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Abstract
Background: Currently, the highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 is believed to have 
reached an endemic cycle in Vietnam. We used routine surveillance data on HPAIV H5N1 poultry outbreaks in Vietnam 
to estimate and compare the within-flock reproductive number of infection (R0) for periods before (second epidemic 
wave, 2004-5; depopulation-based disease control) and during (fourth epidemic wave, beginning 2007; vaccination-
based disease control) vaccination.

Results: Our results show that infected premises (IPs) in the initial (exponential) phases of outbreak periods have the 
highest R0 estimates. The IPs reported during the outbreak period when depopulation-based disease control was 
implemented had higher R0 estimates than IPs reported during the outbreak period when vaccination-based disease 
control was used. In the latter period, in some flocks of a defined size and species composition, within-flock 
transmission estimates were not significantly below the threshold for transmission (R0 < 1).

Conclusions: Our results indicate that the current control policy based on depopulation plus vaccination has 
protected the majority of poultry flocks against infection. However, in some flocks the determinants associated with 
suboptimal protection need to be further investigated as these may explain the current pattern of infection in animal 
and human populations.

Background
The incidence of HPAIV H5N1 cases in poultry and
humans has been particularly high in south-east Asian
countries and Egypt [1]. The current pattern of poultry
outbreaks in these regions suggests the presence of a res-
ervoir of residual infection [2,3].

From late 2003 to 2006 in Vietnam, the incidence of
outbreaks in poultry was particularly high in regions of
the Red and Mekong river deltas. Outbreaks were associ-
ated with increased movement of poultry around the
annual traditional festivities held just before and during
February (the "Tet" holiday) [4]. However, since 2006, this
pattern has discontinued. Across the country, HPAIV
H5N1 infection primarily affected small-scale commer-
cial premises rearing chicken or ducks in subsistence

flocks [5,6]. These market-oriented flocks account for
about two-thirds of poultry production and half of direct
marketing in Vietnam [7,8]. In addition to poultry cases,
Vietnam has the second highest number of HPAIV
H5N1-related human fatalities in the world [9]. Between
2003 and May 2010, there were 119 confirmed HPAIV
H5N1 cases and 59 deaths in humans, representing a
case-fatality rate of 49.6 percent.

In the early stages of the epidemic, the institutional
responses in affected areas throughout Vietnam were
administratively and temporally inconsistent. Measures
included various large-scale depopulation (stamping-out)
policies, and restrictions on poultry movement, breeding
of certain poultry species, and the sale of live poultry in
wet markets [10]. In September 2005, the Department of
Animal Health of Vietnam started HPAIV H5N1 vaccina-
tion campaigns of susceptible poultry flocks. These cam-
paigns were heterogeneous in terms of the timing of
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spatial coverage, the vaccine types used and the poultry
species targeted [11].

An assessment of the efficacy of disease control mea-
sures is essential for guiding future policy. The reproduc-
tive number of infection, R0, is an averaged
epidemiological property of a randomly mixing popula-
tion with complete susceptibility to the infectious agent
and represents the number of secondary infectious cases
produced by a typical infectious case during its entire life
expectancy [12]. The R0 measures the transmissibility of
an infectious agent in a given host population and thus is
a sensitive indicator of the impact of disease control
interventions applied at flock and herd level [13]. The
estimation and evaluation of within-flock transmissibility
of avian influenza viruses is important, as this influences
the flock-to-flock transmissibility and enables the devel-
opment of predictive models of large-scale disease con-
trol interventions [14-17].

Few studies have assessed the efficacy of disease control
efforts in the face of HPAIV H5N1 outbreaks by estimat-
ing the within-flock R0 [18]. Instead, either within-flock
transmission in industrial-type IPs or in those not subject
to vaccination has been quantified. Our study aims to
estimate the transmissibility of HPAIV H5N1 in a sample
of affected flocks in Vietnam. In doing so, we compared
estimates for outbreak periods before and during the sys-
tematic vaccination campaigns, for different phases
within each of the outbreak waves, and for flocks differ-
ing in size and species composition.

Results
HPAIV H5N1-infected IPs
Figure 1 shows the time course of the number of IPs for
the two outbreak periods considered in the analysis.

Using log-transformed daily incidence of reported-
infected flocks we found for Period I that the exponential
growth of the epidemic had reached its peak on 17 Janu-
ary 2005 (data not shown). One week later incidence
reached a second peak with duration of 13 days.

A summary of IP characteristics regarding population
sizes and observed mortality during both outbreak peri-
ods is presented in Table 1. During the two outbreak peri-
ods most IPs were duck flocks containing less than 1,500
head of poultry (88% and 92% respectively) located in the
southern part of the country. The proportion of IPs with
less than 50 head of poultry (i.e. backyard IPs) was 9%
(93/1005) for Period I and 30% (34/114) for Period II. In
addition, most mixed poultry species IPs (i.e. 92% for
Period I and all in Period II) had less than 1,000 head.

Across both waves, within-flock mortality was found to
be significantly higher in chicken IPs with more than
1,000 head, in duck IPs with more than 500 head and in
mixed poultry species IPs with more than 3,000 head (P <
0.05) than in chicken IPs less than 50 head. There was a
marginally significant reduction in within-flock mortality
in Period II compared with Period I (P = 0.057).

Estimates of within-flock virus transmission
Figure 1 shows the temporal progression of the estimates
of within-flock R0 for the outbreak periods considered in
the analysis. Our results indicated that, for Period I, IPs in
the initial 17 days of the epidemic (1st of January to the
17th of January; exponential growth) had above average
within-flock transmission estimates (Figure 1a). During
that period, chicken IPs of farm sizes larger than 1,500
head and duck IPs of less than 50 head had higher within-
flock R0 than chicken IPs of less than 50 head of poultry.
In addition, our analysis suggested a second peak of
within-flock transmission occurred in the first week of

Figure 1 Temporal progression of the newly reported infected premises (IPs) (blue bars) and 3-day moving average of the daily within-
flock reproductive number R0 (yellow line), estimated for (a) 924 of IPs from Period I (from 1st January of 2005 to 29th March 2005) and for 
(b) 106 IPs from Period II (from 6th December 2006 to 7th March 2007) in Vietnam.
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February. A similar temporal pattern of within-flock R0
was found during Period II (Figure 1b), where IPs
reported at the beginning of the epidemic had higher
within-flock transmission estimates than subsequent IPs.
The highest within-flock R0 in the early stages of Period II
(also during the exponential growth phase of the epi-
demic) was estimated in duck IPs of 200 to 1,500 head of
poultry followed less than a week later by chicken IPs of

less than 50 head of poultry. Across the remainder of
Period II, the within-flock R0 of IPs of different poultry
species and size composition did not differ significantly
and was significantly above unity (P < 0.05).

The distributions of the within-flock R0 estimates for
both outbreak periods examined are summarized in
Table 2. Our results for Period I showed that mean
within-flock R0 did not significantly differ between IPs of

Table 1: Number of reported HPAIV H5N1 infected premises (IPs) by flock size and flock mortality categories for Period I 
(i.e. pre-vaccination period) and Period II (i.e. post-vaccination period) outbreak periods.

Pre vaccination IPs Post vaccination IPs

Chicken Duck Mixed Other Chicken Duck Mixed Other

Total number(proportion) 318(0.32) 577 (0.57) 72 (0.07) 38(0.04) 13(0.11) 91(0.8) 4(0.04) 6(0.05)

No. of birds initially at risk(proportion)

1-50 head 58(0.18) 27(0.05) 8 (0.11) 0 7(0.54) 18(0.2) 3(0.75) 6(1)

51-200 head 77(0.24) 96(0.17) 25 (0.35) 1(0.03) 2(0.15) 23(0.25) 0 0

201-500 head 74(0.23) 152(0.26) 22 (0.31) 0 0 18(0.2) 1(0.25) 0

501-1,000 head 46(0.14) 154(0.27) 11 (0.15) 0 1(0.08) 18(0.2) 0 0

1,001-1,500 head 21(0.07) 76 (0.13) 1 (0.01) 1(0.03) 2(0.15) 7(0.08) 0 0

1,501-3,000 head 21(0.07) 55 (0.10) 1 (0.01) 6(0.16) 0 6(0.07) 0 0

3,001-6,000 head 15(0.05) 13 (0.02) 2 (0.03) 10(0.26) 0 1(0.01) 0 0

>6,000 heads 6(0.02) 4 (0.01) 2 (0.03) 20(0.53) 1(0.08) 0 0 0

No. of birds reported dead (proportion)

1-20 head 58(0.18) 37(0.06) 9(0.13) 0 9(0.69) 25(0.27) 4(1) 6(1)

21-50 head 67(0.21) 82(0.14) 20(0.28) 1(0.03) 1(0.08) 21(0.23) 0 0

51-150 head 71(0.22) 145(0.25) 24(0.33) 0 0 16(0.18) 0 0

151-300 head 50(0.16) 123(0.21) 6(0.08) 10(0.26) 0 12(0.13) 0 0

301-500 head 36(0.11) 87(0.15) 5(0.07) 4(0.11) 1(0.08) 6(0.07) 0 0

501-1,000 head 18(0.06) 63(0.11) 5(0.07) 5(0.13) 1(0.08) 7(0.08) 0 0

>1,001 head 18(0.06) 40(0.07) 3(0.04) 18(0.47) 1(0.08) 4(0.04) 0 0
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different species composition (P > 0.05). During Period II,
the mean within-flock R0 was estimated to be signifi-
cantly higher in duck IPs of flock sizes between 50 and
200 and between 500 and 1,500 head of poultry com-
pared to duck flocks of sizes less than 50 head (P < 0.05).
Comparisons between outbreak periods indicated that
the mean within-flock R0 was significantly lower during
Period II when compared to Period I (95%CI: -1.16, -0.48;
P < 0.05). There was no such difference between both
outbreak periods for mixed poultry species IPs and for
duck IPs with flock sizes above 500 head of poultry (P >
0.05). However, the mean estimate of within-flock R0 for
Period II was still significantly above the threshold of
transmission (R0 > 1) (P < 0.001). The estimated within-
flock R0 in duck IPs less than 50 head (R0 = 0.96) for
Period II was not significantly below the threshold of
transmission (P = 0.635).

Univariable analysis
We investigated the strength of association between the
outcome variables a) within-flock R0 on a continuous
scale (Model 1) and b) within-flock R0 estimates categor-
ised as lower than unity or not (Model 2) and three flock-
level risk factors (i.e. "flock species", "flock size" and "epi-
demic wave"). In the univariable analyses all variables
reached the decision criterion for variable selection
except "flock species" for Model 2 (Table 3).

Multivariable analysis
In Model 1, only the variable "epidemic wave" retained
significance at a P < 0.05. Our results suggest that the
within-flock R0 estimates for Period II are significantly
lower compared with Period I. The coefficient of deter-
mination of the final model Model 1 was R2 = 0.41. In
Model 2, the variables "flock size" and "epidemic wave"
retained significance at a P < 0.05 (Table 4). Our results
suggest that after controlling for the effect of flock size,
IPs of Period II had increased odds of having within-flock
R0 below unity compared to IPs of Period I. The good-
ness-of-fit of the final multivariable model to the data, as
assessed by the Hosmer-Lemeshow goodness of fit test,
was adequate (P = 0.816).

Discussion
This study compared and characterized the transmissibil-
ity of HPAIV H5N1 in affected flocks in Vietnam, before
and after the introduction of a control policy that
included vaccination. Our results show that measuring
within-flock virus transmissibility can improve under-
standing of the epidemiology and effectiveness of control
strategies against HPAIV H5N1 infection in endemic
countries.

Control policies based on flock depopulation (such as
in Period I) are expected to have a direct impact on the
effective within-flock contact rate while control involving
depopulation plus preventive vaccination of flocks (such
as in Period II) will contribute with the added impact on
the properties of the natural history of infection. How-
ever, factors such as delays in disease reporting and oper-
ational constraints of stamping-out interventions will
influence the effectiveness of both control strategies. This
circumstance allows the generation of chains of infection
within a flock that would not have happened if birds had
been stamped-out at an earlier stage. In contrast, vacci-
nation for HPAIV H5N1 is expected to have an individual
(direct) effect (e.g. increase the incubation period, reduce
the number of infectious virus excreted as well as reduce
the duration of infectiousness) and a population (indi-
rect) effect (e.g. via herd immunity) on the natural history
of infection [19]. Any partially immune individual intro-
duced infectious into an unvaccinated flock will shed less
HPAIV H5N1 particles and be infectious for a shorter
period [20,21]. Similarly, the population effect of a vacci-
nation programme that reaches flocks in the vicinity or
those that are part of the trade relationships of an unvac-
cinated flock will gradually contribute to herd immunity
(despite the fact that some transmissions may still occur)
[22]. In addition, vaccination is expected to contribute to
a reduced environmental contamination.

Our study findings suggest a differential effect of dis-
ease control interventions on within-flock virus trans-
missibility. Inspection of the temporal progression of
estimates of within-flock R0 indicates that IPs of different
flock size and species composition are likely to have had
different roles in the transmission dynamics during dif-
ferent phases of the outbreak periods examined in our
study. Our results show that the within-flock R0 of flocks
with similar species and size composition varied over the
course of each epidemic wave, and higher estimates were
found in earlier phases of each epidemic wave. Based on
the assumption of constant contact structure and trans-
mission dynamics among flocks of similar species and
size composition, this variation may be due to the effect
of disease control interventions. The highest within-flock
R0 observed in the initial phases of the outbreak periods
may be attributed to the fact that flocks with high effec-
tive contact rates and those that experienced delayed
application of control interventions (either by delayed
disease notification or operational delays) were dispro-
portionally represented. Our results indicate that chicken
IPs with flock size larger than 1,500 head had the highest
R0 estimates during the initial (exponential) phase of
Period I. Previous studies have shown that HPAIV H5N1
spreads more rapidly both in farms with larger numbers
of chicken houses in use and among layer chickens (com-
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Table 2: Within-flock reproductive ratio (R0) estimated in 924 IPs reported during Period I (i.e. pre-vaccination period) and in 106 IPs 
reported during Period II (i.e. vaccination period).

Infected Premise Species/Size Reproductive number, R0 (Mean; 95%CI; N)

Pre-vaccination IPs Post-vaccination IPs

All IP's 1.99; 1.87, 2.10; 924 1.17; 1.09 - 1.25; 106

Chicken flocks only

Pooled 2.16; 1.94, 2.39; 297 1.07; 0.90, 1.23; 12

1-50 heads 2.03; 1.71, 2.36; 58 1.04; 0.76, 1.32; 7

51-200 heads 1.90; 1.55, 2.25; 77 0.80; 0.68, 1.11; 2

201-500 heads 2.28; 1.8, 2.74; 74 NA

501-1,000 heads 1.92; 1.33, 2.50; 46 1.02; 0.87, 1.24; 1

1,001-1,500 heads 2.77; 1.45, 4.09; 21 1.34;1.03, 1.71; 2

>1,500 heads 2.86; 1.40, 4.31; 21 NA

Duck flocks only

Pooled 1.96; 1.81, 2.11; 560 1.21; 1.12, 1.31; 90

1-50 heads 2.02; 1.53, 2.50; 27 0.96; 0.72, 1.20; 18

51-200 heads 1.85; 1.55, 2.14; 96 1.36; 1.12, 1.59; 23

201-500 heads 2.16; 1.84, 2.48; 152 1.09; 0.95, 1.24; 18

501-1,000 heads 1.90; 1.61, 2.19; 154 1.27; 1.12, 1.41; 18

1,001-1,500 heads 1.92; 1.48, 2.36; 76 1.46; 1.02, 1.90; 7

>1,500 heads 1.55; 1.18, 1.92; 55 1.31; 1.01, 1.61; 6

Mixed poultry species

Pooled 1.91; 1.53, 2.29; 67 1.01; 0.74, 1.23; 4

1-50 heads 3.20; 2.19, 4.21; 8 1.04; 0.83, 1.25; 3

51-200 heads 1.61; 1.24, 1.97; 25 NA

201-500 heads 1.28; 1.10, 1.45; 22 0.92; 0.74, 1.31; 1

501-1,000 heads 2.45; 0.86, 4.04; 11 NA

1,001-1,500 heads 1.47; 1.17, 1.85; 1 NA

>1,500 heads NA NA
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pared with broilers) [23]. Similarly, IPs with flock sizes
less than 50 head, and duck flocks of 200 to 1,500 head
were also identified to have the highest within-flock R0
estimates during the initial phases of Period II. Conse-
quently, it is likely that these flocks could have contrib-
uted to localised spread of infection observed during
Period II - they are characterised by a free-ranging hus-
bandry system and mortality often remains unnoticed
and/or unreported mainly due to the absence of records

and difficulties in monitoring [6]. In addition, it has been
suggested that the quality of the depopulation policy
between and within each of the outbreak periods was
inconsistent (see section#3 in Additional file 1). There-
fore, it is also likely that IPs in the initial phases of the
outbreak periods - due to operational constraints result-
ing from having to deal with a large number of outbreaks
simultaneously - had experienced delays in receiving dis-
ease control interventions compared to later IPs. As a
result, both high contact rates and delayed application of
interventions provided an opportunity during the initial
phases of the outbreak periods for infectious birds to gen-
erate more and longer infection chains within flocks. This
has important implications with respect to outbreak con-
tainment as it could result in large numbers of infected
birds being present within such flocks prior to reporting -
if these flocks are involved in trade before movement
restrictions is enforced, they can make a significant con-
tribution to geographical spread of the virus.

Our results suggest that the estimates of within-flock R0
for Period I are broadly comparable to those reported for
HPAIV H5N1 infected chicken flocks from Thailand (e.g.
2.26-2.64, for infectious periods of 1 and 4 days respec-
tively) [18]. Any observed differences might be due to dif-
ferences in the quality of the control policies applied, or
the population demographics and husbandry of flocks in
each country. These factors are known to affect the

Table 3: Univariable results: within-flock R0 vs. flock attributes.

Variable Model 1 Model 2

Coefficient (95%CI) P OR (95%CI) P

Flock species (Ref: Duck flocks)

Mixed poultry species 0.006 (-0.416,0.428) 0.977 2.054 (0.957,4.411) 0.065

Chicken flocks 0.264 (0.030,0.498) 0.027 1.580 (0.972,2.570) 0.065

Flock Size(Ref: <50 head)

>50-500 head 0.107 (-0.242,0.456) 0.549 0.165 (0.096,0.286) <0.001

>500-1,500 head 0.111 (-0.254,0.476) 0.551 0.109 (0.055,0.216) <0.001

>1,500 head 0.064 (-0.351,0.479) 0.762 0.160 (0.073,0.348) <0.001

Epidemic wave(Ref: Period I)

Period II -0.821(-1.163,-0.478) <0.001 4.504 (2.689,7.544) <0.001

OR: Odds Ratio; SE: Standard Error; CI: Confidence Interval

Table 4: Multivariable results for Model 2: within-flock R0 being 
below unity vs. flock attributes.

Variable OR (95%CI) P

Flock Size (Ref: <50 head)

>50-500 head 0.202 (0.115,0.355) <0.001

>500-1,500 head 0.134 (0.067,0.269) <0.001

>1,500 head 0.209 (0.094,0.464) <0.001

Epidemic wave (Ref: Period I)

Period II 3.114 (1.785,5.432) <0.001

OR: Odds Ratio; SE: Standard Error; CI: Confidence Interval
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underlying contact structure of a population which is an
important driver of virus transmission [24]. In addition,
the quality of the mortality data and the estimation meth-
ods used in the current study could have contributed to
estimation bias and consequently to differences in R0 esti-
mates between both studies.

The findings of our study are also consistent with avian
influenza vaccine trials that suggest that the use of vac-
cines is expected to reduce virus transmission and associ-
ated mortality among poultry by increasing the
incubation period and reducing virus shedding [20,21].
Our results indicate that IPs reported during Period II
develop lower mortality than their pre-vaccination coun-
terparts. However, because farmers often use mortality as
a flock health indicator this may contribute to the
reduced ability of farmers and animal health workers to
recognise the presence of disease. Other studies in unvac-
cinated populations have found that farmers recognize
the abnormally high mortality resulting from HPAIV
H5N1 approximately 5 days after infection [23].

Overall, our results showed that the mean within-flock
R0 of IPs from Period II was significantly lower compared
to Period I - however, this reduction was not significantly
below the threshold of transmission. Considering that IPs
from Period II were classified as unvaccinated, this find-
ing suggests that suboptimal vaccine coverage will lead to
the re-emergence of outbreaks. Apart from issues related
to the quality of protection provided by the vaccine, the
overall effectiveness of the vaccination campaigns in tar-
get species is expected to be undermined by factors that
deter farmers with commercial sized flocks from present-
ing their flocks for vaccination and operational issues for
vaccine delivery. The former may be linked to the length
of vaccine-withholding period and rumors concerning
adverse reactions to the vaccine while the latter may be
affected by issues such as the training and payment of
vaccinators, the breakdown or spoilage of vaccine stocks
and the fact that poultry husbandry is associated with
rapid turn-over of at-risk populations. These factors have
previously been documented in Vietnam and are likely to
act as constraints to suboptimal vaccine coverage and
consequently the effectiveness of the current vaccination
campaigns [25]. These concerns are supported by the
results of our multivariable analysis which indicate that
commercial sized flocks (more than 50 head) have
reduced odds of having within-flock R0 estimates below
unity. Therefore, in Vietnam, a control strategy based on
nationwide HPAIV H5N1 vaccination campaigns should
take into account the heterogeneities mentioned above
[26]. This is particularly imperative when field evidence
from other countries indicates that vaccination alone will
not achieve disease elimination unless it is managed

appropriately as part of a wider disease control strategy
[27-31].

Our results should be interpreted considering the
study's assumptions and limitations. Firstly, in our analy-
ses, we assume that within-flock virus transmission will
be halted in a scenario of total flock depopulation. How-
ever, if these flocks were left to develop further chains of
infection (due to delays in disease reporting and depopu-
lation) the within-flock R0 estimate would be different.
Secondly, our estimation method assumes a single intro-
duction as the source of infection for an IP. It is known
that pre-emptively culled farms were allowed to repopu-
late their flocks after a period of 60 days, but data on the
proportion of farms which repopulated and the infection
status of birds involved are unreliable. Similarly, there is
no information with respect to the previous history of
infection of these flocks and about the source leading to
the current infection. Thirdly, we assume that the contact
structure of flocks of similar species and size composition
is constant, which in some situations may not be the case
due to farm-to-farm variation in husbandry systems.
Fourthly, we have assumed that all flocks included in the
analysis were closed populations which, in the case of
free-ranging flocks, may have led to an overestimation of
the R0 - however, the available data do not allow us to dif-
ferentiate whether flocks included in the analysis were
scavenging or not at the moment when they were
reported infected.

The results of this study indicate that vaccination has
protected the majority of poultry flocks against infection.
However, our findings also provide evidence of the poten-
tial shortcomings of the current vaccine-based policy.
Despite the control programme protecting the majority
of farms as reflected in the very much reduced national
incidence, the policy was not as effective in the flocks
included in our analyses. To prevent similar cases, which
are likely to become a continuing source of infection for
poultry and humans, it is important to understand the
factors behind the failure of the control policy in such
flocks. In addition, we anticipate that if vaccination con-
tinues to be included as part of a sustainable disease con-
trol programme, efforts should be focussed on training
farmers in disease prevention in addition to disease rec-
ognition, as the latter is likely to be compromised in a
vaccinated population. Efforts must also be made to
reduce operational delays in the implementation of dis-
ease control interventions after the recognition of the ini-
tial IP.

Conclusions
The results of this study show marked differences in the
within-flock transmissibility of HPAIV H5N1 in Vietnam,
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before and after the introduction of a control policy that
included vaccination. Our study showed:

• Within-flock mortality was lower in IPs reported
after the introduction of a control policy that
included vaccination compared to pre-vaccination
IPs.
• Higher within-flock R0 estimates were found in ear-
lier phases of the outbreak periods examined.
• The mean within-flock R0 in reported IPs was signif-
icantly lower in Period II (control based on depopula-
tion plus vaccination) compared with Period I
(control based on depopulation), but this reduction
was not significantly below unity.
• After controlling for the effect of epidemic wave,
commercial flocks (>50 head) had reduced odds of
having within-flock R0 estimates below unity com-
pared to flocks of smaller size (<50 head).

Given the above, the observed effect is likely to be asso-
ciated with the type and quality of disease control opera-
tions that were implemented during particular periods of
the epidemic waves.

Methods
Outbreaks of HPAIV H5N1 in poultry
We analysed outbreak surveillance data on known
infected flocks in Vietnam from two outbreak periods:
one outbreak period from 1st December 2005 to 29th

March 2005 (i.e. before the first systematic vaccination
campaign - Period I) and another outbreak period from
16th November 2006 to 7th March 2007 (i.e. during the
third and fourth nationwide systematic vaccination cam-
paigns - Period II) (see section #2 in Additional file 1).
These periods reflect the second and fourth outbreak
waves that occurred in the country since 2003/7 [4].The
datasets used in the analyses only contained known
affected flocks and were provided by the Epidemiology
Division of the Department of Animal Health of the Min-
istry of Agriculture and Rural Development, Hanoi, Viet-
nam. All flocks included in the study were officially
confirmed positive for HPAIV H5N1 virus by virus isola-
tion and PCR at the National Centre of Veterinary Diag-
nostics (NCVD). In addition, the outbreak investigations
conducted in relation to all flocks from Period II included
in this analysis revealed that they had not been vacci-
nated [1].

Estimation of the within-flock reproductive number, R0

We estimated R0 based on the general state-transition
epidemic model adapted to the known properties of
HPAIV H5N1 infection within a poultry flock. We
applied the theory of moments of martingales to a general
epidemic model informed by surveillance data from each
infected flock included in the dataset (see section #3 in

Additional file 1). The method was first described by
Becker et al [32] and applied to infectious disease quanti-
fication studies in humans and animal populations [33-
35]. It has been described as a robust method for statisti-
cal estimation of the infection potential of a population
when there is incomplete follow up of its infectious status
[36,37]. The model formulation assumes a) uniform
within-flock mixing, b) flocks homogeneity, and c) that
an outbreak within an IP is a result of a single introduc-
tion. Finally, we estimated the mean within-flock R0 for
predefined species and size categories (see section #2 in
Additional file 1). The estimation procedures were imple-
mented in the statistical software R [38].

Standard statistical methods
Comparisons between the mean within-flock R0 in sub-
sets of data were conducted using t-tests whenever data
fulfilled the assumptions of normality and equal vari-
ances. Otherwise a non-parametric Kruskal-Wallis test
was applied. One sample t-tests were performed to assess
if the group mean within-flock R0 was different from
unity.

The statistical analysis leading to the identification of
factors associated with within-flock R0 estimates was car-
ried out in two phases using 1) within-flock R0 in a con-
tinuous scale outcome (Model 1) and 2) within-flock R0
categorised into a threshold value (i.e. R0 < 1 or R0 ≥ 1)
(Model 2). Firstly, flock species (categorized into duck
flocks, mixed poultry species and chicken flocks), flock
size (categorised into <50 head, 50-500 head, 500-1,500
head and >1,500 head) and epidemic wave (categorised
into Period I and Period II) were screened using univari-
able linear regression (Model 1) and logistic regression
(Model 2) based on a liberal P-value of 0.20 in the likeli-
hood-ratio test. Secondly, all factors significant in the
screening phase were considered for inclusion through a
manual backward stepwise variable selection process in a
multivariable linear regression (Model 1) and in a logistic
regression (Model 2) analysis. The criterion for removal
of risk factors was based on the likelihood ratio test with a
significance level of P > 0.05. Biologically meaningful
first-order interaction terms were also tested for statisti-
cal significance. The goodness-of-fit of the final multivar-
iable Model 1 was assessed by inspection of the
coefficient of determination (R2) and for the final multi-
variable Model 2 was assessed by the Hosmer-Lemeshow
goodness-of-fit test [39].All statistical analyses were con-
ducted using the statistical software Stata/SE Version 9.2
(Stata Corporation) [40].

Additional material

Additional file 1 Supplementary technical information.

http://www.biomedcentral.com/content/supplementary/1746-6148-6-31-S1.DOC
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