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Abstract
Background: Escherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a 
range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in 
humans. Beef and dairy cattle are considered the most important animal reservoirs for this pathogen. One of the 
important virulence characteristics of E. coli O157:H7 is the eaeA gene encoding the 97 kDa surface protein intimin. 
Intimin is required for attachment and effacement during the interaction of enterohemorrhagic E. coli with human and 
bovine neonatal enterocytes. The present study was undertaken to test the hypothesis that an adaptive mucosal 
immune response directed against intimin will reduce or prevent enteric colonization and fecal shedding of E. coli 
O157:H7 in cattle.

Results: Cattle were orally inoculated with either milk (control), milk with live attenuated Salmonella enterica serovar 
Dublin (vector), or milk with live attenuated recombinant S. Dublin expressing intimin (vaccinated) on days 0, 14 and 
28. On day 98, all calves were challenged orally with E. coli O157:H7 to evaluate whether vaccination with the 
recombinant S. Dublin expressing intimin would reduce the level of E. coli O157:H7 fecal shedding.

During the first 28 days, vaccinated calves shed both the vector strain and the intimin-expressing S. Dublin strain at a 
similar level. The vector strain was shed for a significantly longer period as compared to the level of recombinant 
vaccine strain. Calves that received the intimin-expressed vaccine ceased shedding S. Dublin from day 28 to day 63. All 
calves were challenged with E. coli O157:H7 on day 98 to determine the effect on fecal shedding of E. coli O157:H7. The 
amount of E. coli O157:H7 in feces was measured for 30 days post-challenge. We observed a transient clearance of E. coli 
O157:H7 from the feces in the vaccinated calves. The magnitude of fecal E. coli O157:H7 shedding did not correlate with 
the presence of intimin-specific fecal IgA.

Conclusion: Oral vaccination with live attenuated recombinant S. Dublin expressing intimin reduced enteric 
colonization and fecal shedding of E. coli O157:H7. However, the transient clearance of E. coli O157:H7 was not 
associated with an enhanced IgA-mediated mucosal immune response.

Background
Escherichia coli serogroup O157:H7 (E. coli O157:H7) is a
zoonotic bacterial pathogen that causes symptoms rang-

ing from self-limiting bloody diarrhea to severe hemor-
rhagic colitis in humans [1,2]. E. coli O157:H7 infection
can also cause extra-intestinal illness, most importantly
hemolytic-uremic syndrome (HUS). The majority of E.
coli O157:H7-associated fatalities results from renal fail-
ure, neurologic manifestations, or other complications of
HUS [3-5]. E. coli O157:H7 is mainly a food borne patho-
gen. Beef and dairy cattle are considered to be the most
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important animal reservoirs of E. coli O157:H7 [6-12].
Transmission of E. coli O157:H7 by fecal contaminated
water [13,14] is thought to be a major source of infection.
Some person-to-person transmission has been also
reported [15,16], but the main source of human infection
with E. coli O157:H7 is contamination of food products.

The infective dose of E. coli O157:H7 is low for both
calves and humans, in some cases approximately only 102

organisms are required to cause infection [17]. Neonatal
calves are particularly susceptible to E. coli O157:H7, but
adult cattle do not generally exhibit clinical signs follow-
ing experimental or natural infection. Adult cattle typi-
cally continue to shed bacteria in their feces for weeks to
months, or for the lifetime of the animal. Carcasses of
non-colonized cattle have sometimes been found to con-
tain E. coli O157:H7 in the abattoir, suggesting that cross-
contamination during meat processing can be a major
source of contamination of beef products and subsequent
infection of humans [9].

One of the important virulence factors of E. coli
O157:H7 is the eaeA gene that encodes the 97 kDa sur-
face protein intimin. Intimin is required for E. coli
O157:H7 colonization, the development of attaching and
effacing epithelial lesions, and disease in neonatal calves,
pigs, and mice [18]. Intimin-specific antiserum can block
adherence of E. coli O157:H7 to HEp-2 cells in tissue cul-
ture [19]. Calves challenged with intimin-deficient
mutant bacteria do not develop diarrhea or attaching/
effacing lesions, nor are colonized to the same extent as
animals infected with wild type or complemented mutant
strains [20]. Earlier studies have proposed that mucosal
IgA directed against intimin might serve an analogous
function in vivo [21]. However, experimental challenge of
cattle previously infected with E. coli O157:H7 has failed
to demonstrate protective immune responses [22], per-
haps because E. coli O157:H7 generate very low titers of
specific mucosal IgA responses directed against intimin
or other E. coli O157:H7 antigens [23]. E. coli O157:H7
colonization of mice can be reduced when the animals
are fed recombinant tobacco expressing intimin [24]. It is
suggested that intimin on the surface of EHEC would
bind to nucleolin [25]. The present study was undertaken
to test the hypothesis that a specific adaptive mucosal
immune response directed against the surface antigen
intimin might prevent or reduce the colonization of E.
coli O157:H7 in cattle.

Methods
Cloning the eaeA gene into pRB3
The eaeA gene was amplified from pEB310 using primers
SW20H3: 5'-CGCCCAAGCTTCGTTGTTAAGT-
CAATGG-3' and EaeA 3': 5'-CGCGGATCCAGTAGTA-
GATTTGATTATAAGAGG-3' by PCR and cloned into
the HindIII/SmaI site of pRB3. Plasmid DNA was intro-
duced into S. Dublin aroA::tet by electroporation. His-

tagged EaeA was produced by cloning the coding region
of eaeA into pET16b (Novagen, Gibbstown, NJ). Expres-
sion and purification of His-tagged EaeA on NTA-Nickel
resin (Qiagen, Valencia, CA) was performed according to
the manufacturer's instructions. His-tagged EaeA was
concentrated and stored in 50 mM Tris-HCL 250 mM
NaCl, 0.1 mM EDTA and 1 mM DTT.

Identification of Salmonella- and E. coli O157:H7-free calves
Clinically healthy male Holstein/Friesian calves, aged 1 to
2 weeks, were obtained from a local supplier. The weight
of the calves ranged between 40 and 45 kg. Animals were
cared for according to the Association for Assessment
and Accreditation of Laboratory Animal Care guidelines
under the oversight of the Texas A&M University Institu-
tional Animal Care and Use Committee AUP 2000-252.
Calves were fed 2 liters of antibiotic-free whey-based
milk replacer twice daily and given water ad libitum.
Before being used for experiments, calves were clinically
evaluated for fever and infection with Salmonella and E.
coli 0157:H7. The presence of Salmonella was evaluated
by incubation of fecal samples in tetrathionate broth
(Difco), followed by enrichment in Rappaport-Vassiliadis
R10 broth (Difco), then by plating onto XLT-4 plates
(BBL). All calves were free of Salmonella and E. coli
O157:H7.

Calves were divided into 3 treatment groups. The con-
trol group consisted of 3 calves that were fed only milk
replacer (950 ml) and 50 ml of inoculum buffer (a suspen-
sion of 5% magnesium trisilicate, 5% sodium bicarbonate,
and 5% magnesium carbonate) on the inoculation days.
The second group consisted of the vector group (4 ani-
mals). The calves in this group were inoculated with 1010

colony forming units (CFU) of the S. Dublin aroA strain
with the empty pRB3 vector suspended in 50 ml of inocu-
lum buffer in milk replacer. The third group (hereafter
called the vaccinated group) consisted of 5 calves inocu-
lated with 109-1010 CFU S. Dublin aroA pRB3::eaeA sus-
pended in 50 ml of inoculum buffer in milk replacer.

Vaccination of calves with S. Dublin strains
Overnight cultures were grown in LB broth, and the opti-
cal density at 600 nm was determined. A volume contain-
ing the desired quantity of bacteria was added to 50 ml
inoculum buffer. The inoculum was added to 950 ml of
milk replacer and used to orally inoculate calves on days
0, 14 and 28. For all experiments, the bacterial titer of the
inoculum was determined by plating serial dilutions onto
LB agar plates, incubating plates overnight at 37°C, and
enumerating the colonies.

Challenge of calves with virulent E. coli O157:H7 strain 86-
24
All calves were challenged orally with 1010 CFU E. coli
O15:H7 strain 86-24 [26] (kindly provided by Dr. Rod
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Moxley from the University of Nebraska, Lincoln-
Nebraska) on day 98. Animals were inoculated with one
liter of milk replacer containing 1010 CFU E. coli O15:H7
strain 86-24 that had been suspended in 50 ml of 5% mag-
nesium trisilicate, 5% sodium bicarbonate, and 5% mag-
nesium carbonate inoculum buffer.

Collection of fecal samples
Fecal samples from all the calves were collected daily
from day 0 to day 42 post-inoculation to determine the
level of vaccine strain shedding. After 42 days, fecal sam-
ples were collected weekly to determine the presence of S.
Dublin vaccine strain shedding. Fecal samples were col-
lected daily for 30 days to determine the amount of E. coli
shedding following oral challenge with E. coli O157:H7
strain 86-24 on day 98.

Collection of peripheral blood for serum IgA measurement 
and enumeration of intimin-specific IgA-secreting cells
Peripheral blood was collected weekly for serum IgA and
ELISpot assays. Blood was collected in serum separator
tubes, kept at 37°C for 6 hours, and centrifuged at 2000
rpm for 30 min. Clarified serum was collected and stored
at -20°C for serum IgA detection.

Serum IgA antibody measurement
An Immulon 2-HB flat bottom 96-well microtiter plate
(Thermo Labsystems, Franklin, MA) was coated over-
night at 4°C with 100 μl/well (5 μg/ml) His-tagged
intimin. The plate was washed 3 times with wash buffer
(PBS with 0.05% Tween 20), then blocked for 1 h at 37°C
with 250 μL/well PBS containing 3% (wt/vol) dried nonfat
milk powder (Carnation, Nestle, Glendale, CA). Bovine
serum was diluted to 1:1000 with blocking buffer, and 100
μl/well volume of diluted serum was added to the plate
and incubated for 3 h at 37°C. Wells were washed 3 times
with wash buffer. One-hundred μl rabbit of anti-bovine
IgA-horseradish peroxidase conjugate (Bethyl, Mont-
gomery, TX) diluted 1:1000 in wash buffer with 3% (wt/
vol) dried nonfat milk powder were added to each well.
The plates were then incubated for 1 h at 37°C. Following
incubation, the plates were washed 3 times with wash
buffer, then incubated with 100 μL/well of a 1:1 mixture
of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)
(ABTS) peroxidase substrate and peroxidase solution B
(KPL, Gaithersburg, MD) for 1 h at 37°C. After color
development (5 min at RT), absorbance was measured at
410 nm on a microplate reader (FLUOstar Optima, BMG
Labtechnologies, INC, Durham, NC).

Mucosal (fecal) IgA antibody measurement
For the detection of mucosal IgA, feces were collected in
individual sterile 50 ml centrifuge tubes from all calves.
Fecal samples were weighed and liquefied by the addition
of ice-cold 0.1 M sodium acetate buffer pH 4.5 (ratio 1:2).

This fecal sample-buffer mixture was incubated at 56°C
for 30 min. To inactivate proteolytic enzymes, a cocktail
of soybean trypsin inhibitor, aprotinin, and phenylmeth-
ylsulphonyl chloride (PMSF) was added to this mixture
and incubated for 30 min on ice [27]. After incubation,
the fecal suspension was centrifuged at 15,000 g at 4°C for
30 min. Clarified supernatant was filtered through a low
binding sterile filter (0.45 mM). Titers of intimin-specific
IgA in the fecal sample were detected essentially the same
way as described above for the intimin-specific IgA in
serum, using fecal supernatant instead of serum samples.

ELISpot assay to detect intimin-specific IgA-secreting cells 
in peripheral blood
Peripheral blood samples were collected directly into 8
ml BD Vacutainer CPT (Becton Dickinson Vacutainer
systems, Franklin lakes, NJ) that contained 1.0 ml of 0.1
M sodium citrate, 1 ml of Ficoll-Hypaque and a gel bar-
rier. Peripheral blood mononuclear cells (PBMC) were
isolated as described earlier [28]. Tubes were centrifuged
at 3000 RPM for 30 min. The buffy coat containing white
blood cells was collected and washed in PBS-citrate. Red
blood cells were lysed by incubating the cell suspension in
RBC lysis buffer (Analytical Genetic Testing Central,
INC. Denver, CO) for 15 min. Cells were washed 2 times
with PBS-citrate and finally resuspended in RPMI
medium (Gibco BRL, Life Technologies, Inc., Grand
Island, NY) supplemented with 15% fetal bovine serum,
L-glutamine and sodium pyruvate. Viable cells were
counted using trypan blue exclusion dye and a hemacy-
tometer. Cells were kept on ice until they were aliquoted
for the ELISpot assay. For the detection of intimin-specfic
IgA-secreting cells, individual wells of an ELISpot plate
(Millipore Cooperation, 290 Concord Road Billerica,
Massachusetts) were incubated at 4°C overnight with 0.5
ug affinity purified bovine IgA diluted in coating buffer
(50 mM carbonate buffer, pH 9.6). The coated plate was
emptied and rinsed once with supplemented RPMI
medium, then blocked with supplemented RPMI media
at RT for 3 hrs. For ELISpot assays, 105 PBMC were
plated in duplicate wells. Cells were stimulated with His-
tagged intimin (200 ng per well) or PHA (100 ng/well
from the Sigma Chemical Company, St. Louis, MO) and
incubated for 18 hrs at 37°C in a humidified incubator
containing 10% CO2. After incubation, cells were rinsed
once with distilled water, then washed 3 times with PBS
containing 0.05% Tween 20 (PBS-T). Anti-IgA antibodies
conjugated to HRPO (100 ul of 1:1000 dilution in PBS-T)
were added to each well, and the plate was further incu-
bated for 3 hrs at 37°C. The plate was washed again with
PBS-T and spots developed using 100 ul of substrate
solution (3-amino-9-ethylcarbazol tablet from Sigma
Chemicals, St. Louis, MO, reconstituted as per the manu-
facturer's recommendation). After development, the
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plate was emptied and rinsed ten times with distilled
water. Antigen stimulated spots were reported by sub-
tracting the number of spots obtained from wells without
stimulant from the number of spots obtained in stimu-
lant-added wells.

Qualitative Salmonella fecal culture
Shedding of Salmonella was monitored by collecting
daily fecal swabs, followed by enrichment in tetrathionate
broth (Beckton Dickinson and Company, Franklin Lakes,
NJ), and in Rappaport-Vassiliadis R10 broth (Beckton
Dickinson and Company, Franklin Lakes, NJ). Bacteria
were enumerated by plating serial dilutions onto XLT-4
plates (Beckton Dickinson and Company, Franklin Lakes,
NJ).

Quantitative E. coli O157:H7 fecal culture
Ten g samples of feces were immediately processed in a
Stomacher, serially diluted in sterile phosphate-buffered
saline, and plated in triplicate onto Sorbitol-MacConkey
agar. The sensitivity of the direct plating was 50 CFU/g. A
10 g fecal sample was also added to enrichment broth
(Tryptic Soy Broth with 0.15% bile salts), incubated over-
night at 37°C, and plated onto selective medium. Colo-
nies isolated on selective medium were confirmed as E.
coli O157:H7 following the instructions of latex aggluti-
nation kit (BD Difco™E. Coli Antisera kit from Becton,
Dickinson and Company, Cockeysville, MD).

Necropsy
Calves were euthanized by captive bolt, and a complete
necropsy was performed. At necropsy, tissue samples for
bacteriology and histopathology were collected from abo-
masum, omasum, duodenum, jejunum, ileum, cecum spi-
ral colon, distal colon, rectum and mesenteric lymph
node. Homogenates of each tissue were prepared in the
Stomacher by mincing two 6 mm biopsy punches of each
sample in phosphate-buffered saline. The tissue homoge-
nates were then plated and incubated overnight at 37°C
for enumeration of bacteria.

Statistical analysis
Data were analyzed using SAS version 9.1 (SAS Institute,
Cary, NC). Statistical analysis was performed by repeated
measures analysis test for between-subject effects (TRT),
within-subject effects (Time), and within-subject-by-
between-subject interaction effect (TRT*Time). Interac-
tion effects are the joint effects of pairs, triplets, or
higher-order combinations of the independent variables,
different from what would be predicted from any of the
independent variables acting alone. When an interaction
is present, the effect of an independent on a dependent
varies according to the values of another independent. If
the probability of F is less than 0.05 for any such combi-
nation, we conclude that the interaction of the combina-

tion has an effect on the dependent. Note that the
concept of interaction between two independents is not
related to the issue of whether the two variables are cor-
related.

Results
Construction of attenuated Salmonella strains expressing 
cloned intimin
The eaeA gene including the upstream promoter region
from E. coli O157:H7 86-24 was amplified by PCR from
pEB310 and cloned into the low copy, RK2-based plasmid
pRB3 [29]. This plasmid contains the par (partition) locus
from RK2 and insures plasmid segregation and stable
maintenance even in the absence of selection. This plas-
mid has been previously used for in vivo complementa-
tion of S. Typhimurium mutations in mice [30,31].
Western blot analysis revealed the production of full
length EaeA as well as a smaller ~50-60 kD protein in E.
coli K12 carrying pEB310. An immunoreactive protein
corresponding to the smaller protein was also present in
S. Dublin aroA with pRB3::eaeA, but the full length 96 kD
EaeA protein was not seen (Figure 1). The presence of the
smaller protein in both E. coli and S. Dublin suggests that
EaeA is subject to proteolytic cleavage. A significant
quantity of the smaller immunoreactive protein was
expressed in S. Dublin aroA pRB3::eaeA, and this strain
was used for subsequent vaccine trials.

Figure 1 Expression of Intimin in aroA mutant S. Dublin. Protein 
from overnight cultures of S. Dublin aroA, S. Dublin aroA with 
pRB3::eaeA, or E. coli K12 with pEB310 were separated on 4-20% SDS-
PAGE and expression of intimin determined by western blot. Lane 1, S. 
Dublin aroA, lane 2 S. Dublin aroA with pRB3::eaeA, and lane 3, E. coli K12 
with pEB310. The full-length intimin protein is 96 kD (upper arrow) 
present in E. coli K12 with pEB310 but absent in S. Dublin aroA with 
pRB3::eaeA. A smaller immunoreactive protein (lower arrow) is present 
in both S. Dublin with pRB3::eaeA and E. coli K12 with pEB310.
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Vaccination of calves with S. Dublin vaccine strains
All calves were orally inoculated with the non-recombi-
nant S. Dublin aroA vector or with intimin-expressing S.
Dublin aroA on days 0, 14 and 28. A detailed time line for
the experiment is provided in Figure 2.

Calves that received S. Dublin strains shed for variable
amounts of time following vaccination. Most calves shed
the vaccine strains intermittently until the end of the
experiment (126 days post-immunization), indicating the
establishment of the vector/vaccine strain in the host.
Figure 3 depicts fecal shedding of S. Dublin strains until
98 days post-immunization. Following the first immuni-
zation, both vector and vaccinated groups had similar
percentages of calves positive for shedding of S. Dublin
aroA (vector 33%, vaccinated 40%). However, after the
third immunization, the vector group contained signifi-
cantly higher numbers of calves positive for S. Dublin
shedding as compared to animals immunized with
intimin-expressing S. Dublin. In order to normalize
short-term fluctuations and highlight longer-term trends,
we calculated the moving average for the shedding of Sal-
monella after immunization (Figure 3). By the end of the
experiment, the frequency of positive shedders in both
the groups was similar (~44%).

Serum IgA antibody response
Intimin-specific IgA was measured weekly in the serum
of all calves throughout the experiment (Figure 4). We
observed an increase in intimin-specific IgA in calves
receiving either the vector or the intimin-expressing

strain. Statistical analyses revealed a significant time
effect (P = 0.036), but no significant treatment effect (P =
0.87) or treatment × time interaction (P = 0.4). Also, prior
to the E. coli O157:H7 challenge, there was a significant
time effect (P = 0.0009), but no significant treatment
effect (P = 0.25) or treatment × time interaction (P =
0.26). A sporadic increase in intimin-specific IgA levels
was observed in the control group. However, we did not
notice any symptoms of clinical infection in these ani-
mals. Mucosal (fecal) IgA responses with intimin-specific
IgA antibody were observed in all animals (Figure 5).
There was a significant time effect (P < 0.001), but no sig-
nificant treatment effect (P = 0.2) or treatment × time
effect (P = 0.5). Fecal anti-intimin IgA levels prior to the

Figure 2 Time frame of experiment and collection of samples. 
Calves were divided into 3 treatment groups. Calves (n = 3) in the con-
trol group were fed only milk on days 0, 14 and 28. Calves (n = 4) in the 
vector group were orally inoculated with the live attenuated non-re-
combinant S. Dublin strain on days 0, 14 and 28. Calves (n = 5) in the 
vaccinated group were inoculated orally with live attenuated recombi-
nant S. Dublin expressing E. coli O157:H7 intimin on days 0, 14 and 28. 
All calves were challenged orally with E. coli O157:H7 on day 98 post-
vaccination. Fecal samples from calves were collected daily from all 
calves from day 0 to day 42 post-inoculation for Salmonella culture, 
and fecal samples were collected weekly thereafter. After oral E. coli 
O157:H7 challenge, fecal samples were collected daily to monitor E. 
coli O157:H7 shedding. Peripheral blood samples were collected week-
ly after inoculation to measure levels of serum IgA and to detect in-
timin-specific IgA-secreting cells by ELISpot assay.

Figure 3 Duration (x axis) and percentage (y axis) of S. Dublin 
positive calves as measured by qualitative evaluation of fecal 
shedding. Calves were inoculated orally as indicated on days 0, 14 and 
28. Solid markers (triangle, square or circle) indicate the percentage of 
calves shedding S. Dublin. A moving average trendline was calculated 
to normalize fluctuations in shedding. The moving average was calcu-
lated by setting the period as 2, with the average of the first two data 
points used as the first point in the moving average trendline. The av-
erage of the second and third data points was used as the second 
point in the trendline, and subsequent trendline points were calculat-
ed accordingly.

Figure 4 Serum IgA antibody response. Peripheral blood was col-
lected weekly from all calves during the length of the vaccination 
study. Intimin-specific serum IgA antibody concentrations were mea-
sured by ELISA. The bar graph depicts the mean (± standard deviation) 
of animals in each group. Normalization of data was performed by sub-
tracting the OD410 of diluent-only wells from experimental values.
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E. coli O157:H7 challenge showed a significant time effect
(P < 0.001) and treatment × time interaction (P = 0.0009),
but no significant treatment effect (P = 0.2).

Intimin-specific IgA secreting cells in peripheral blood 
mononuclear cells
An increase in intimin-specific IgA secreting cells was
measured by the ELISpot assay (Figure 6). There was a
significant treatment effect (P = 0.04) and time effect (P =
0.001), but no significant treatment × time interaction (P
= 0.19). Using multiple comparisons, there was a signifi-
cant difference between control and vaccinated animals,
and between control and vector animals. However, before
the E. coli O157:H7 challenge, there was a significant time
effect (P < 0.03) and treatment × time interaction (P =
0.03), but no significant treatment effect (P = 0.6).

Shedding of E. coli O157:H7
All calves were challenged orally with E. coli O157:H7 on
day 98 post-vaccination. E. coli O157:H7 shedding was
measured after the challenge (Figure 7). There was a sig-
nificant time effect (P < 0.001) and treatment × time
interaction (P = < 0.001), but no significant treatment
effect (P = 0.27). However, when the trend of shedding E.
coli O157:H7 was calculated as a polynomial trendline,
the trend revealed that the vaccinated calves descended
into the "valley" of the trendline earlier than those who
received the vector, whereas the control group never
reached the valley of the trendline during the entire study
period. Moreover, levels of shedding were lower in ani-
mals receiving the intimin-expressing vaccine strain. This
indicates an early, albeit transient, clearance of the chal-
lenge strain in vaccinated calves.

Bacteriology and Histopathology
None of the examined tissue was positive for the coloni-
zation of bacteria. No notable differences were detected
in the histopathology among the treatment groups.

Discussion
Enterohemorrhagic Escherichia coli (EHEC) such as
strain O157:H7 is an etiologic agent of acute enteric dis-
eases in both humans and neonatal calves [32]; however,
mature cattle are not affected. E. coli O157:H7 can enter
the human food supply from cattle via fecal contamina-
tion of beef carcasses at slaughter [33]. Intimin is an outer
membrane protein expressed by several human and ani-
mal enteric pathogens, including enteropathogenic E. coli
and EHEC [34-38]. Antibodies to intimin may prevent
the initial steps of EHEC colonization in the gastrointesti-

Figure 5 Mucosal (fecal) IgA antibody response. Intimin-specific fe-
cal IgA antibody concentrations were measured by ELISA. The bar 
graph depicts the mean (± standard deviation) of calves in each group. 
Normalization of data was performed by subtracting the OD410 of di-
luent-only wells from experimental values.

Figure 6 Intimin specific IgA secreting cells in peripheral blood 
mononuclear cells. 105 PBMC were plated on bovine IgA-coated 
wells. Cells were stimulated with intimin (200 ng per well) and incubat-
ed for 18 hrs at 37°C. After incubation, cells were incubated with anti-
IgA antibody conjugated to HRPO, and spots were developed using 
substrate solution. Intimin-specific IgA-secreting cells were deter-
mined by subtracting the number of spots obtained in wells without 
any stimulant from the number of spots obtained in wells to which in-
timin was added. The bar graph depicts the mean (± standard devia-
tion) of animals in each group.

Figure 7 Magnitude and duration of fecal shedding of E. coli 
O157:H7. Magnitude (median of each group, CFU/gram of feces) and 
duration of fecal shedding post-challenge with E. coli O157:H7 were 
calculated quantitatively by direct plating as well as by enrichment cul-
ture following oral challenge with E. coli O157:H7 during the 30 days 
post challenge. Specimens containing less than the detection limit (E. 
coli O157:H7 found only by enrichment) were assigned a value of 10. 
Negative specimens were assigned a value of 1. Samples too numer-
ous to count (TNTC) were considered to contain the maximum num-
ber counted.
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nal tract [39-41]. Anti-intimin immune responses can
modulate the outcome of experimental infection with the
EPEC-like bacterium Citrobacter rodentium in rabbits
and supports the inclusion of intimin as a component of
an EPEC or EHEC vaccine [42]. Vaccination of cattle has
significant potential as a pre-harvest intervention strat-
egy to reduce E. coli O157:H7 shedding. However, the
ability of intimin to elicit protective immune responses in
the bovine intestinal tract has not previously been dem-
onstrated. We hypothesized that the mucosal immune
response elicited by live attenuated Salmonella enterica
serovar Dublin expressing the intimin protein of E. coli
O157:H7 would reduce the magnitude and duration of E.
coli O157:H7 colonization and fecal shedding.

In the present study, orally-administered S. Dublin vec-
tor or S. Dublin expressing E. coli O157:H7 intimin were
recovered for up to 98 days post-inoculation in the feces
of calves, confirmed the establishment of intestinal car-
riage. The frequency of positive S. Dublin shedders in
both vaccinated groups at the end of experiment were
similar as observed in other studies in which vaccine
strains administered to cattle were shed for a consider-
able period of time [31]. From 35-70 days post-inocula-
tion, the S. Dublin vector control strain was detectable in
a significantly higher proportion of calves than the
intimin-expressing S. Dublin vaccine strain. Levels of
intimin-specific IgA in serum and feces were not signifi-
cantly higher in calves receiving intimin-expressing S.
Dublin. However, cattle immunized with the intimin-
expressing strain group exhibited a reduced magnitude
and duration of E. coli O157:H7 shedding following oral
challenge.

Earlier studies reported that infection of seropositive
adult cattle with E. coli O157:H7 increases serum anti-
body titers to intimin and to the translocated intimin
receptor (Tir) [23]. Intimin interacts not only with Tir,
but also with host cell intimin receptor(s) on the luminal
surface of intestinal epithelia, including integrin and
nucleolin [43,44]. These receptors are potentially accessi-
ble as binding sites for intimin during vaccination with
recombinant S. Dublin. While antibodies directed against
either Tir or intimin might impede intimin-Tir interac-
tions, antibodies to intimin might be anticipated to
inhibit EHEC binding to alternative host receptors as
well. Recently, it has been shown that vaccination with a
combination of antigens associated with type III secre-
tion system-mediated adherence; the translocon filament
protein, EspA, the extracellular region of the outer mem-
brane adhesin, intimin, and Tir significantly reduced
shedding of EHEC O157 from experimentally infected
animals [45].

In our study, initial shedding of E. coli O157:H7 after
challenge was comparable in the groups receiving either
vector or intimin-expressing S. Dublin, and significantly

lower than in the control group. Earlier studies have indi-
cated that E. coli persists (a challenge dose of 109) for days
to weeks in the bovine intestinal tract before being
cleared [46]. Similar results were observed in this study;
however, it is important to note that the challenge dose in
the present study was higher (1010). The polynomial
trendline revealed that E. coli O157:H7 was cleared more
rapidly from vaccinated calves than from control or vec-
tor-vaccinated animals. This provides evidence in sup-
port of the principle that potentiation of immune
responses to intimin at the mucosal surface can reduce
shedding of the pathogenic E. coli O157:H7 strain. Also,
the possibility of interaction of various components of
adaptive immunity due to initial Salmonella (vector)
infection could not be ruled out [47]. We originally
hypothesized that the protective responses would be
related to fecal concentrations of intimin-specific IgA.
However, the mechanism of vaccine protection is clearly
more complex, as anti-intimin fecal IgA levels did not
correlate with fecal shedding. Enteric mucosal IgA
responses against intimin and type III secreted proteins
were identified in rectal mucus and in the rectal tissue
respectively [48,49]. These studies definitely indicate the
importance of other clinical samples (tissue and rectal
mucus) for studying the mucosal immune response.
Moreover, protection against enteric pathogens by immu-
nization does not essentially require secretory IgA [45],
and intestinal clearance of intimin-expressing Citrobacter
rodentium has been shown to require B cells and IgG
antibodies, but not secretory IgA [45]. Importantly,
intimin-specific antibody titers in colostrum and serum
of dams were found to be increased after parenteral vac-
cination with intimin [50]. In another study, immuniza-
tion of calves with the cell-binding domain of intimin
subtypes beta or gamma via the intramuscular route
induced antigen-specific serum IgG1 and, in some cases
salivary IgA responses, but did not reduce the magnitude
or duration of faecal excretion of EHEC upon subsequent
experimental challenge [51]. The role of IgG in intimin-
expressing vaccine induced protection of calves is worthy
of further investigation.

Of note, reduction in colonization and shedding was
obtained in this study by oral vaccination without a pre-
ceding parenteral inoculation. However, oral vaccines can
significantly boost mucosal immune responses when
primed by parenteral vaccine administration [52,53]. Par-
enteral priming of the immune system facilitates the gut
associated lymphoid tissue to react more rapidly to anti-
gens delivered by oral immunization, and may decrease
the likelihood of inducing oral immune tolerance [24].
Another possible explanation for the modest degree of
reduction in colonization and shedding of E. coli
O157:H7 may be that intimin-specific mucosal IgA was
already present prior to immunization. Thus, this anti-
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body may have interfered with ability of the intimin-
expressing S. Dublin vaccine strain to effectively reach
gut-associated lymphoid tissue and augment local
immune responses. One limitation to the present study is
the need for replication in outbred populations of cattle
having a more defined immune status.

Conclusions
In summary, a live S. Dublin vaccine strain expressing the
E. coli O157:H7 intimin protein effectively colonized the
intestines of calves after vaccination. Immunization
resulted in a transient clearance and subsequently
reduced colonization and shedding of E. coli O157:H7
following challenge.
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