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Abstract
Background: The implementation of national systems for recording the movements of cattle
between agricultural holdings in the UK has enabled the development and parameterisation of
network-based models for disease spread. These data can be used to form a network in which each
cattle-holding location is represented by a single node and links between nodes are formed if there
is a movement of cattle between them in the time period selected. However, this approach loses
information on the time sequence of events thus reducing the accuracy of model predictions. In
this paper, we propose an alternative way of structuring the data which retains information on the
sequence of events but which still enables analysis of the structure of the network. The fundamental
feature of this network is that nodes are not individual cattle-holding locations but are instead
direct movements between pairs of locations. Links are made between nodes when the second
node is a subsequent movement from the location that received the first movement.

Results: Two networks are constructed assuming (i) a 7-day and (ii) a 14-day infectious period
using British Cattle Movement Service (BCMS) data from 2004 and 2005. During this time period
there were 4,183,670 movements that could be derived from the database. In both networks over
98% of the connected nodes formed a single giant weak component. Degree distributions show
scale-free behaviour over a limited range only, due to the heterogeneity of locations: farms,
markets, shows, abattoirs. Simulation of the spread of disease across the networks demonstrates
that this approach to restructuring the data enables efficient comparison of the impact of
transmission rates on disease spread.

Conclusion: The redefinition of what constitutes a node has provided a means to simulate disease
spread using all the information available in the BCMS database whilst providing a network that can
be described analytically. This will enable the construction of generic networks with similar
properties with which to assess the impact of small changes in  network structure on disease
dynamics.

Background
In the basic SIR model for infectious disease [1], a popu-
lation is divided into susceptible (S), infected (I) and

resistant (R) sub-populations, and the spread of infectious
disease in that population is calculated on the assumption
of homogeneous mixing of the individuals, so that there
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is a fixed probability of contact between any two individ-
uals. This model cannot be applied to disease spread
between cattle farms, since they do not mix homogene-
ously and it is therefore essential to allow for the spatial
distribution of farms, for example by controlling the
probability of disease transmission between two farms by
a function of their geographical proximity [2]. However,
geographical proximity is not the only factor that may
influence disease spread. Trade between farms creates a
new topology in mapping disease risk. A more precise
control of the probability of transmission could use the
actual (and potentially infective) contacts between farms
to build a contact network. Contact networks have been
used in simulations of human disease (see review [3]),
with the contact between two individuals being taken as
persistent. For UK cattle farms, contact data is available in
the form of the cattle movement database provided by the
British Cattle Movement Service (BCMS). Because trade
links are sporadic, movements are not well modelled as
persistent contacts [4], and the temporal pattern of move-
ments has important implications for the spread of infec-
tious diseases. For structural studies of the cattle contact
networks, movements have been regarded as quasi-per-
sistent by considering the contacts resulting from move-
ments during a relatively short period (e.g. 4 weeks) to be
persistent through that period ([4,5]). Such networks can
yield information relevant to non-persistent networks if
they are considered ergodic [5]. Disease simulations have
been carried out with a true temporal component, using a
replay of the actual movements over a defined period
[5,6]. Here, we attempt to use the BCMS movement data
to build a network that incorporates the temporal
sequence of movements between cattle premises, so that
the structural features of such a network can be deter-
mined, and so that disease simulations can be run with
less computational effort. The fundamental feature of our
networks is that the nodes are not cattle farms but are
instead movements between cattle farms (in fact between

any cattle-holding premises or "locations"). Thus nodes
have three basic properties: the source location, the target
location, and the date of the movement. For simplicity,
the number of animals moved is not included in the node
definition. Edges (links) between nodes only exist when
the target in one node is the source, in another node, of a
movement on the same or a later date (Fig. 1). A further
refinement is to include the type of each location (farm,
market, slaughterhouse, showground, other) and to limit
the time that may elapse after the first movement before
the second movement is no longer linked to it. The time
limit depends on the type of the linking location. We used
the BCMS data for the whole of 2004 and 2005. The time
limits for links involving farms were 7 days ("7-day infec-
tion network") or 14 days ("14-day infection network")
(Fig. 2).

Results
Networks for structural investigations
Nodes and edges
The total number of movements available as nodes for the
networks was 4,183,670. A larger proportion of the avail-
able nodes became connected to at least one other node
in the 14-day infection network (81% vs 74%). The 14-
day infection network had 71,965,734 edges, 5% more
edges than the 7-day infection network (but slightly lower
density: 6.3 vs 7.2 × 10-6). Unless otherwise stated, the fol-
lowing results exclude nodes that are not connected to any
other node.

Components
A weak component of a network with directed edges (as
we construct here) is a part of the network in which each
node is connected to all the other nodes, along paths of
edges ignoring the direction of the edges [7,8]. A strong
component in such a network is similar, but with the
direction of the edges respected [7,8]. The 7-day infection
network has 17,110 weak components of 2 nodes, but the
frequency of components of a given size drops off expo-
nentially with increasing size and the largest minor weak
component has 49 nodes. In this network, 97.9% of the
connected nodes are actually in the giant weak compo-
nent (3,022,611 nodes). The 14-day infection network
has 12,184 weak components of 2 nodes, the largest
minor weak component is 63 nodes, and 98.5% of the
connected nodes are in the giant weak component
(3,339,466 nodes). The directed structure of the networks
makes strong components uninteresting. The theoretical
maximum size of a strong component in a network of this
kind is 2.

In- and out-degree
The maximum out-degree is the same for both networks
(704), while the maximum in-degree is higher for the 14-
day infection network (1,177 vs 804). The distributions of

Diagram of the structure of a link in the networkFigure 1
Diagram of the structure of a link in the network. An 
edge (link) will exist between a movement from Farm A to 
Market B (Node 1), and a movement from Market B to Farm 
C (Node 2), if Node 2 occurs on, or within a specified time 
limit after, the date of Node 1. Where the linking location is 
a Market, the time limit is 6 days.

Node 1

Farm A to Market B
Day 1

Node 2

Market B to Farm C
Day 3
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in-degree frequencies for both networks exhibit regions
that correspond to scale-free networks, but the regions are
small (Figs. 3 and 4). For low in-degrees (below 20) the
plot shows a scale-free profile which then flattens out to a
characteristic frequency of approximately 3000 up to in-
degree 100. This is followed by an abrupt fall in frequency
of nodes with high in-degree. Out-degree plots are similar,
but more curvilinear in the first region (Figs. 3 and 4).
Some of the anomalies are the result of the different
behaviour of different types of locations. When in-degree
is plotted only for movements from farms (so including
only edges that link movements on and off the same
farm), and out-degree for movements to farms (similarly),
then more typically scale-free distributions are seen (7-
day infection network, Fig. 5). Similar frequency plots for
movements from and to markets only (for example) are
very unlike scale-free distributions (7-day infection net-
work, Fig. 6). Two-dimensional degree distributions

reveal that very few nodes have both a high in- and out-
degree, and that most have a low value for both (Table 1).

Dyad and triad censuses
Mutual dyads can only occur when reciprocal movements
between two locations are made on the same day. Such
events are rare, but logically occur in equal numbers in the

Comparison of conventional and novel network structures for cattle movement dataFigure 2
Comparison of conventional and novel network structures for cattle movement data. The "Movement data" box 
contains a fictional list of 7 dated cattle movements. These can be built into a conventional contact network (blue network) of 
5 nodes and 7 edges. The networks built according to our novel procedure (see Text) are shown in the yellow diagram. There 
are 7 nodes. The 7-day infection network has 3 edges (the dashed edge is excluded by the time limit of 7 days between a move-
ment on to location E and a movement off again, with location E being a farm). The 14-day infection network has 4 edges, inclu-
sive of the dashed edge. The movement data defines contacts between pairs of locations; our procedure is designed to define 
meaningful routes of contact involving at least 3 locations. As can be seen from the coloured boxes, the conventional network 
provides 9 routes involving three distinct locations, whereas our networks show that only 1 (on the 7-day network) or at most 
2 such routes are actually realistic routes for disease transmission.

Movement data

Day      Locations
1 C to E
2 A to B
3 A to C
4 C to A
5 B to A
6 A to D
9        E to A

3-location routes

ACE
BAC
BAD
CAB
CAD
CEA
EAB
EAC
EAD

3-location routes

7-day infection
network
CAD

14-day infection
network
CAD
CEA

D

A

E

C B

3 AC

4 CA

6 AD

2 AB

5 BA

1 CE

9 EA

Table 1: Two-dimensional distribution of in- and out-degrees

7-day infection network
In-degree ≤ 10 In-degree > 10

Out-degree ≤ 10 54.1 18.6
Out-degree > 10 26.4 0.8
14-day infection network

In-degree ≤ 10 In-degree > 10
Out-degree ≤ 10 53.3 18.2
Out-degree > 10 26.7 1.8

Percentage of nodes in each network having the specified in- and out-
degrees.
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two networks. The reciprocity of both the 7-day infection
and 14-day infection networks is low (11.7 and 11.1 × 10-

4, respectively). Similarly, in the triad census [9], 102 and
030C triads (see Fig. 7 for the structures of triad classes)
are same-day events and have the same count in both net-
works. 030C triads are rare, and are the only triangles
found, so the clustering coefficients are low (4.6 and 4.4 ×

10-6, respectively). It is noteworthy that the triads 030T,
201, 120D, 120U, 120C, 210 and 300 are all forbidden by
the rules for connecting nodes, and all yield zero counts
in the partial triad censuses. These triads are shown with
pale blue nodes in Fig. 7.

In- and out-degree frequency distributions for the 7-day infection networkFigure 3
In- and out-degree frequency distributions for the 7-
day infection network. Data for 2004 and 2005 for move-
ments as nodes according to the 7-day infection network 
structure (see text).

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000

Degree

F
r
e
q

u
e
n

c
y

OUT

IN

In- and out-degree frequency distributions for the 14-day infection networkFigure 4
In- and out-degree frequency distributions for the 14-
day infection network. Data for 2004 and 2005 for move-
ments as nodes according to the 14-day infection network 
structure (see text).
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In- and out-degree frequency distributions for farm move-ments only in the 7-day infection networkFigure 5
In- and out-degree frequency distributions for farm 
movements only in the 7-day infection network. Data 
as Fig 2, but including only edges where the linking location is 
a farm.
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In- and out-degree frequency distributions for market move-ments only in the 7-day infection networkFigure 6
In- and out-degree frequency distributions for mar-
ket movements only in the 7-day infection network. 
Data as Fig 2, but including only edges where the linking loca-
tion is a market.
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Disease simulations
As described in Methods, for each of the networks, 1000
disease simulations were run for each value of the param-
eter, q, which represents the probability of transmission
of infection along an edge of the network from an infected
node. These simulations were run, starting from a ran-
domly-selected node, for 100 steps. The range and median
of time spans represented by 100 steps is shown below for
each network. The results of varying q on each network are

given in Tables 2 and 3 as the peak number of infected
movements, the maximum number of movements
infected within a simulation, and the maximum number
of steps before extinction of the infection (or percentage
of simulations unextinguished by 100 steps), each col-
lected over 1000 simulations.

The sixteen triad classes for the triad censusFigure 7
The sixteen triad classes for the triad census. Triads that are not allowed by the logic of the networks generated here, 
are shown with pale blue nodes.

003 012 102 111D 201 210 300

021D 111U 120D

021U 030T 120U

021C 030C 120C

Table 2: Disease simulation on the 7-day infection network

q Max peak infected Max cumulative Max steps or final %

0.10 76 233 28
0.11 173 516 25
0.12 226 2,053 52
0.15 1,579 12,304 56
0.20 7,161 84,976 2.1%
0.50 23,550 533,241 16.5%
1.00 38,472 843,621 15.8%

Max peak infected is the peak number of infected movements on any 
one step of a simulation; Max cumulative is the maximum cumulative 
number of movements infected within a simulation; Max steps or final 
% is the maximum number of steps before extinction of the infection 
(or percentage of simulations unextinguished by 100 steps). Each is 
the maximum over 1000 simulations.

Table 3: Disease simulation on the 14-day infection network

q Max peak infected Max cumulative Max steps or final %

0.10 582 3,620 49
0.11 914 7,916 71
0.12 2,534 21,105 99
0.15 11,201 146,380 3.8%
0.20 20,322 401,479 3.5%
0.50 60,362 973,599 95
1.00 81,323 1,275,646 76

Max peak infected is the peak number of infected movements on any 
one step of a simulation; Max cumulative is the maximum cumulative 
number of movements infected within a simulation; Max steps or final 
% is the maximum number of steps before extinction of the infection 
(or percentage of simulations unextinguished by 100 steps). Each is 
the maximum over 1000 simulations.
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7-day infection network
In the 7-day infection network, 100 steps of simulation
represents from 99 to187 days (median 140) of real time.
There are 3,086,787 movements available to infect. The
output of the simulations is shown in Table 2. The cumu-
lative maximum for q = 1 represents 27.3% of available
nodes. Fig. 8 shows the rate of extinction of simulations
for the 7-day infection network, and Fig. 9 shows the max-
imum size of the epidemic at each step (i.e. the highest
number of currently infected movements at that step in
any of the 1000 simulations).

14-day infection network
In the 14-day infection network, 100 steps of simulation
represents from 104 to 273 days (median 190) of real
time. There are 3,391,471 movements available to infect.
The output of the simulations is shown in Table 3. The
cumulative maximum for q = 1 represents 37.6% of avail-
able nodes. Fig. 10 shows the rate of extinction of simula-
tions for the 14-day infection network, and Fig. 11 shows
the maximum size (over 1000 simulations) of the epi-
demic at each step.

Discussion
While contact networks were a considerable step forward
in the spatial modelling of disease spread, a simple struc-
ture of locations connected by the historical existence of
cattle movements is not a good model of the temporal
structure of these movements. We have viewed the move-
ment data from a different perspective, using the move-

ments as the nodes, which incorporate spatial
relationships, and connecting them according to temporal
criteria.

The persistence of epidemic simulations on the 7-day infec-tion networkFigure 8
The persistence of epidemic simulations on the 7-day 
infection network. An SIR epidemic model is run 1000 
times from random start nodes on the 7-day infection net-
work structure, and the number of simulations not yet extin-
guished is plotted against the step number reached in the 
simulation.
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Maximum sizes of epidemic simulations on the 7-day infec-tion networkFigure 9
Maximum sizes of epidemic simulations on the 7-day 
infection network. An SIR epidemic model is run 1000 
times from random start nodes on the 7-day infection net-
work structure, and maximum number of currently infected 
nodes (for any of the simulations) at that step is plotted 
against the step number reached in the simulation.
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The persistence of epidemic simulations on the 14-day infec-tion networkFigure 10
The persistence of epidemic simulations on the 14-
day infection network. An SIR epidemic model is run 1000 
times from random start nodes on the 14-day infection net-
work structure, and the number of simulations not yet extin-
guished is plotted against the step number reached in the 
simulation.
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Our approach could be described as a heavily modified
line-graph. A line-graph is a graph derived from an origi-
nal network graph in the following way: each edge in the
original graph becomes a node of the line-graph, and
where two edges in the original graph share a node in
common, their corresponding nodes in the line-graph are
connected by an edge [7]. If our networks are regarded as
derived from some notional static networks of locations
and the movements between them, then they are line-
graphs rendered much less dense by the application of our
temporal sequencing rules, which use information not
present in the notional static networks. We have found
that the line-graph concept has been used before in epide-
miological network models [10,11]. In that work, on
human sexually-transmitted diseases (STDs), the static
network consisted of sexually-active individuals as nodes
with sexual relationships as undirected edges. As part of
the calculations on the concurrency of such contacts, a full
line-graph was constructed. All STD simulations were run
on the static network, with some parameters derived from
the line-graph. In our case, the static network is purely
notional, the edges within it would be directed, and the
derived line-graph would be heavily edited on the basis of
temporal data. We then run our disease simulations on
this derived network. Our approach might be beneficially
used on the STD model.

There are concerns about the appropriateness of the
BCMS movement data as the basis of a contact network.
Doubts have been expressed about the accuracy and com-
pleteness of the records [12,13], and it is clear that some

categories of movement are not recorded at all [6,13]. It is
also necessary to consider other forms of contact between
cattle farms that carry the risk of transmitting infection,
such as vehicle movements and shared equipment [4]. In
one recent study, these factors not involving cattle move-
ments were found to be a minor component of a full con-
tact network, whereas unrecorded movements on and off
shared grazing were more important (M.C. Vernon,
unpublished). We have analysed the BCMS data, but a
similar analysis could be carried out with any contact list,
for example one expanded from BCMS data to include
other movements and other forms of contact.

The time slice of BCMS data analysed here (1 January
2004 – 31 December 2005) was chosen as the largest sta-
ble and coherent full calendar year segment from the data
available to us. Earlier data was more fragmentary and was
distorted by the FMD outbreak in 2001. The data for 2006
was incomplete. We chose to limit the length of time that
an infected location remained infectious, and used the
data on lengths of stays to determine appropriate limits
for all-in, all-out operations. For farms, we selected limits
within the period that an infection might remain undetec-
ted, and chose 7 and 14 days as these corresponded to
peaks in the frequency of interval lengths between move-
ments on and off farms presumably reflecting the weekly
periodicity of farming practice or at least of reporting.
These interval lengths are also of sufficient duration to be
beyond the effects of the 6-day stand-still rule for UK cat-
tle movements.

The 7-day and 14-day infection networks contain a high
proportion of the available nodes (74 and 81%), with just
over 98% of these connected nodes in a single giant weak
component, in both networks. The method of construc-
tion of the networks means that the maximum size for a
strong component is only 2 nodes. It also means that
mutual dyads and triangles are uncommon (hence low
reciprocities and clustering coefficients), and that 7 of the
16 triad classes are missing altogether. All these expecta-
tions are confirmed by the analyses. The networks, there-
fore, consist principally of asymmetric edges, all directed
down a time line. The densities are low, as might be
expected on a large network. The average in – (or out-)
degree for the nodes in 7- and 14-day infection networks
are 22 and 21, respectively.

The log-log plots of frequency of in-degree (Figs. 3 and 4)
show only small areas of scale-free behaviour, a type of
network structure that has been of particular interest to
epidemiologists because infections can spread on a scale-
free network without an epidemic threshold [14-17]. Out-
degree plots (Figs. 3 and 4) show no scale-free regions.
The patterns seen in Figs. 3 and 4 reflect the heterogeneity
of the cattle-holding location types in the data used to

Maximum sizes of epidemic simulations on the 14-day infec-tion networkFigure 11
Maximum sizes of epidemic simulations on the 14-
day infection network. An SIR epidemic model is run 1000 
times from random start nodes on the 14-day infection net-
work structure, and maximum number of currently infected 
nodes (for any of the simulations) at that step is plotted 
against the step number reached in the simulation.
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construct the networks. The low degree region is mostly
populated by movements off farms (when counting in-
degree) and on to farms (when counting out-degree), as is
shown for the 7-day infection network in Fig. 5. These
movements show more classically scale-free behaviour.
For movements that (in the same way) involve markets,
however, the plots do not correspond to the scale-free pro-
file (Fig. 6), but show a characteristic frequency in the
region corresponding to the region 2 of Figs. 3 and 4, and
an abrupt fall in frequency in the third region. What these
Figures show in common is a marked heterogeneity of
both in- and out-degree, which has been demonstrated,
on undirected networks at least, to correspond to very
rapid spreading of simulated epidemics [18].

The structural features determined for these networks,
such as dyad and triad censuses and 2-dimensional degree
distributions, could form the basic data for algorithms to
produce generic networks representing UK cattle move-
ments. Generic networks may be constructed such that the
resulting network fits a set of structural criteria. For exam-
ple, large networks may be rapidly constructed based on a
particular two-dimensional degree distribution and dyad
census, using a shuffling and re-wiring process [19].

For the disease simulations on the 7-day and 14-day infec-
tion networks, a run of 100 steps was used, as this gave
effective time spans that covered several infectious periods
(at least 14 and 7, respectively), but less than half the time
span of the data, allowing the possibility that some epi-
demics will be completed before reaching the end of the
data. The value of the transmission probability (q) is
regarded as a sensitive parameter in disease simulation
[6]. The q values chosen ran from 1.0, which would max-
imise the scope of the epidemic, down to 0.1, where the
maximum epidemic size was less than 0.5% of the maxi-
mum for q = 1.0. For each set of conditions, 1000 simula-
tions were run so that the maxima reported contain low
frequency outcomes.

We found 3 possible outcomes from a simulation, as
shown in Tables 2 and 3 and Figs. 8, 9, 10, 11, which
depend on the probability of transmission of infection
and the structure of the network. At low q, the epidemic
extinguishes quickly (7-day, q ≤ 0.15; 14-day, q ≤ 0.12,).
As q increases, the epidemic can maintain itself longer and
is still not extinguished by the end of the data in a propor-
tion of simulations (7-day, q ≥ 0.2; 14-day, 0.15 ≤ q ≤
0.2). At higher q (≥ 0.5) in the 14-day infection network,
the epidemic reaches the movements at the end of the
time period captured by the network, and thus extin-
guishes abruptly. The maximum epidemic sizes for q = 1
were 27.3% and 37.6% of available nodes for the 7-day
and 14-day infection networks, respectively. These results
were obtained from arbitrary start points in the network.

For smaller networks of this type, more efficient use of the
available data might be achieved by selecting start nodes
near the beginning of the time slice, with due allowance
for differences in the movement pattern on different days
of the week and in different seasons [20,21].

The simulation results are expressed in dynamic terms, as
the object of study is the movement, not the holding, and
we believe this provides a suitable way of viewing the vul-
nerability of the system. However, it might be of interest
to know how the results translate into numbers of
infected farms. The network structure we describe here
does not allow the tracking of individual holdings during
our disease simulations, which are only intended to be
proof of concept. If such tracking were required, the adja-
cency list representing the network would have to be aug-
mented with an extra parameter for each node pair to
indicate the identity of the holding where the second
movement terminated, and specialised software would
have to be written to use this tracking information. With
generic networks, rather than those directly derived from
movement data, such tracking of holdings would not be
possible. In the absence of such sophistications of net-
work and software, we can suggest a rule of thumb for
converting the number of infected movements into the
number of infected farms. We start with the observation
that 44% of the movements for 2004 and 2005 end at
farms. In the case of the simulation on the 7-day infection
network with probability of transmission (q) equal to 1,
the maximum cumulative total of infected movements is
(in round figures) 800,000 (Table 2), so 350,000 termi-
nate at a farm. As 16 million farms were in use in 2004
plus 2005, it is conceivable that all these are "new" (i.e.
not previously infected) farms, but knowledge of the
industry and knowledge of the database, supported by a
replay experiment, suggest that the proportion of new
farms is much lower, perhaps 10–25%. The replay experi-
ment uses a technique similar to one published for foot
and mouth disease simulation [5,6], but independently
derived (M.F. Heath, unpublished), in which the move-
ments through the period are replayed in temporal
sequence to follow the transmission of disease from an
arbitrary infected holding. Using comparable conditions
to those in the example under discussion (7-day infec-
tious period; transmission probability = 1), the maximum
cumulative total of infected farms was 50,000 (M.F.
Heath, unpublished). Our rule of thumb, therefore, is that
the maximum cumulative number of infected farms is
5–10% of the maximum cumulative total of infected
movements. For our largest simulated "epidemic" (14-day
infection network; q = 1 (Table 3)) this suggests up to
120,000 farms might be infected, whereas for our smallest
(7-day infection network; q = 0.10 (Table 2)) the maxi-
mum might be as low as 10 farms.
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The simulation results indicate that networks constructed
in this way may be used to efficiently test disease transmis-
sion scenarios on the UK cattle industry, avoiding the
need to develop dynamic network models.

Conclusion
These networks incorporate spatial relationships, in com-
mon with other contact networks, but also incorporate
temporal relationships. The structures include a giant
weak component, and some unusual features resulting
from the lack of strong components greater than 2 nodes.
The variety of location types in the underlying location
population leads to non-scale-free degree distributions.
The simple simulations of the spread of infection on the
networks indicate that there are typical behaviours, such
as extinction of an epidemic at low infectivity but persist-
ence at high infectivity. We conclude that networks built
with movements as nodes could be used for analysis and
for simulation to give a new insight into the spread of
infection in the UK cattle herd.

Methods
Cattle movements
BCMS data was provided by DEFRA from the RADAR
project on 24 May 2006, covering movements for the
period from January 1999 to April 2006. This was approx-
imately 21 GB of data. The data was loaded into an Ora-
cle™ database (Oracle Corporation, Redwood Shores,
California, USA). In this analysis we have selected all
records for two complete years, 1 January 2004 to 31
December 2005.

The main table of BCMS data in RADAR consists of "stay
on location" records for individual cattle. These include
fields for the individual livestock (cow) identifier, the
location identifier, the arrival date, the departure date, the
type of movement on to the location (e.g. by birth, or by
a normal trade transfer on to the location) and the type of
movement off the location (e.g. death, normal trade trans-
fer off). From this table may be derived a set of "move-
ment" records. These are constructed from pairs of records
relating to the same animal, where the departure date of
the first record is equal to the arrival date for the second
record. This will miss some movements where the arrival
at the second location is on a later day than that of the
departure from the first location. The logic of the data
extraction would collect "movements" which were not
directly from the first location to the second, but actually
involved intermediate locations, if the rule requiring the
dates to be the same were to be relaxed. The limit of pre-
cision of timing to one day means that sometimes two
"stay on location" records may be started and completed
within one day and their temporal sequence cannot be
recovered. Some can be resolved by a further rule, that the
type of movement off the first location may not be

"DEATH". No "movement" record is constructed if either
the location-from or the location-to is undefined (coded
as "-1" in the RADAR data; 4.4% of all "stays on loca-
tion"). All such locations would match in the next stage of
data extraction, which would be misleading. The "move-
ments" are collected from the whole of 2004 and 2005.

Each record consists of the location-from, the location-to
and the date of the movement. All movements where one
of the locations was unknown have been eliminated.
Since we are interested in the cattle-holding locations
rather than individual animals, the dataset is simplified
by removing duplicate records, thus reducing the move-
ment of a group of cattle between two locations to a single
contact between those locations, irrespective of the
number of cattle involved. The tie strength (i.e. the
number of animals moved) is ignored for the purposes of
this analysis.

There is a second BCMS data table that contains details of
all the locations in the main table, including the location
type, where known. The preponderant types are Agricul-
tural Holding (64% of "stays on location" with known
location), Slaughterhouse (Red Meat) (19%), Market
(15%), Landless Keeper (1%) and Showground (0.3%).
For 0.3% of stays with known location, the location type
is unknown, but for the purposes of this analysis they are
considered to be Agricultural Holdings. Each "movement"
record receives a type-from record and a type-to record
from the location table, based on its location-from and
location-to fields, and finally a unique identity number.
These records are the nodes of the network. The list of
nodes can be used to generate networks for structural
investigation and simulations of disease spread.

Contact networks
The edges of a network are defined as directed links from
a first movement to a second movement, where the loca-
tion-to of the first movement is the same as the location-
from of the second, and the second movement occurs on
or after the date of the first movement. The network thus
incorporates the temporal sequencing of the contacts
between locations. We are concerned with the risk of dis-
ease transmission by these contacts. After a period of time,
the risk that an infection, brought into a location by a con-
tact, will be passed on in a subsequent contact, will have
declined, so edges are not constructed that link two move-
ments that are separated in time by a period greater than
an arbitrary limit. If the number of days that elapse after
the first movement exceeds the time limit, a link is no
longer made (Fig. 2).

Two methods have been used to set time limits, one for
locations where an all-in, all-out policy is expected and
another for "Farms". For locations where an all-in, all-out
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policy is expected, this maximum time is set by inspection
of the distribution of lengths of "stay on location" for
these location types in the expectation that one group of
animals will not mix with the next group. For Markets,
Showgrounds, Slaughterhouses and Other non-Farm
locations the maximum time is thus set at 6, 5, 5 and 4
days, respectively. For Agricultural Holdings and Landless
Keepers (referred to here collectively as "Farms"), the
maximum will depend on the nature of the disease that is
to be modelled. We have chosen two illustrative values for
this time limit, and therefore constructed two different
networks from the data. The values used (for all Farms)
were 7 days and 14 days.

The network is defined by an adjacency list consisting of
pairs of numbers: the node identifier of the starting node
of the edge and the node identifier of the ending node of
the link. Thus the network will incorporate in a simple
adjacency list the temporal sequencing of the contacts and
the interaction between the properties of the type of dis-
ease being modelled and the types of locations on which
the cattle are held. The construction of the network, as
described above, ensures that all the links are real routes
through which infection can pass from one location via an
intermediary location to a third location. This is in con-
trast to networks where the nodes are locations and the
edges are movements. These lose the temporal sequence
information available in the source movement data.

For the two networks (with 7-day infectious period,
denoted by "the 7-day infection network", and with 14-
day infectious period, denoted by "the 14-day infection
network", as described above), the following standard
network parameters [9] have been calculated within Ora-
cle, by processing Oracle output in MS Excel, and with our
own routines (the Contagion library [19]):

1 Number of nodes in the network and the number of
edges (links) between them.

2 Density, measured as the proportion of all the theoreti-
cally possible edges between nodes that actually exist. This
tends to be small for large networks.

3 Out-degree frequency distribution. The out-degree of a
node is the number of edges that start from that node.

4 In-degree frequency distribution. The in-degree of a
node is the number of edges that end at that node.

5 Frequency distribution of in- versus out-degree per node
("2-dimensional" frequency distribution).

6 Dyad census, being the count of the types of connection
between pairs of nodes and thus giving information on

the structure of the network. All possible pairs of nodes in
the network are considered, and are categorised as mutual
(edges in both directions), asymmetric (only one edge
between them) or null (unconnected) dyads. Uses our
routine, dyad_census [19].

7 Reciprocity, calculated as the proportion of non-null
dyads that are mutual, quantitates the reciprocal nature of
the linkages.

8 Partial triad census. The triad census is the count of the
types of connection between trios of nodes and thus gives
information on the structure of the network. All possible
trios of nodes in the network are considered, and are cat-
egorised into 16 classes in a manner analogous to dyads
[8]. Our census is partial as it does not give a precise count
of the null triads (unconnected trios). Uses our routine,
triad_census [19].

9 Clustering coefficient, derived from the triad census [22]
as the ratio of triangles (nodes linked to two other nodes,
which are themselves interlinked) to triples (nodes linked
to two other nodes). This quantitates the tendency of
nodes to formed interlinked clusters.

10 Frequency distribution of sizes of weak components.
These are sets of nodes that are linked together, but not
necessarily linked directly or reciprocally. The sizes of
these components reflect the overall reachability of any
node from any other node. Uses our routine,
weak_component_count [19].

Disease simulations
In order to demonstrate in principle the simulation of the
spread of disease on our networks, we applied the sir_net
function [19], which was originally designed for the sim-
ulation of disease spread on a static network with loca-
tions as nodes and movements as directed (but not
temporally sequenced) links. In the simulations described
here:

1. The nodes are movements and the simulation begins
with the random assignment of one movement as
"infected". This effectively places infected cattle on the tar-
get location of the movement, so that the subsequent
movements that start from that location are infected.

2. The edges are directed and run between movements
under the criteria described for these networks above.

3. Each iteration tests the spread of infection along the
edges from infected movements, so infection spreads in
step that are not synchronised in time. The number of
steps used in the simulations was 100. To assist in putting
this in a context of time periods, the range of time inter-
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vals represented by 100 steps is presented for each net-
work in the Results.

4. Each node remained infectious for only 1 step, as the
edges leading from an infected movement should only be
tested once.

5. The probability of transmission of infection along an
edge (q) was constant for the simulation. To test for trans-
mission along each edge at risk, a random positive
number less than 1 was compared with q. Transmission
occurred if its value was less than or equal to q.

6. The values of q, that were simulated on each of the net-
works, were 0.1, 0.11, 0.12, 0.15, 0.2, 0.5, 1.0.

7. 1000 simulations were run for each value of q, for each
network.

Authors' contributions
MFH proposed the concept, carried out the analysis and
drafted the manuscript. MCV prepared the movement
data, participated in the study design, advised on data
extraction and analysis, and assisted in revising the man-
uscript. CRW participated in the study design and inter-
pretation, and assisted in revising the manuscript. All the
authors read and approved the final manuscript.

Acknowledgements
We thank DEFRA for the data from the RADAR project, particularly the 
Surveillance, Zoonoses, Epidemiology and Risk team for their help and sup-
port. MCV was funded by BBSRC and the Tetra-Laval Research Fund. CRW 
was funded by the Tetra-Laval Research Fund, the Isaac Newton Trust and 
the Cambridge Infectious Diseases Consortium.

References
1. Anderson RM, May RM: Infectious Diseases of Humans Oxford: Oxford

University Press; 1991. 
2. Keeling MJ, Woolhouse MEJ, Shaw DJ, Matthews L, Chase-Topping M,

Haydon DT, Cornell SJ, Kappey J, Wilesmith J, Grenfell BT: Dynam-
ics of the 2001 UK foot and mouth epidemic: Stochastic dis-
persal in a heterogenous landscape.  Science 2001, 294:813-817.

3. Luke DA, Harris JK: Network analysis in public health: history,
methods, and applications.  Ann Rev Public Health 2007, 28:69-93.

4. Christley RM, Robinson SE, Lysons R, French NP: Network analysis
of cattle movements in Great Britain.  Proceedings of a meeting
held at Nairn, Inverness, Scotland. Society for Veterinary Epidemiology and
Preventative Medicine 2005.

5. Kao RR, Danon L, Green DM, Kiss IZ: Demographic structure
and pathogen dynamics on the network of livestock move-
ments in Great Britain.  Proc Biol Sci 2006, 273:1999-2007.

6. Green DM, Kiss IZ, Kao RR: Modelling the initial spread of foot-
and-mouth disease through animal movements.  Proc Biol Sci
2006, 273:2729-2735.

7. Wilson RJ: Introduction to Graph Theory New York: John Wiley & Sons;
1986. 

8. Wasserman S, Faust K: Social Network Analysis. Methods and Applica-
tions Cambridge: Cambridge University Press; 1994. 

9. Holland PW, Leinhardt S: A method for detecting structure in
sociometric data.  Am J Sociol 1970, 76:492-513.

10. Morris M, Kretzschmar M: Concurrent partnerships and trans-
mission dynamics in networks.  Social Networks 1995,
17:299-318.

11. Kretzschmar M, Morris M: Measures of concurrency in net-
works and the spread of infectious disease.  Math Biosci 1996,
133:165-195.

12. Anon: Identifying and Tracking Livestock in England Report by the
Comptroller and Auditor General. London: National Audit Office;
2003. 

13. Madders B: Review of the Livestock Movement Controls London: Depart-
ment for Environment Food and Rural Affairs; 2006. 

14. Pastor-Satorras R, Vespignani A: Epidemic spreading in scale-
free networks.  Phys Rev Lett 2001, 86:3200-3203.

15. May RM, Lloyd AL: Infection dynamics on scale-free networks.
Phys Rev E Stat Nonlin Soft Matter Phys 2001, 64:066112.

16. Dezso Z, Barabási AL: Halting viruses in scale-free networks.
Phys Rev E Stat Nonlin Soft Matter Phys 2002, 65:055103.

17. Kiss IZ, Green DM, Kao RR: Infectious disease control using
contact tracing in random and scale-free networks.  J R Soc
Interface 2006, 3:55-62.

18. Barthelemy M, Barrat A, Pastor-Satorras R, Vespignani A: Velocity
and hierarchical spread of epidemic outbreaks in scale-free
networks.  Phys Rev Lett 2004, 92:178701.

19. Vernon MC: Contagion: Free Software for Network Analysis & Generation,
and Disease Simulation 2007 [http://contagion.principate.org/].

20. Mitchell A, Bourn D, Mawdsley J, Wint W, Clifton-Hadley R, Gilbert
M: Characteristics of cattle movements in Britain – an analy-
sis of records from the Cattle Tracing System.  Animal Science
2005, 80:265-273.

21. Robinson SE, Christley RM: Identifying temporal variation in
reported births, deaths and movements of cattle in Britain.
BMC Vet Res 2006, 2:11.

22. Newman MEJ, Strogatz SH, Watts DJ: Random graphs with arbi-
trary degree distributions and their applications.  Phys Rev E
2001, 64:026118.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16846906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17015320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17015320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8718707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8718707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11290142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11736241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12059627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16849217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16849217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15169200
http://contagion.principate.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16573832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16573832
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Networks for structural investigations
	Nodes and edges
	Components
	In- and out-degree
	Dyad and triad censuses
	Disease simulations
	7-day infection network
	14-day infection network


	Discussion
	Conclusion
	Methods
	Cattle movements
	Contact networks
	Disease simulations

	Authors' contributions
	Acknowledgements
	References

