motif (named BiNLS1) was predicted by the WoLF
PSORT program, with the putative motif position
spanned amino acid residues from 136 to 153 (under
line). However, a monopartite NLS motif (named NLS2)
was also predicted by NLStradamus at a prediction cut-
off value at 0.5 and this motif was located from amino
acid residues from 133 to 138 (bold). Based on the
results of bioinformatics analysis, VP2 was predicted to
containing two possible NLS motifs. In addition, the
NES motif prediction was performed by NetNES 1.1
Server (Figures 2 and 3A). A putative NES from amino
acid residues 120 to 128 (under line, bold, shadow and
Italic) was pinpointed. However, the expected value for
NES prediction was lower than threshold expected value
of this program, which suggests that there is a low prob-
ability of a NES motif existing within VP2. Based on
these results, further investigations were needed to elu-
cidate whether or not a NES is functional in VP2.

Identification of BiNLS1 function in VP2

As mentioned above, two putative NLS motifs, a bipartite
BiNLS1 and a monopartite NLS2 were predicted to be
present in VP2. To determine the exactly site of the NLS
motif in VP2, we constructed a full length clone and six
deletion clones of VP2 fused with GFP at the C-terminus
(Figure 3A). The subcellular locations of these expressed
constructs in the transfected cells based on the GFP distri-
bution pattern at 48 h post-transfection were examined.
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VP2-GFP VP2-GFP
Figure 1 VP2 protein is localized to the nucleus of the mammalian cells. Hela (A) and CHO (B) cells both were transfected with GFP and
VP2-GFP expressing plasmids (green). At 48 h post-transfection, the cells were fixed and stained vvlth DAPI (blue). The distribution of GFP and
VP2-GFP in the cells were followed by microscopy (phase) and fluorescence microscopy

The truncated C-terminal deletion of VP2-GFP fusion
proteins were VP2 115dC, VP2 132dC, and VP2 145dC.
The N-terminal deletion mutants were VP2 111dN, VP2
141dN, and VP2 160dN. In Figure 3B, two of the C-term-

HelLa cells (Figure 3B), whereas the bright fluorescence of
these two truncations was predominantly distributed in
the cytoplasm of CHO cells (Figure 3B). Fluorescence due
to VP2 145dC was localized in the nucleus of both HeLa

inal deletions, VP2 115dC, and VP2 132dC showed fluor-
escence distributed in both the nucleus and cytoplasm of

and CHO cells (Figure 3B). Furthermore, VP2 111dN was
also localized to the nucleus of HeLa and CHO cells

51 Y8100

Taiwan CIA=89 (51) VRATNKFTAVGNPSLQRDPDWYRWNYNHSIAVWLRECSRSHAKICNCGAQF

Australia/CAUZ269-7/2000 (51) VRATNKFTAVGNPSLARDPDWYRWNYSHSIAVWLRECSRSHAKICNCGAF

Germany Cuxhaven=1 (51) VRATNKFTAVGNPSLAQRDPDWYRWNYNHSIAVWLRECSRSHAKICNCGAF

Japan 82-2 (51) VRATNKFTAVGNPSLAQRDPDWYRWNYNHSIAVWLRECSRSHAKICNCGAF

USA 26pé (51) VRATNKFTAVGNPSLARDPDWYRWNYNHSIAVWLRECSRSHAKICNCGAF

USA CIA-1 (51) VRATNKFTAVGNPSLRRDPDWYRWNYNHSIAVWLRECSRSHAKICNCGAF

101 150

Taiwan CIA-89 (101) RKHWFRECAGLEDRSTRASLEFAIIRPIRVAGKRAKRKL DYHYSQPTPNR

Australia/CAUZ269-7/2000 (101) RKHWFQECAGLEDRSTRASLEFAIIRPIRVAGKRAKRKI DYHYSQPTPNR

Germany Cuxhaven=-1 (101) RKHWFRECAGLEDRSTRASLEFAIIRPIRVAGKRAKRKLDYHYSQPTPNR

Japan 82-2 (101) RKHWFQRECAGLEDRSTRASLEFAILRPLIRVAGKRAKRKLDYHYSQPTPNR

USA Z26pé (101) RKHWFQECAGLEDRSTQASLEFAIIRPIRVAGKRAKRKL DYHYSQPTPNR

USA CIA-1 (101) RKHWFRECAGLEDRSTRASLEFAILRPIRVAGKRAKRKLDYHYSQPTPNR

131 200

Taiwan CIA=-89 (131) KKVYKTVRWARDELADREADFTPSEEDGGTTSSDFDEDINFDIGGDSGIVD

Australia/CAUZ269=-7/2000 (151) KKVYKTVRWARDELADREADFTPSEEDGGTTSSDFDEDINFDIGGDSGIVD

Germany Cuxhaven-1 (151) KKVYKTVRWARDELADREADFTPSEEDGGTTSSDFDEDINFDIGGDSGIVD

Japan 82=2 (151) KKVYKTVRWKDELADREADFTPSEEDGGTTSSDFDEDINFDIGGDSGIVD

USA 26p4é (151) KKVYKTVRWADELADREADFTPSEEDGGTTSSDFDGDINFDIGGDSGIVD

USA CIA-1 (151) KKVYKTVRWADELADREADFTPSEEDGGTTSSDFDEDINFDIGGDSGIVD

Figure 2 Analysis and predication of NLS and NES motifs present in the VP2 amino acid sequence. The various VP2 amino acid
sequences (51 to 200) from different CAV isolates were aligned as described in the Materials and Methods. The putative NLS motifs (BINLS1:

under line and NLS2: bold words) and NES motifs (under line, bold, shadow and lItalic) are shown. The cysteine residues at positions 95 and 97

in the catalytic motif of VP2 are also indicated by an arrow and an arrow head, respectively
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Figure 3 Mutant constructs of VP2-GFP that were used in this study. (A) Truncated fragments of the VP2 (black bars) encoding constructs
fused with GFP (white bars) were used in this study. The right panels indicate the localization patterns in cells. GFP distribution in the cytosol is
indicated by G GFP signal in nucleus that is stronger than that in the cytosol is indicated by N; GFP detected in both the cytosol and nucleus is
indicated by N/C. The putative NLS motifs (BINLST and NLS2) and the weak NES motif are shown. The amino acids present in the constructs are
also indicated. (B) Subcellular localization of C-terminal deleted VP2-GFP constructs (115dC, 132dC and 145dC) in HelLa and CHO cells (green). (C)
Subcellular localization of N-terminal deleted VP2-GFP constructs (111dN, 141dN and 160dN) in Hel.a and CHO cells (green). All cells were fixed

and stained with DAPI (blue)

(Figure 3C). In contrast, fluorescence by VP2 141dN and
VP2 160dN was found to have a very similar pattern to
that of GFP in both the nucleus and cytoplasm of HeLa
and CHO cells (Figure 3C).

On comparing the fluorescence distribution patterns
of VP2 111dN and VP2 141dN in mammalian cells, we
found that the C-terminus part of BINLS1 from VP2 did
not seem to contain a nuclear import function. To sup-
port this finding, we used site directed mutagenesis to
create a series of BINLS1 mutants, namely VP2 150-
152A (R150A, K151A and K152A), VP2 136-138A
(K136A, R137A, and K138A) and VP2 136-138A/150-
152A, as shown in Table 1. All of these mutants were
able to express and were localized to the nucleus of
HeLa and CHO cells (Figure 4A). The results indicated
that NLS motif did not include the whole putative
region of BiNLS1 as predicted by bioinformatics.

The nuclear localization signal is within the NLS2 motif of
VP2

Next, we focused on NLS2 motif in order to character-
ize the NLS motif within VP2. The VP2 132dC mutant

produced fluorescence that was distributed across both
the nucleus and cytoplasm of HeLa cells and in the
cytoplasm of CHO cells. In contrast, the fluorescence
produced by VP2 145dC was localized to the nucleus of
HeLa and CHO cells. These results indicate that NLS
motif of VP2 would seem to span amino acid residues
132 to 144. This region contains the NLS2 motif, which
covers amino acid residues 133 to 138. We changed the
positive charge of amino acids from 136 to 138 residues
to alanine and measured the distribution of GFP. We
found that the nuclear localization of GFP fluorescence
of the VP2 136-138A mutants within this region was
not abolished. However, our results indicated the pre-
sence of critical amino acid residues within the NLS
motif of VP2 that play an essential role in nuclear trans-
port. Specifically, alanine substitution mutagenesis at
positions K133A and R134A of VP2 and of the VP2
136-138A clone was carried out to further characterize
the nuclear localization motif and the results were sum-
marized in Table 1. These results were shown that
nuclear transportation of VP2 was obviously disrupted
in three alanine substitution constructs, namely VP2
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Table 1 Intracellular localization of VP2 and various mutants of the NLS motif

Name of mutants Localization®

NLS motifs of amino acids sequence® ©

\/szGFP N K133R134A135K136R137K138L139D14OY141HMZYMSSWMQMSPW46T147P148N149R150K151K152
\/P2 150-1 52A N K133R134A135K136R137K138L139D14OY141 HMZYMSSWMQMSPW46T147P148N149A1SOAWSWAWSZ
\/P2 136*]38A N K133R134A135A136A137A138L139D140Y141H142Y14BS144Q145P146T147P148N149R150K151KWSZ
\/P2 136*]38A/1 SO*WSZA N K133R134A135A136A137A138L139D140Y141H142\(1435144Q14SP146-|—147P148N149A150A151A152
VP2 136-138A/133A C AT33RIIAII7 136137138

VP2 136-138A/134A C K'33AT347 3571367137138

VP2 136-138A/133A/134A @ ATZ3ATIANTISN1367 137138

\/P2 ]33A N A133R1 34A135K136R137K138

\/P2 ]34A N K133A134A135K136R137K138

VP2 133A/134A N AT33ATIANTISKII6RITKIE

a. The N and C indicate nuclear and cytoplasm, respectively.

b. The BiNLS1 and NLS2 motifs are indicated by underlining and bold, respectively.

c. The amino acids of BiNLS1 are shown from K136 to K152 and of NLS2 are shown from K133 to K138.

136-138A/133A, VP2 136-138A/134A, and VP2 136-
138A/133A/134A (Figure 4B) but not in VP2 133A, VP2
134A and VP2 133A/134A (Figure 4C). The GFP signal
distributions of VP2-GFP and its mutants in CHO cells
are shown in Figures 1B and 4B and these were ana-
lyzed quantitatively by using Alpha View®™ Software (Fig-
ure 5). VP2-GFP was 94% of the time in nucleus and 6%
in cytosol. The nuclear presence of the VP2 136-138A/
133A, VP2 136-138A/134A, and VP2 136-138A/133A/
134A mutant was reduced to 13%, 12% and 11%, respec-
tively, with most of GFP signal accumulated in the cyto-
plasm. These findings demonstrate that NLS2 is a
functional NLS motif in VP2 and that amino acid resi-
dues K133 and R134 are also important to this function-
ality (Figures 4B and 5).

VP2 is a CRM1 independent protein

Typical NES motifs have been found in the various viral
and cellular proteins and are involved in transportation
between the nucleus and the cytoplasm [26]. LMB has
been shown to interfere with the CRM1-NES interaction
and can be used to verify the functionality of any NES
motif. A weak putative NES motif spanning amino acid
residues from 120 to 128 of VP2 was predicted earlier
(Figure 2). However, the prediction score was lower
than the program threshold. The weak putative NES
motif was investigated using the truncated mutants
shown in Figure 3A together with LMB (+) (20 ng/ml)
and LMB (-) (PBS) buffers, which were added to cells at
48 h post-transfection and incubated for 1 h [27,28].
VP3-GFP was used as a positive control because it has
been reported to be a CRM1 dependent protein and
contains a NES motif [29,30]. The distribution of fluor-
escence was then observed (see Additional file 1) and
the results demonstrated that, while LMB was able to
affect the nuclear export of VP3, it had no effect on
VP2. Therefore it would seem that VP2 nuclear export

is a CRM1 independent process and that there is no
functional NES motif present in VP2.

VP2 binds to chromatin

As previously reported and confirmed by this study,
VP2-GFP predominantly is localized in nucleus (Figure
1). In order to further investigate this localization, CHO
cells were transfected with VP2-GFP plasmid and the
resulting cell extract separated into soluble and chroma-
tin fractions. As is shown in Figure 6A, VP2-GFP could
be detected in both the soluble and chromatin fractions.
The chromatin fraction was further digested with micro-
coccal nuclease (MNase). Like MCM3, VP2-GFP was
only partial dissociated from the chromatin fraction
after treatment with MNase, which suggested that VP2
is a chromatin-bound protein and MNase-resistant. The
chromatin fraction was also treated with different con-
centration of NaCl. The result is shown in Figure 6A,
whereby VP2-GFP was found to be slightly dissociation
at 0.3 M NaCl and 0.5 M NaCl, but a significant
amount of remaining protein remained bound to the
chromatin. When tested under similar conditions, the
lamin B receptor, a nuclear matrix protein, was not
extracted by 0.3 M NaCl and 0.5 M NaCl. Therefore,
these results strongly suggest that VP2, like MCM3, is a
chromatin binding protein, but was not a nuclear matrix
protein.

The DSP activity of VP2 is not required for protein-
protein interaction with MCM3

In a previous study, the DSP activity of VP2 was shown
to be needed for virus replication in the cell [28]. In
order to address what proteins in the various DNA
replication complexes interacts with VP2 in cells, an
independent assay involving immunoprecipitation using
anti-Flag M2 beads against Flag-VP2-GFP was
employed. In the control experiments, GFP expressing
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VP2 136-138A/150-152A

HelLa CHO

VP2 136-138A/133A

VP2 136-138A/134A

VP2 136-138A/133A/134A

Hela

VP2 133A

VP2 134A

VP2 133A/134A
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Figure 4 Identification of the NLS motifs (BiNLS1 and NLS2) in VP2. (A) Substitutive mutagenesis was used to create three constructs, VP2
150-152 (RKK to AAA), VP2 136-138 (KRK to AAA), as well as double and triple mutations, within the BINLST region of VP2 (also saw in Table 1).
The subcellular localization of these mutants (green) were examined by fluorescent microscopy in Hela and CHO cells. (B) To further identify the
functional NLS motif, K133 and R134 were replaced by alanine. The mutants (VP2 136-138A/134A, VP2 136-138A/133A and VP2 136-138A/133A/
134A) were then expressed and examined by fluorescent microscopy (green). All cells were fixed and stained with DAPI (blue). (C) Identification
of NLS2 in VP2. The point mutations VP2 133A, VP2 134A and VP2 133A/134A were transfected into Hela cells. After 48 h post-transfection, the
distributions of GFPs (green) were monitored by fluorescence microscopy. The cells were fixed and stained with DAPI (blue)
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Figure 5 The distribution of VP2-GFP and mutants in cytoplasm and nucleus of cells. VP2-GFP and various mutants (VP2 136-138A/134A,
VP2 136-138A/133A and VP2 136-138A/133A/134A) were transfected into CHO cells. After 48 h transfection, all cells were fixed and stained with
DAPI. The distribution of GFP was monitored by fluorescence microscopy. In VP2-GFP and mutants, twenty cells were measured the distribution
of GFP signals from cytoplasm and nucleus using Alpha View® Software (Alpha Innotech Corporation)

VP2 WT

VP2 136-138A/133A

VP2 136-138A/134A

OVP2 136-
138A/133A/134A

plasmids were transfected into cells and it was found
that no none-specific proteins were brought down by
the Flag M2 beads using Western blot detection (Figure
6B, lane Control). On the other hand, Flag-VP2-GFP
was co-immunoprecipited with MCM3 protein by the
Flag M2 beads (Figure 6B, lane WT) when compared to
the protein band in the Flag-VP2-GFP nuclear extract
(Figure 6B, lane N). In contrast, other components of
DNA replication complexes such as CDC7, PCNA and
condensin SMC2, as well as the core histones such as
H2B, were not co-immunoprecipited with VP2 using
CHO cell extracts (see Additional file 2). The above
results confirmed that VP2 associates with MCM3 when
it binds to chromatin.

To identify whether the dual phosphatase activity of VP2
was needed for association with MCM3, we performed a
site directed mutagenesis assay targeting position C95 and
C97 of VP2 in order to create the single mutants C95S
and C97S and the double mutant C95S/C97S, which have
either partial or complete disruption of the DSP activity
associated with VP2 [17]. Co-immunoprecipitation assays
were carried out and, the results are shown in Figure 6C,
MCM3 was co-immunoprecipitated by the three mutants
of VP2 protein in a similar manner to the wild type pro-
tein, which shows that VP2 binding to MCM3 does not
require dual-phosphatase activity (Figure 6C).

Discussion
CAYV is an important avian pathogen worldwide and
causes major economic damage throughout the poultry

industry. Three major proteins are encoded by this
virus, namely the capsid protein VP1, the nonstructural
protein VP2, and the apoptin VP3. However, up to the
present, the exactly functions of these three proteins in
cell are still poorly understood. In previous studies, the
expression of VP2 was found to be nuclear in plant cells
[25]. This result is similar to that of the present study,
where, VP2 was found to accumulate in the nucleus of
both HeLa and CHO cells. Our results, both by bioin-
formatics and site-directed mutagenesis, support the
hypothesis that VP2 contain a NLS and named as NSL2.
NLS2 was shown to be a functional NLS that allowed
transfer of VP2 into nucleus. This is similar to VP3,
which has two functional NLS motifs that are also used
for nuclear localization. The single VP2 NLS motif
spans amino acid residues 133 to 138. Within this motif,
we also found that two amino acids with positive
charges, 133R and 134 K were important to allowing
VP2 protein to shuttle from the cytoplasm to the
nucleus. To the best of our knowledge, this is the first
report identifying a NLS motif in the VP2 of CAV.
Subsequent sequence analysis showed that VP2 might
contain a putative CRM1-mediated NES motif that
stretched from amino acid 120 to amino acid 128, how-
ever the scores for this motif was below the program
threshold. In order to confirm that a NES motif really
existed in VP2, we used fusion protein constructs to
investigate nuclear transportation in the presence of
LMB assay (Figures 3A and see Additional file 1). A
control protein, namely VP3, also named apoptin, which
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Figure 6 VP2 binds to chromatin and interacts with MCM3 but this does not require dual phosphatase activity. (A) The soluble (S) and
chromatin (C) fractions were prepared by using CSK buffer containing 0.5% Triton X-100 in CHO cells of transfected with VP2-GFP plasmid. The
fractions were treated with 0 U (-) and 150 U (+) of MNase or the indicated concentrations of NaCl. Nuclear extracts (N) containing VP2-GFP
were as positive control and all fractions were subjected to immunoblotting against with lamin B receptor, MCM3, and VP2 antibodies. (B) At 48
h post-transfection, the GFP (as Control) and Flag-VP2-GFP (as wild-type; WT) were found in the CHO cells. Next the lysates were
immunoprecipitated using Flag M2 beads and immunoblotted against VP2 and MCM3 antibodies. (C) The WT and mutants (C95S, C97S, and
C955/C9795) of the Flag-VP2-GFP in CHO cells were also examined at 48 h post-transfection. The cell lysates were immunoprecipitated using Flag
M2 beads and immunoblotted against with VP2 and MCM3 antibodies. The arrow head was indicated a none-specific band. The nuclear extracts
containing VP2-GFP were designated as N
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contains a classical leucine-rich NES motif and has been
previously described as sensitive to LMB treatment was
included in the study [29,30]. Our results confirmed
that the cytoplasm and nuclear distribution of the var-
ious truncated VP2 mutants was not obviously changed
in pattern after treatment with LMB. This supports two
possibilities; firstly, that the nuclear export pathway
(using NES motif) of VP2 might not exist and/or, sec-
ondly, that a distinct and CRM1 dependent pathway was
adopted by VP2 for nuclear export.

VP2 has been shown to contain dual phosphatase
activity and this activity is required for CAV replication
[17,31]. However, in this context, very little is known
about the role this protein plays in the regulation of
viral DNA replication. When cells are infected with
CAV, VP2 is expressed and accumulates, reaching a
detectable level at 12 h post-infection [8,16]. In contrast,
VP1 has been found to accumulate to a higher level at
30 h post-infection. Amino acids sequence analysis of
CAV VP1 was revealed that the N-terminal region show
similarity to protamines [11], this supports the hypoth-
esis that VP1 has DNA-binding functionality [32]. The
N and C-terminal domains of VP3 separately bind to
DNA and indicating the presence of multiple indepen-
dent binding sites [33]. However, VP2 protein has no
obvious DNA binding characteristics. In this study, VP2
of CAV is shown to be localized to the nucleus in two
cell lines (Figure 1) and also to bind to chromatin (Fig-
ure 6). The latter finding was confirmed by examining
the nuclease-resistant fraction and by treating with high
salt. VP2 is similar to MCM3, a component of various
MCM2-7 complexes, and other nuclease-resistant chro-
matin bound proteins such as CDC6 [18], minichromo-
some maintenance proteins (MCMs) [34], and PCNA
[35], all of which have chromatin-bound characteristics.
This suggests that the early expression of VP2 might
involve DNA replication with VP2 interacting with the
prereplication complex (Figure 6B). The association of
VP2 with MCM3 (and perhaps other members of a
MCM2-7 complex) may facilitate the DNA replication
of CAV. However, it is still unknown whether VP2 is
able to bind to DNA directly and this will need further
investigation. Moreover, VP2’s association with MCM3
does not require dual phosphatase activity (Figure 6C)
and therefore, the relevance of VP2’s DSP activity to the
live cycle of CAV also needs further investigation.

Rep, a viral protein with replicase activity involved in
regulating rolling-circle replication (RCR), has been
found in most circovirus members of the family Circo-
viridae [36]. CAV seems to lack a Rep protein. However,
some studies have proposed that the C-terminus of
CAV VP1 contains a highly conserved RCR motif and
that this may play a role in regulating the RCR reaction
[32]. This RCR-regulating function of VP1 seems to be
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very similar to that of the Rep protein. Therefore, VP1
may interact with VP2 to form a nucleoprotein complex
and, in addition, the genomic DNA of the virus might
also be coupled with VP1 and VP2 in order to regulate
the RCR reaction during the early stages of infection.
However, these hypotheses need to be investigated in
terms of how the MCMs interact with the VP2 of CAV.

Conclusions

We have demonstrated that the VP2 of CAV contains a
functional NLS motif that spans amino acids 133 to 138
of the protein. In addition to having a NLS, VP2 is also
a chromatin binding protein similar to members of the
MCM2-7 complex. Moreover, VP2 associates with
MCMS3 in cells based on co-immunoprecipitation analy-
sis. Taken together, these findings suggest that VP2 may
be part of a DNA pre-replication complex.

Methods

Antibodies

All primary anti-human and mouse antibodies used for
immunoblotting were purchased from commercial com-
panies. Rabbit polyclonal anti-human and mouse antibo-
dies were obtained as follows: SMC2, CDC7, and H2B
from Santa Cruz Biotechology, USA; MCM3 from
Bethyl Laboratories, USA; PCNA from Epitomics, USA
and rabbit monoclonal anti-human and mouse lamin B
receptor antibody from Abcam, USA. The anti-VP2 of
CAV polyclonal antibody was prepared by immunizing
rabbits using VP2 of CAV expressed in E. coli [37]. The
secondary antibodies for Western blotting were as fol-
lows: the goat anti-mouse IgG and goat anti-rabbit IgG
conjugated HRP, which were both obtained from Santa
Cruz Biotechology, USA.

Construction of plasmids

Various plasmids, such as pcDNA3.1 VP2-GFP,
pcDNA3.1 Flag-VP2-GFP and pcAcGFP1-N1 VP3-GFP,
were constructed as described below. The full-length of
VP2, Flag-VP2 and VP3 were amplified by PCR using
high fidelity Platinum Taq DNA polymerase (Invitrogen,
USA) from pGEX-6P-1-VP2 [38] and pGEX-6P-1-VP3
(data not shown) using the primers: forward VP2 1-18
EcoRI 5 TGGAATTCATGCACGGGAACGGCGGA3
or VP2 Flag EcoRI 5° AGGATCCATGGATTACAAG-
GATGACGACGATAAGGAATTCATGCACGG-
GAACGGCGGACA 3’ and reverse VP2 657 Xhol 5’
TCCTCGAGCACTATACGTACCGG 3’ for VP2 and
Flag-VP2 in addition to forward VP3 Nhel 5 AGCTAG-
CATGAACGCTCTCCAAGAAG 3’ and reverse VP3
Xhol 5" TCCTCGAGCAGTCTTATACACCTTCT 3’ for
VP3. The PCR products were then ligated into the
yT&A vector (Yeastern Biotech, Taiwan). The EcoRI/
Xhol fragments containing VP2 and Flag-VP2 or Nhel/
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Xhol fragments containing VP3 were released from the
yT&A vector and ligated into pcDNA3.1-GFP, which
was a kind gift from Prof. Min-Ying Wang (the Gradu-
ate Institute of Biotechnology, National Chung Hsing
University, Taichung, Taiwan) and pAcGFP1-N1 (Clon-
tech, USA). The truncated and point mutations of the
VP2-GFP constructs were generated in a similar manner
to that described above and the primers are summarized
in Table 2. Single site directed and multiple site directed
mutagenesis were carried out by PCR using PfuUltra™
High-Fidelity DNA Polymerase (Stratagene, USA) in
addition to using pcDNA3.1 VP2-GFP and pcDNA3.1
Flag-VP2-GEFP as the template with the primers in Table
2.

Amino acid sequence analysis and predication

The amino acid sequences of VP2 from different isolates
were identified by searching the UniProtKB database
(available at http://www.uniprot.org/). The isolates
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analyzed were Taiwan CIA-89 (in the present paper),
Australia/CAU269-7/2000 (accession number: Q91ZU7),
Germany Cuxhaven-1(accession number: P69484), Japan
82-2 (accession number: P54093), USA 26p4 (accession
number: P54092), and USA CIA-1(accession number:
P69485). The amino acid sequences were then aligned
and analyzed using program of Biology Workbench 3.2
(San Diego Supercomputer Center; SDSC). The putative
NES motif was predicted by the NetNES 1.1 Server [39]
while the NLS was predicted by WoLF PSORT [40] and
NLStradamus [41].

Cell culture, transfection and staining

Chinese hamster ovary (CHO) cells were grown in
GIBCO®™ Dulbecco’s Modified Eagle Medium: Nutrient
Mixture F-12 (DMEM/F-12) medium (Invitrogen, USA)
supplemented with 10% (v/v) fetal bovine serum (FBS)
(GIBCO/Invitrogen, USA), 100 units/ml penicillin, and
100 pg/ml streptomycin. HeLa cells were grown in

Table 2 The primers used to create the various truncated, single and multiple mutants by PCR in this study

Primer name Type Length Sequence (5'-3')

VP2 111 N del EcoRl Forward 26-mer TGGAATTCATGGAGGACCGATCAACC
VP2 141 N del EcoRl Forward 26-mer AGGAATTCATGCACTACTCCCAGCCG
VP2 160 N del EcoRl Forward 26-mer AGGAATTCATGGACGAGCTCGCAGAC
VP2 115 C del Xhol Reverse 24-mer TCCTCGAGTGATCGGTCCTCAAGT

VP2 132 C del Xhol Reverse 23-mer TCCTCGAGACCCTGTACTCGGAG

VP2 145 C del Xhol Reverse 26-mer TCCTCGAGCTGGGAGTAGTGGTAATC
VP2 136-138A Forward 27-mer AAACGAGCTGCTGCTGCTCTTGATTAC
VP2 136-138A Reverse 27-mer GTAATCAAGAGCAGCAGCAGCTCGTTT
VP2 150-152A Forward 39-mer ACCCCGAACGCAGCAGCAGTGTATAAGACTGTAAGATGG
VP2 150-152A Reverse 39-mer CCATCTTACAGTCTTATACACTGCTGCTGCGTTCGGGGT
VP2 136-138A/134/A Forward 27-mer GTACAGGGTAAAGCTGCTGCTGCTGCT
VP2 136-138A/134/A Reverse 27-mer AGCAGCAGCAGCAGCTTTACCCTGTAC
VP2 136-138A/133/A Forward 27-mer GTACAGGGTGCTCGAGCTGCTGCTGCT
VP2 136-138A/133/A Reverse 27-mer AGCAGCAGCAGCTCGAGCACCCTGTAC
VP2136-138A/133A/134/A Forward 27-mer GTACAGGGTGCTGCTGCTGCTGCTGCT
VP2 136-138A/133A/134/A Reverse 27-mer AGCAGCAGCAGCAGCAGCACCCTGTAC
VP2 133A Forward 28-mer GTACAGGGTGCTCGAGCTAAAAGAAAGC
VP2 133A Reverse 28-mer GCTTTCTTTTAGCTCGAGCACCCTGTAC
VP2 134A Forward 28-mer GTACAGGGTAAAGCTGCTAAAAGAAAGC
VP2 134A Reverse 28-mer GCTTTCTTTTAGCAGCTTTACCCTGTAC
VP2 133A/134A Forward 28-mer GTACAGGGTGCTGCTGCTAAAAGAAAGC
VP2 133A/134A Reverse 28-mer GCTTTCTTTTAGCAGCAGCACCCTGTAC
VP2 C95S Forward 20-mer CGCTAAGATCAGCAACTGCG

VP2 C95S Reverse 22-mer CGCAGTTGCTGATCTTAGCGTG

VP2 C97S Forward 21-mer ATCTGCAACAGCGGACAATTC

VP2 C97S Reverse 24-mer ATTGTCCGCTGTTGCAGATCTTAG

VP2 C955/C97S Forward 28-mer CGCTAAGATCAGCAACAGCGGACAATTC
VP2 C955/C97S Reverse 28-mer ATTGTCCGCTGTTGCTGATCTTAGCGTG
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Dulbecco’s minimal essential medium (DMEM) (Invitro-
gen, USA) supplemented with 10% (v/v) FBS, 100 units/
ml penicillin, and 100 pg/ml streptomycin. In order to
determine the localization of VP2-GFP and the various
mutant proteins, pcDNA3.1 VP2-GFP and the various
mutant plasmids were transfected into HeLa and CHO
cells using TurboFect™ (Fermentas, Canada) by follow-
ing the manufacturer’s instructions. The plasmid of
pAcGFP-N1 VP3-GFP was also transfected as a positive
control for the LMB treatment assay. HeLa or CHO
cells were seeded at a density of 2 x 10* or 8 x 10* cells
per well in 24 well culture plates. Forty-eight hours after
transfection, aliquots of the cells, underwent replace-
ment with fresh medium containing 20 ng/ml LMB (+)
(Calbiochem, Germany) [27,28] or phosphate-buffered
saline (PBS) buffer as the LMB (-) control. This was in
order to test the nuclear export signals of VP2 and VP3.
All cells were fixed using 4% paraformaldehyde solution.
After washing three times with 1x PBS, the cells were
incubated with 1 x PBS containing 0.25% Triton X-100
for 10 min and stained with 1 pg/ml DAPI (Sigma,
USA). GFP fluorescence and DAPI images were cap-
tured using a ZEISS AXIOVERT 200 microscope
equipped with a 40 objective and an AxioCam HRm
CCD camera. Image processing was done using Photo-
shop. The Alpha View"™ Software (Alpha Innotech Cor-
poration, USA) was used to calculate the distribution of
VP2-GFP and mutants across the cytosol and nucleus in
the cells.

Cell fractionations

Chromatin fractions were prepared by minor modifica-
tions of a procedure described previously [42]. After
transfection with VP2-GFP plasmid, the CHO cells were
lysed in cytoskeleton (CSK) buffer containing 0.5% Tri-
ton X-100, 1 mM ATP, 1 mM dithiothreitol, and pro-
tease inhibitors (Sigma, USA) for 30 min on ice. The
protein extract was then centrifuged at 1500 g for 5 min
at 4°C. The supernatant was collected and labeled as the
soluble fraction (S). The pellet which was chromatin (C)
was washed once with CSK buffer for 5 min on ice,
then centrifuged at 1500 g for 5 min at 4°C, and resus-
pended in SDS sample buffer. For micrococcal nuclease
(MNase) (Fermentas, Canada) or NaCl treatment, the
chromatin was resuspended in 100 pl of CSK buffer
supplemented with 0.1 M, 0.3 M of NaCl or 0 U (-) and
150 U (+) MNase with 2 mM CacCl, and incubated for
30 min at 37°C. After incubation, the chromatin and
soluble supernatant were separated by centrifugation.
Chromatin and soluble solutions were resuspended and
boiled in SDS sample buffer for immunoblotting.
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Co-immunoprecipitation

After transient transfection with pcDNA 3.1 Flag-VP2-
GFP and the various mutants, CHO cells were harvested
and lysed using Nonidet P-40 (NP-40) lysis buffer (10
mM HEPES, pH 8.0, 0.2% NP-40, 150 mM NaCl, 1 mM
EGTA, 5 mM MgCl, and 10% glycerol) containing a
cocktail of protease inhibitors (Sigma, USA). After 30
min on ice, the lysates were centrifuged at 13200 rpm
for 5 min at 4°C. For co-immunoprecipitation, the 500
pg/ml cell extracts were incubated with 2 pg of anti-
Flag M2 beads (Sigma, USA) for 16 h at 4°C. The
immunoprecipitate was then washed three times with
lysis buffer, resuspended in 20 pl of SDS sample buffer,
and the samples were heated for 5 min at 100°C. The
soluble proteins were resolved by SDS-PAGE for Wes-
tern blotting.

Additional material

Additional file 1: The effect of LMB treatments on the various
mutants of VP2. The truncated mutants of VP2 in Figure 3A were all
treated with LMB (+) (20 ng/ml) and LMB (-) (PBS buffer) for 1 h at 37°C.
VP3-GFP is LMB sensitive and was used as a positive control. The
distribution of GFP was monitored by fluorescence microscopy.

Additional file 2: Identification of protein-protein interactions with
VP2 surveyed by co-immunoprecipitation. At 48 h post-transfection
with plasmids encoding GFP (as the Control) or Flag-VP2-GFP (WT), cell
lysates were immunoprecipitated by Flag M2 beads and immunoblotted
against VP2, MCM3, CDC7, SMC2, PCNA, and H2B antibodies. The nuclear
extracts containing VP2-GFP are designated as N.
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